The aim of this review is to evaluate the current
available literature evidencing on peri-articular hip endoscopy
(the third compartment). A comprehensive approach has been set on
reports dealing with endoscopic surgery for recalcitrant trochanteric
bursitis, snapping hip (or coxa-saltans; external and internal),
gluteus medius and minimus tears and endoscopy (or arthroscopy)
after total hip arthroplasty. This information can be used to trigger
further research, innovation and education in extra-articular hip
endoscopy.
We examined the one-year risk of symptomatic
venous thromboembolism (VTE) following primary total hip replacement
(THR) among Danish patients and a comparison cohort from the general
population. From the Danish Hip Arthroplasty Registry we identified
all primary THRs performed in Denmark between 1995 and 2010 (n =
85Â 965). In all, 97% of patients undergoing THR received low-molecular-weight
heparin products during hospitalisation. Through the Danish Civil
Registration System we sampled a comparison cohort who had not undergone
THR from the general population (n = 257Â 895). Among the patients
undergoing THR, the risk of symptomatic VTE was 0.79% between 0
and 90 days after surgery and 0.29% between 91 and 365 days after
surgery. In the comparison cohort the corresponding risks were 0.05%
and 0.12%, respectively. The adjusted relative risks of symptomatic
VTE among patients undergoing THR were 15.84 (95% confidence interval
(CI) 13.12 to 19.12) during the first 90 days after surgery and
2.41 (95% CI 2.04 to 2.85) during 91 to 365 days after surgery,
compared with the comparison cohort. The relative risk of VTE was
elevated irrespective of the gender, age and level of comorbidity
at the time of THR. We concluded that THR was associated with an increased risk of
symptomatic VTE up to one year after surgery compared with the general
population, although the absolute risk is small.
The purpose of this study was to investigate
the development of the osseous acetabular index (OAI) and cartilaginous
acetabular index (CAI) using MRI. The OAI and CAI were measured
on the coronal MR images of the hip in 81 children with developmental
dysplasia of the hip (DDH), with a mean age of 19.6 months (3 to
70), and 241 normal control children with a mean age of 5.1 years
(1 month to 12.5 years). Additionally the developmental patterns
of the OAI and CAI in normal children were determined by age-based
cross-sectional analysis. Unlike the OAI, the normal CAI decreased rapidly from a mean
of 10.17° (
Despite excellent results, the use of cemented
total hip replacement (THR) is declining. This retrospective cohort study
records survival time to revision following primary cemented THR
using the most common combination of components that accounted for
almost a quarter of all cemented THRs, exploring risk factors independently associated
with failure. All patients with osteoarthritis who had an Exeter
V40/Contemporary THR (Stryker) implanted before 31 December 2010
and recorded in the National Joint Registry for England and Wales
were included in the analysis. Cox’s proportional hazard models
were used to analyse the extent to which risk of revision was related
to patient, surgeon and implant covariates, with a significance
threshold of p <
0.01. A total of 34 721 THRs were included in
the study. The overall seven-year rate of revision for any reason
was 1.70% (99% confidence interval (CI) 1.28 to 2.12). In the final
adjusted model the risk of revision was significantly higher in
THRs with the Contemporary hooded component (hazard ratio (HR) 1.88,
p <
0.001) than with the flanged version, and in smaller head
sizes (<
28Â mm) compared with 28Â mm diameter heads (HR 1.50,
p = 0.005). The seven-year revision rate was 1.16% (99% CI 0.69
to 1.63) with a 28Â mm diameter head and flanged component. The overall
risk of revision was independent of age, gender, American Society
of Anesthesiologists grade, body mass index, surgeon volume, surgical
approach, brand of cement/presence of antibiotic, femoral head material
(stainless steel/alumina) and stem taper size/offset. However, the
risk of revision for dislocation was significantly higher with a
‘plus’ offset head (HR 2.05, p = 0.003) and a hooded acetabular component
(HR 2.34, p <
0.001). In summary, we found that there were significant differences
in failure between different designs of acetabular component and
sizes of femoral head after adjustment for a range of covariates.
Deformity after slipped upper femoral epiphysis
(SUFE) can cause cam-type femoroacetabular impingement (FAI) and
subsequent osteoarthritis (OA). However, there is little information
regarding the radiological assessment and clinical consequences
at long-term follow-up. We reviewed 36 patients (43 hips) previously
treated by We conclude that persistent deformity with radiological cam FAI
after SUFE is associated with poorer clinical and radiological long-term
outcome. Although the radiological measurements had quite wide limits
of agreement, they are useful for the diagnosis of post-slip deformities
in clinical practice.
The purpose of this paper is to discuss the risk
factors, prevention strategies, classification, and treatment of
intra-operative femur fractures sustained during primary and revision
total hip arthroplasty.
Options for the treatment of subcapital femoral
neck fractures basically fall into two categories: internal fixation
or arthroplasty (either hemiarthroplasty or total hip arthroplasty).
Historically, the treatment option has been driven by a diagnosis-related approach
(non-displaced neck fractures versus displaced neck fractures).
More recently, the traditional paradigm has changed. Instead of
a diagnosis-related approach, it has become more of a patient-related
approach. Treatment options take in to consideration the patient’s age,
functional demands, and individual risk profile. A simple algorithm
can be helpful in terms of directing the treatment. Non-displaced
fractures, regardless of age of the patient, should be treated with
closed reduction and internal fixation. For displaced femoral neck fractures,
the treatment differs depending on the age of the patient. The younger
patient should be treated with urgent ORIF with the goal of an anatomic
reduction. For displaced femoral neck fractures in the elderly,
cognitive function should be determined. For those who are cognitively
functioning, total hip arthroplasty appears to be the best option.
In the cognitively dysfunctional, a bipolar hemiarthroplasty or
a total hip arthroplasty with use of larger heads (32 mm or 36 mm)
and/or constrained sockets are a viable option.
Metal-on-metal hip arthroplasty gained significant
favor in the first decade of the millennium. However, the past several
years have seen increasing reports of failure, pseudotumor and other
adverse reactions. This study presents the results of a single center’s
15-year experience with metal-on-metal total hip arthroplasty as
strong evidence that metal-on-metal is going, going, gone.
In this paper, we will consider the current role
of metal-on-metal bearings by looking at three subtypes of MoM hip
arthroplasty separately: Hip resurfacing, large head (>
36 mm) MoM
THA and MoM THA with traditional femoral head sizes.
There are no recent studies comparing cable with
wire for the fixation of osteotomies or fractures in total hip replacement
(THR). Our objective was to evaluate the five-year clinical and
radiological outcomes and complication rates of the two techniques.
We undertook a review including all primary and revision THRs performed
in one hospital between 1996 and 2005 using cable or wire fixation.
Clinical and radiological evaluation was performed five years post-operatively.
Cables were used in 51 THRs and wires in 126, and of these, 36 THRs
with cable (71%) and 101 with wire (80%) were evaluated at follow-up.
The five-year radiographs available for 33 cable and 91 wire THRs
revealed rates of breakage of fixation of 12 of 33 (36%) and 42
of 91 (46%), respectively. With cable there was a significantly
higher risk of metal debris (68% In conclusion, we found a higher incidence of complications and
a trend towards increased infection and foreign-body reaction with
the use of cables.
Tapered, fluted, modular, titanium stems have
a long history in Europe and are increasing in popularity in North America.
We have reviewed the results at our institution looking at stem
survival and clinical outcomes. Radiological outcomes and quality
of life assessments have been performed and compared to cylindrical
non-modular cobalt chromium stems. Survival at five years was 94%.
This fell to 85% at ten years due to stem breakage with older designs.
Review of radiology showed maintenance or improvement of bone stock
in 87% of cases. Outcome scores were superior in tapered stems despite
worse pre-operative femoral deficiency. Tapered stems have proved
to be a useful alternative in revision total hip arthroplasty across
the spectrum of femoral bone deficiency.
Femoroacetabular impingement (FAI) is commonly
associated with early hip arthritis. We reviewed our series of 1300
hip resurfacing procedures. More than 90% of our male patients,
with an average age of 53 years, had cam impingement lesions. In
this condition, there are anterior femoral neck osteophytes, and
a retroverted femoral head on a normally anteverted neck. It is
postulated that FAI results in collision of the anterior neck of
the femur against the rim of the acetabulum, causing damage to the
acetabular labrum and articular cartilage, resulting in osteoarthritis.
Early treatment of FAI involves arthroscopic or open removal of
bone from the anterior femoral neck, as well as repair or removal
of labral tears. However, once osteoarthritis has developed, hip
replacement or hip resurfacing is indicated. Hip resurfacing can
re-orient the head and re-shape the neck. This helps to restore
normal biomechanics to the hip, eliminate FAI, and improve range
of motion. Since many younger men with hip arthritis have FAI, and
are also considered the best candidates for hip resurfacing, it
is evident that resurfacing has a role in these patients.
Large femoral heads have been used with increasing
frequency over the last decade. The prime reason is likely the effect
of large heads on stability. The larger head neck ratio, combined
with the increased jump distance of larger heads result in a greater
arc of impingement free motion, and greater resistance to dislocation
in a provocative position. Multiple studies have demonstrated clear
clinical efficacy in diminishing dislocation rates with the use
of large femoral heads. With crosslinked polyethylene, wear has
been shown to be equivalent between larger and smaller heads. However,
the stability advantages of increasing diameter beyond 38 mm have
not been clearly demonstrated. More importantly, recent data implicates
large heads in the increasing prevalence of groin pain and psoas impingement.
There are clear benefits with larger femoral head diameters, but
the advantages of diameters beyond 38 mm have not yet been demonstrated
clinically.
Restoration of leg length and offset is an important
goal in total hip replacement. This paper reports a calliper-based technique
to help achieve these goals by restoring the location of the centre
of the femoral head. This was validated first by using a co-ordinate
measuring machine to see how closely the calliper technique could
record and restore the centre of the femoral head when simulating
hip replacement on Sawbone femur, and secondly by using CT in patients
undergoing hip replacement. Results from the co-ordinate measuring machine showed that the
centre of the femoral head was predicted by the calliper to within
4.3 mm for offset (mean 1.6 (95% confidence interval (CI) 0.4 to
2.8)) and 2.4 mm for vertical height (mean -0.6 (95% CI -1.4 to
0.2)).
The CT scans showed that offset and vertical height were restored
to within 8 mm
(mean -1 (95% CI -2.1 to 0.6)) and -14 mm (mean 4 (95% CI 1.8 to
4.3)), respectively. Accurate assessment and restoration of the centre of the femoral
head is feasible with a calliper. It is quick, inexpensive, simple
to use and can be applied to any design of femoral component.
Femoroacetabular impingement causes groin pain
and decreased athletic performance in active adults. This bony conflict
may result in femoroacetabular subluxation if of sufficient magnitude. The ligamentum teres has recently been reported to be capable
of withstanding tensile loads similar to that of the anterior cruciate
ligament, and patents with early subluxation of the hip may become
dependent on the secondary restraint that is potentially provided
by the ligamentum teres. Rupture of the ligamentum may thus cause
symptomatic hip instability during athletic activities. An arthroscopic reconstruction of the ligamentum teres using
iliotibial band autograft was performed in an attempt to restore
this static stabiliser in a series of four such patients. Early
clinical results have been promising. The indications, technique
and early outcomes of this procedure are discussed.
A moderator and panel of five experts led an
interactive session in discussing five challenging and interesting patient
case presentations involving surgery of the hip. The hip pathologies
reviewed included failed open reduction internal fixation of subcapital
femoral neck fracture, bilateral hip disease, evaluation of pain
after metal-on-metal hip arthroplasty, avascular necrosis, aseptic
loosening secondary to osteolysis and polyethylene wear, and management
of ceramic femoral head fracture.
The technique of femoral cement-in-cement revision
is well established, but there are no previous series reporting its
use on the acetabular side at the time of revision total hip replacement.
We describe the technique and report the outcome of 60 consecutive
acetabular cement-in-cement revisions in 59 patients at a mean follow-up
of 8.5 years (5 to 12). All had a radiologically and clinically
well-fixed acetabular cement mantle at the time of revision. During
the follow-up 29 patients died, but no hips were lost to follow-up.
The two most common indications for acetabular revision were recurrent
dislocation (46, 77%) and to complement femoral revision (12, 20%). Of the 60 hips, there were two cases of aseptic loosening of
the acetabular component (3.3%) requiring re-revision. No other
hip was clinically or radiologically loose (96.7%) at the latest
follow-up. One hip was re-revised for infection, four for recurrent
dislocation and one for disarticulation of a constrained component.
At five years the Kaplan-Meier survival rate was 100% for aseptic
loosening and 92.2% (95% CI 84.8 to 99.6), with revision for any cause
as the endpoint. These results support the use of cement-in-cement revision on
the acetabular side in appropriate cases. Theoretical advantages
include preservation of bone stock, reduced operating time, reduced
risk of complications and durable fixation.
Many tumors metastasise to bone, therefore, pathologic
fracture and impending pathologic fractures are common reasons for
orthopedic consultation. Having effective treatment strategies is
important to avoid complications, and relieve pain and preserve
function. Thorough pre-operative evaluation is recommended for medical
optimization and to ensure that the lesion is in fact a metastasis
and not a primary bone malignancy. For impending fractures, various scoring
systems have been proposed to determine the risk of fracture, and
therefore the need for prophylactic stabilisation. Lower score lesions
can often be treated with radiation, while more problematic lesions
may require internal fixation. Intramedullary fixation is generally
preferred due to favorable biomechanics. Arthroplasty may be required
for lesions with massive bony destruction where internal fixation
attempts are likely to fail. Radiation may also be useful postoperatively
to minimise construct failure due to tumor progression.
Periprosthetic joint infection (PJI) is a devastating
complication which can follow a total joint arthroplasty (TJA).
Although rare, this ongoing threat undermines the success of TJA,
a historically reputable procedure. It has haunted the orthopedic
community for decades and several ongoing studies have provided
insights and new approaches to effectively battle this multilayered
problem.
Osteolysis remains a common reason for revision
after total hip arthroplasty (THA). For osteolysis associated with loose
cups, revision is indicated. For osteolysis around a well-fixed
cup, the decision is more controversial. The data available data
support retention of the cupwith lesional treatment, working through
screw holes and access channels for debridement and grafting. The
choice of graft material to fill defects, if any, remains controversial. Several
studies demonstrate good survivorship with cup retention strategies.
Complete revision allows more complete debridement of the lesion
and better graft fill, and allows implantation of a modern cup,
typically with a full line of liners and bearing surfaces available.
Additionally, revision allows fine tuning of the orientation of
the cup, which may be advantageous for optimising hip stability.
The author prefers to retain a well-fixed cup if it meets the following
criteria: it is well-fixed to intra-operative testing, it is well-positioned,
it is of sufficient size to allow insertion of a new liner with
a reasonable head size, new liners are available, and the hip is
stable to intra-operative trialing after liner insertion.