header advert
Results 1 - 100 of 763
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 94 - 94
23 Feb 2023
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A
Full Access

Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1-4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals. A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed. For the RHK design with the polyethylene gliding surface and bushings and flanges made out of CFR-PEEK, a cumulative volumetric wear was measured to be 12.9±3.95 mm. 3. in articulation to cobalt-chromium and 1.3±0.21 mm. 3. to ZrN-multilayer coating - a significant 9.9-fold decrease (p=0.0072). For the CFR-PEEK flexion bushing and flanges the volumetric wear rates were 2.3±0.48 mm. 3. /million cycles (cobalt-chromium) and 0.21±0.02 mm. 3. /million cycles (ZrN-multilayer) (p=0.0016). The 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which is in accordance to the time in vivo of 12–60 months of the retrieved RHK components [5]. The main wear modes were comparable between retrievals and in vitro specimens, whereby the size of affected area on the retrieved components showed a higher variation. For the EnduRo® RHK design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN-multilayer coating


Bone & Joint Research
Vol. 7, Issue 7 | Pages 476 - 484
1 Jul 2018
Panagiotopoulou VC Davda K Hothi HS Henckel J Cerquiglini A Goodier WD Skinner J Hart A Calder PR

Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods. A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results. Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion. This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A retrieval analysis of the Precice intramedullary limb lengthening system. Bone Joint Res 2018;7:476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 11 - 13
1 Nov 2012
Cuckler JM

Hip implant retrieval analysis is the most important source of insight into the performance of new materials and designs of hip arthroplasties. Even the most rigorous in vitro testing will not accurately simulate the behavior of implant materials and new designs of prosthetic arthroplasties. Retrieval analysis has revealed such factors as the effects of gamma-in-air sterilisation of polyethylene, fatigue failure mechanisms of polymethylmethacrylate bone cement, fretting corrosion of Morse taper junctions, third body wear effects of both hard-on-hard and hard-on-soft bearing couples, and the effects of impingement of components on the full spectrum of bearing surfaces, none of which was predicted by pre-implantation in vitro testing of these materials and combinations. The temporal sequence of the retrieval process is approximately six years from first implantation through retrieval analysis, laboratory investigation, and publication of results, and thus, in addition to rigorous clinical evaluation, represents the true development and insight cycle for new designs and materials


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1597 - 1601
1 Dec 2011
Walter WL Kurtz SM Esposito C Hozack W Holley KG Garino JP Tuke MA

This multicentre study analysed 12 alumina ceramic-on-ceramic components retrieved from squeaking total hip replacements after a mean of 23 months in situ (11 to 61). The rates and patterns of wear seen in these squeaking hips were compared with those seen in matched controls using retrieval data from 33 ‘silent’ hip replacements with similar ceramic bearings. All 12 bearings showed evidence characteristic of edge-loading wear. The median rate of volumetric wear was 3.4 mm. 3. /year for the acetabular component, 2.9 mm. 3. /year on the femoral heads and 6.3 mm. 3. /year for head and insert combined. This was up to 45 times greater than that of previously reported silent ceramic-on-ceramic retrievals. The rate of wear seen in ceramic components revised for squeaking hips appears to be much greater than in that seen in retrievals from ‘silent’ hips.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 85 - 85
1 Apr 2019
Dall'Ava L Hothi H Henckel J Cerquiglini A Laura AD Shearing P Hart A
Full Access

Introduction. The use of Additive Manufacturing (AM) to 3D print titanium implants is becoming widespread in orthopaedics, particularly in producing cementless porous acetabular components that are either custom-made or off-the-shelf; the primary design rationale for this is enhanced bony fixation by matching the porosity of bone. Analysis of these retrieved components can help us understand their performance; in this study we introduce a non-destructive method of the retrieval analysis of 3D printed implants. Material and methods. We examined 11 retrieved 3D printed acetabular cups divided into two groups: “custom-made” (n = 4) and “off-the-shelf” (n = 7). A macroscopic visual analysis was initially performed to measure the area of tissue ongrowth. High resolution imaging of each component was captured using a micro-CT scanner and 3D reconstructed models were used to assess clinically relevant morphometric features of the porous structure: porosity, porous structure thickness, pore size and strut thickness. Optical microscopy was also used as a comparison with microCT results. Surface morphology and elemental composition of the implants were investigated with a Scanning Electron Microscope (SEM) coupled with an Energy Dispersive X-ray Spectroscope (EDS). Statistical analysis was performed to evaluate possible differences between the two groups. Results. We found a spread of tissue coverage, median of 81% (23 – 95), with a trend with time in situ. Custom implants showed a higher spread of porosity, with median value of 74.11% (67.94 – 81.01), due to the presence of differently designed porous areas. Off-the-shelf cups had median porosity of 72.49% (66.67 – 73.07), but there was no significant difference between the two groups (p = 0.164). There was a significant difference in the thickness of the porous structure of the two groups, which were 3.918 mm (3.688 – 4.102) and 1.289 mm (1.235 – 1.364), respectively (p = 0.006). SEM output showed specific morphological features of 3D printed object; EDS analysis suggested that no chemical modifications occurred in vivo, with elemental ratios (Ti/Al = 14; Ti/V = 21; Al/V = 1.51) comparable to previously published results. Conclusion. This is one of the first retrieval studies of 3D printed orthopaedic implants. We introduced a method for the investigation of these components and micro-CT scanning enabled the non-destructive assessment of the porous structure. This work represents the first step in understanding the performance of 3D printed implants


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 132 - 132
1 Feb 2017
MacDonald D Chen A Lee G Klein G Cates H Mont M Rimnac C Kurtz S
Full Access

Introduction. During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. Previous studies have observed that the use of a ceramic head can mitigate the extent of corrosion damage at the taper. Moreover, in vitro testing suggests that corrosion is not a concern in sleeved ceramic heads [1]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads. Materials and Methods. Thirty sleeved ceramic heads (Biolox Option: CeramTec) were collected during revision surgery as part of a multi-center retrieval program. The sleeves were used in conjunction with a zirconia-toughened alumina femoral head. The femoral heads and sleeves were implanted between 0.0 and 3.25 years (0.8±0.9, Figure 1). The implants were revised predominantly for instability (n=14), infection (n=7), and loosening (n=5). Fifty percent of the retrievals were implanted during a primary surgery, while 50% had a history of a prior revision surgery. Fretting corrosion was scored using a previously described 4-point, semi-quantitative scoring system proposed by Higgs [2]. Results. Among the sleeved ceramic heads, mild-to-moderate fretting corrosion scores (Score = 2–3) were observed in 96% of internal tapers, 26% of external tapers, and 82% of the stems. On the internal taper surface, 5 sleeves had moderate fretting corrosion data (Score = 3, Figure 2). None of sleeves had severe (Score = 4) at any taper surface. Fretting corrosion scores were higher at the internal taper surface than the external taper. Implantation time was the main predictor of increased fretting-corrosion of the external sleeve tapers. Discussion. For the sleeved ceramic heads, we found that fretting corrosion can occur in these components, particularly on the internal surface of the sleeve. However, the fretting corrosion scores were predominantly mild, and lower than fretting scores of CoCr heads in metal on polyethylene bearings. Because the sleeves are Ti alloy, the corrosion products are considered to be less cytotoxic than Co and Cr. The primary limitation to this study is the short-term follow-up of these retrievals. As the fretting corrosion process is often associated with in vivo duration, future studies with longer-term implants are necessary to elucidate the long-term performance of these devices


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 203 - 203
1 Jul 2014
Rowell S Muratoglu O
Full Access

Summary. Fifteen irradiated, vitamin E-diffused UHMWPE retrievals with up to three years in vivo service showed no appreciable oxidation, nor change in material properties from a never-implanted liner, and showed a 94% decrease in free radical content. Introduction. Radiation cross-linking, used to improve wear resistance of ultra-high molecular weight polyethylene (UHMWPE) bearings used in total joint arthroplasty, generates residual free radicals which are the precursors to oxidative embrittlement. First generation materials adopted thermal treatments to eliminate or reduce free radical content, but came with compromises in reduced mechanical properties or insufficient stabilization. A second generation alternative method infuses an antioxidant, vitamin E, into irradiated UHMWPE to stabilise free radicals while maintaining fatigue strength. In vitro studies predict excellent oxidation and wear resistance in vitamin E-stabilised bearings, but the long-term in vivo oxidation behavior, influenced by lipid absorption and cyclic loading, remains largely unknown. Our aim was to investigate in vivo changes in UHMWPE surgically-retrieved explants that were radiation cross-linked and stabilised by vitamin E. Patients & Methods. Fifteen surgically-retrieved irradiated, vitamin E-diffused and inert-gamma sterilised bearings (E1™, Biomet, Inc., Warsaw IN) with in vivo durations ranging from 3 days to 36.6 months were analyzed at unloaded rim/eminence and the articular surface along with one never-implanted component. Total lifetime of components was summed as shelf storage prior to implantation, in vivo duration and ex vivo duration in air. Fourier Transform Infrared Spectroscopy (FTIR) was used to measure carbonyl index (CI; per ASTM F2102-01ε1) both before and after 16 hour hexane extraction to. Extracted thin films were also reacted with nitric oxide to quantify hydroperoxides, an intermediate oxidation product associated with oxidation potential. Cross-link density was calculated from gravimetric swelling analysis per ASTM F2214. Crystallinity measurements were performed regionally using differential scanning calorimetry (DSC). Free radical content was measured by electron spin resonance (Memphis, TN). Results. Irradiated and vitamin E-diffused retrievals showed scratching at the articular surface, but retained machining marks up to three years in vivo, indicative of no measurable wear. Retrievals showed no significant oxidation at the time of surgical removal with maximum post-hexane carbonyl indices in the barely detectable range (MCI=0.029–0.154), located at the surface of retrievals. Ex vivo oxidation was not observed after 18 months of aging in air at room temperature. There was no increase in hydroperoxides (never-implanted HI=0.62±0.04; retrieval HI= 0.62±0.04), nor change in cross-link density (never-implanted: 0.275±0.015 mol/dm. 3. ; retrieval: 0.295±0.016 mol/dm. 3. ) or crystallinity (never-implanted: 58.3±1.4%; retrievals: 60.0±3.5%). Lipid penetration increased with time, showing a higher rate of diffusion in loaded regions. Free radical content was observed to decay with increasing in vivo duration (R. 2. =0.44; p<0.05), and by one order of magnitude (94%) by 36.6 months. A stronger negative correlation (R. 2. =0.65) was observed between the total lifetime of the liner and free radical content. Discussion/Conclusion. The free-radical scavenging activity of the vitamin E appears to successfully prevent both in vivo and ex vivo oxidation for short durations. Without an increase in hydroperoxides, the oxidation cascade initiated by radiation-induced and lipid-derived free radicals appears to have been halted. Retrievals also gave no indication of wear in this timeframe, similar to improved wear resistance seen in first generation materials. Continued monitoring will be necessary at longer implant durations


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 46 - 46
1 Feb 2020
Currier J Currier B Jevsevar K Van Citters D
Full Access

Introduction. In an effort to provide a TKA bearing material that balances resistance to wear, mechanical failure and oxidation, manufacturers introduced antioxidant polyethylene. In many designs, this is accomplished through pre-blending the polymer with the antioxidant before consolidation and radiation crosslinking. This study reports the wear performance (in terms of thickness change) of a hindered phenol (PBHP) UHMWPE from analysis of an early series of knee retrievals and explores these questions: 1) What is early-time performance of this new bearing material? 2) Is there a difference in performance between fixed and mobile bearings in this design? 3) How does quantitative surface analysis help understand performance at the insert-tray modular interface?. Methods. A series of 100 consecutive Attune™ knee inserts (DePuy Synthes, Warsaw, IN) received at revision by an IRB approved retrieval laboratory between September 2014 and March 2019 were investigated. In vivo duration was 0–52 months. Both the fixed bearing design (n=74) and the rotating platform mobile bearing design (n=26) were included. Dimensional change was determined by measurement of each insert and compared to the as-manufactured dimensions, provided by the manufacturer. The insert-tray interfaces under the loaded bearing zones were analyzed with light interferometry using an optical surface profiler (NewView™ 7300, Zygo, Middlefield, CT). Statistical analyses to explore relationships between measured variables were conducted using SPSS. Results. Mean total through-thickness change of the inserts was 0.052 mm. Mean rate of thickness change for all inserts having in vivo duration > 12 months was 0.038 mm/year (fixed bearing 0.042, mobile bearing 0.029 mm/year). The rate of thickness change for all inserts showed a decreasing trend with duration that was not statistically significant, (rho -.244, p=.094); however, the mobile bearing cohort alone showed a significant decrease in thickness change rate with duration (rho= −.659; p=.014). Surface roughness (Sa) of the distal surface of the UHMWPE inserts under the bearing areas averaged 1.24 µm (range 0.12 – 8.53) and peak-to-valley height (PV) averaged 27.1 µm (range 4 – 95). Sa and PV both showed a decreasing trend with duration in vivo in the mobile bearing inserts, but that trend did not reach statistical significance (p= 0.05 criterion). Neither Sa nor PV showed correlation with measured thickness change. Discussion. This study indicates that the rate of thickness change of a relatively new antioxidant cross-linked bearing material is very similar to other reported wear rates of crosslinked knee inserts. Lower wear rate of mobile bearing inserts compared to fixed bearings also is consistent with earlier published studies. Direct comparison between quantitative thickness change and objective, quantitative surface metrology on the same series brings new information to the arena of measuring and reporting “wear” of UHMWPE and underscores the importance of the distinction between visual damage and actual thinning of the bearing. The systematic surface analysis of the modular interfaces showing that surface roughness (Sa) and total damage feature topography (PV) trend downward with in vivo duration of mobile bearings supports the hypothesis that relative motion at that interface may ‘polish out’ the surface topography over time. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 2, Issue 9 | Pages 200 - 205
1 Sep 2013
Amarasekera HW Campbell PC Parsons N Achten J Masters J Griffin DR Costa ML

Objectives . We aimed to determine the effect of surgical approach on the histology of the femoral head following resurfacing of the hip. Methods. We performed a histological assessment of the bone under the femoral component taken from retrieval specimens of patients having revision surgery following resurfacing of the hip. We compared the number of empty lacunae in specimens from patients who had originally had a posterior surgical approach with the number in patients having alternative surgical approaches. Results. We found a statistically significant increase in the percentage of empty lacunae in retrieval specimens from patients who had the posterior approach compared with other surgical approaches (p < 0.001). . Conclusions. This indicates that the vascular compromise that occurs during the posterior surgical approach does have long-term effects on the bone of the femoral head, even if it does not cause overt avascular necrosis. Cite this article: Bone Joint Res 2013;2:200–5


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 380 - 380
1 Dec 2013
Kretzer JP Pohl V Zeifang F Buelhoff M Sonntag R Reinders J
Full Access

Hemi shoulder arthroplasty is an attractive treatment for shoulder arthritis in particular if the natural glenoid is still intact. However, comparing the clinical results of hemi and total shoulder arthroplasty clearly shows lower survival for the hemi arthroplasty. One of the most common reasons for revision surgery is gleniod erosion, where the cartilage or bone is worn of. Aim of the current study was to analyse if the metallic articular surface of retrieved hemi shoulder arthroplasty is different from new implants. We hypothesized that the surface roughness will increased due the articulation and that metallic wear is detectable on the implants. Twelve retrieved and three brand new hemi shoulder arthroplasty were included. The surface roughness (Ra, Rz, Rmax, Rsk) was measured on different sites of the surface (center of the head and at the edge). The implants were further measured using a coordinate measuring machine to gain information on volumetric wear and geometrical alterations. Compared to new implants the surface roughness on the retrievals was significantly increased (Tab. 1), except for skewness. Although the roughness parameters within the retrieval group were generally higher at the center of the head compared to the edge, this difference was not significant. Apart from form deviations no volumetric wear was detectable on the heads (Fig. 1). The current results indicate that the metallic articular implant surface changes in vivo and that the material is hurt due to the articulation against the softer cartilage or bone. Although it can't be finally clarified by that study, to what extend the higher roughness is taking part in the process of the clinically observed erosion of the gleniod, it can be assumed that an increased roughness is disadvantageous. Possibly, the observed surface alterations won't occur clinically with harder materiel (e.g. ceramic), but this even needs to be validated


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 39 - 39
1 Jul 2020
El-Bakoury A Parkar A Powell J
Full Access

Background. One of the potential complications of polyethylene liner (PL) is its dissociation from the metal shell. This is a rare but catastrophic complication of total hip replacement (THR). Objective. was to analyze the retrieved dissociated components (PL and shell) (Depuy Pinnacle, Warsaw, IN, USA) to evaluate the mechanism of failure. All these components were dissociated within four years of implantation. Methods. Components were retrieved from three different centers in Canada over the period from January 2011 to October 2016. The analysis was done at the Orthopaedic Innovation Centre (OIC) in Winnipeg Canada. Nine PLs were retrieved at the time of revision THR. Assessment using optical and scanning electron microscopies at magnification between 25× and 150× was performed. The following questions were asked: 1) were the liners correctly seated at the primary surgery? 2) Are there signs of impingement present which could have caused the liner to become dissociated? 3) Does the wear pattern indicate that the liner was failing prior to dissociation?. Results. All PLs dissociated in the inferior direction. Five PL were believed to have been seated properly at the time of indexed surgery. All PL displayed signs of post dissociation impingement. Only 1 PL had fractured resulting in failure prior to dissociation. Other PL showed signs of wear, however none of them reached thinness that would be a cause for concern. Eight PLs demonstrated shearing of the anti rotation tabs. Assessment of the anti rotation tabs revealed that a couple had sheared off suddenly while remaining anti rotation tabs sheared off in progressive fatigue resulting in the failure of the locking mechanism. Conclusions. Retrieval analysis was useful in identifying common patterns of failure such as anti-rotation tab damage. This was suggestive that the locking mechanism of the acetabular components has probably failed in 8 out of 9 of the retrieved liners


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 14 - 15
1 Jan 2003
Chapman-Sheath P Butler A Svhela M Gillies M Bruce W Walsh W
Full Access

Clinical implantation represents the ultimate experiment of any component and often demonstrates areas of strengths and weaknesses not predicted from in vitro testing. Mobile bearing knees incorporate an additional articulating interface between the flat distal PE insert and a highly polished metal tibial tray. This can allow the proximal interface to retain high conformity whilst leading to reduced stresses at the bone – prosthesis interface by permitting complex distal interface compensatory motion to occur (rotation and/or translation). Retrieval reports on many of the new generation of mobile bearing implants remains scarce. This study presented a retrieval analysis of 9 mobile bearing inserts that had be in situ for less than 24 months. Nine cemented mobile bearing implants (6 AP Glide, 1 LCS, 1 MBK and 1TRAK) were received into our Implant Retrieval Program. The femoral component, tibial tray and PE insert were macroscopically examined under a stereo-zoom microscope for evidence of damage. The PE inserts were graded for wear based on optical and SEM assessments. The proximal and distal surfaces of the PE inserts were subsequently assessed for surface roughness following ISO 97 (Ra and Rp) using a Surfanalyzer 5400 (Federal Products, Providence, RI). Virgin, unused PE inserts were analysed and served as a comparison to the retrieved implants. Time in situ time for these implants ranged from 6 months to 24 months (mean 18.6). The implants were revised for instability and pain (AP glide) or dislocation (TRAK). Damage to the femoral components, in general, was minimal with some evidence of a transfer film of PE. The proximal surface of the tibial trays presented evidence of PE transfer as well as some scratches but in general were intact. The proximal PE and distal PE articulating surfaces demonstrated significant areas of damage due to third body wear which was identified on EDAX to be PMMA. Areas of burnishing were also present at the proximal and distal interface. The damage, in part, correlated with the complex kinematics of each design


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 154 - 154
1 Mar 2010
Clarke I Kubo K Lazennec Y Cattonne Y Anderson I Smith E Turnbull A Donaldson T
Full Access

From 1985 metal-on-metal (MOM) designs of resurfacing (RSA) and total hip arthroplasties (THR) have been available over a large diameter range (28–60mm). In-vitro studies indicated satisfactory low wear performance for all designs and diameters tested (wear = 0.1 to 7 mm3). While reports from many centers have been encouraging, some have reported adverse effects. We reviewed clinical and metal ion studies in large diameter retrievals and compared these to 28mm MOM cases. Patients with the latter THR ranged 36–76 years of age and were followed 9–11 years. Main finding in our revisions was osteolysis and pain. The 28mm ball was represented 86% of cases; 71% balls had stripe wear. For liners, 25% had circumferential stripe wear and impingement was evident in 64% cases. Seven cemented stems were recovered with impingement marks; 26 stems were undamaged and therefore not revised. Using the concept of ‘damage modes’ from McKellop, normal wear mode #1 was evident in only 14% of 28mm retrievals whereas incidence of ‘abnormal’ modes #2-4 approached 30% each. Thus the 28mm MOM appeared susceptible to impingement risks with CoCr liners. Summarizing MOM retrievals, damage modes 2–4 were most likely implicated in revisions. The performance of such ‘small diameter’ THRs will be contrasted to our large diameter THR and RSA experience. The questions to be reviewed include, how much of the reported MOM adversity was predictable and how much risk was due to. wear of small diameter MOM,. adverse cup positioning and hip instability,. cup-stem impingement issues or. design conformity issues?


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 129 - 129
1 May 2016
Kurtz S Arnholt C MacDonald D Higgs G Underwood R Chen A Klein G Hamlin B Lee G Mont M Cates H Malkani A Kraay M Rimnac C
Full Access

Introduction. Previous studies of retrieved CoCr alloy femoral heads have identified imprinting of the stem taper surface features onto the interior head bore, leading researchers to hypothesize that stem taper microgrooves may influence taper corrosion. However, little is known about the role of stem taper surface morphology on the magnitude of in vivo corrosion damage. We designed a matched cohort retrieval study to examine this issue. Methods. From a multi-institutional retrieval collection of over 3,000 THAs, 120 femoral head-stem pairs were analyzed for evidence of fretting and corrosion using a visual scoring technique based on the severity and extent of fretting and corrosion damage observed at the taper. A matched cohort design was used in which 60 CoCr head-stem pairs with a smooth stem taper were matched with 60 CoCr head-stem pairs having a micro-grooved surface, based on implantation time, flexural rigidity, apparent length of taper engagement, and head size. This study was adequately powered to detect a difference of 0.5 in corrosion scores between the two cohorts, with a power of 82% and 95% confidence. Both cohorts included CoCr and Ti-6-4 alloy femoral stems. A high precision roundness machine (Talyrond 585, Taylor Hobson, UK) was used to measure surface morphology and categorize the stem tapers into smooth vs. micro-grooved categories. Fretting and corrosion damage at the head/neck junction was characterized using a modified semi-quantitative adapted from the Goldberg method by three independent observers. This method separated corrosion damage into four visually determined categories: minimal, mild, moderate and severe damage. Results. Mild to severe damage (Fretting Corrosion Score ≥ 2) was observed in 75% of the 120 CoCr femoral heads (78% of the heads mated with micro-grooved stems (47/60), Fig. 1A) and 72% of the heads mated with smooth stems (43/60, Fig 1B). Fretting and corrosion damage was not significantly different between the two cohorts when evaluated at the CoCr femoral head bore (p =0.105, Mann Whitney test, Fig. 2A) or the male stem tapers (p =0.428, Fig. 2B). No implant or patient factors were associated with fretting corrosion; corrosion scores were not significantly associated with stem alloy in the two cohorts (p=0.669, Mann-Whitney test). Discussion. The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion. We accounted for implant, patient, and clinical factors that may influence in vivo taper corrosion with the matched cohort design and by post hoc statistical analyses. However, this study is limited by the semi-quantitative method used for evaluating damage in these components. Therefore, additional research will be necessary to quantify the volume of metal release from these two cohorts. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 18 - 18
1 Mar 2013
Bolland B Maul C Cook R Roques A Tuke M Wood R Latham J
Full Access

The poor outcome of large head metal on metal total hip replacements (LHMOMTHR) in the absence of abnormal wear at the articulating surfaces has focussed attention on the trunnion / taper interface. The RedLux ultra-precision 3D form profiler provides a novel indirect optical method to detect small changes in the form and surface finish of the head taper as well as a quantitative assessment of wear volume. This study aimed to assess and compare qualitatively the tapers from well functioning small diameter, with poorly functioning LHMOMTHR's using the above technique. Method. 3 groups of retrieval tapers were analysed (Group 1: 28 mm CoCr heads from well functioning MOMTHRs (n=5); Group 2: Large diameter CoCr heads from LHMOMTHRs revised for failure secondary to adverse reaction to metal debris (n=5); Gp 3 (control): 28 mm heads from well functioning metal on Polyethylene (MOP) THRs; n=3). Clinical data on the retrievals was collated. The Redlux profiling of modular head tapers involves a non direct method whereby an imprint of the inside surface of a modular head is taken, and this is subsequently scanned by an optical non contact sensor using dedicated equipment [1]. The wear was also measured on the bearing surface [1]. RedLux profiling of the tapers produced a taper angle and 3D surface maps. The taper angles obtained with the Redlux method were compared to those obtained using CMM measurement on 3 parts. The Redlux profiling, including imprints, was also repeated 3 times to gauge potential errors. Results. There was no difference in mean 12/14 taper angles between groups. There was no difference in volumetric and linear wear at the bearing surface between groups. Only the LHMOMs showed transfer of pattern from the stem to the internal head taper, with clear demarcation of the contact and damaged area between head taper and stem trunnion (see figure 1 – interpretation of head taper surface features demonstrated using Redlux optical imaging). 3D surface mapping demonstrated wear patterns compatible with motion or deformations between taper and trunnion in the LHMOM group. These appearances were not seen in tapers from small diameter MOM and MOP THRs (see Figure 2). Discussion. Differences in appearance of the taper surface between poorly functioning LHMOMTHRs and well functioning MOP or MOM small diameter devices highlight an area of concern and potential contributor to the mode of early failure. Further work is required to fully qualify the Redlux method capabilities, and to understand the origin of the damage seen on those tapers, and the possible partial contribution of damage caused during retrieval


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 10 - 18
1 Jan 2015
Sabah SA Henckel J Cook E Whittaker R Hothi H Pappas Y Blunn G Skinner JA Hart AJ

Arthroplasty registries are important for the surveillance of joint replacements and the evaluation of outcome. Independent validation of registry data ensures high quality. The ability for orthopaedic implant retrieval centres to validate registry data is not known. We analysed data from the National Joint Registry for England, Wales and Northern Ireland (NJR) for primary metal-on-metal hip arthroplasties performed between 2003 and 2013. Records were linked to the London Implant Retrieval Centre (RC) for validation. A total of 67 045 procedures on the NJR and 782 revised pairs of components from the RC were included. We were able to link 476 procedures (60.9%) recorded with the RC to the NJR successfully. However, 306 procedures (39.1%) could not be linked. The outcome recorded by the NJR (as either revised, unrevised or death) for a primary procedure was incorrect in 79 linked cases (16.6%). The rate of registry-retrieval linkage and correct assignment of outcome code improved over time. The rates of error for component reference numbers on the NJR were as follows: femoral head category number 14/229 (5.0%); femoral head batch number 13/232 (5.3%); acetabular component category number 2/293 (0.7%) and acetabular component batch number 24/347 (6.5%). . Registry-retrieval linkage provided a novel means for the validation of data, particularly for component fields. This study suggests that NJR reports may underestimate rates of revision for many types of metal-on-metal hip replacement. This is topical given the increasing scope for NJR data. We recommend a system for continuous independent evaluation of the quality and validity of NJR data. Cite this article: Bone Joint J 2015;97-B:10–18


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 45 - 45
1 Apr 2019
Joyce T Giddins G
Full Access

Objective. We explanted NeuFlex metacarpophalangeal (MP) joint prostheses to identify common features, such as position of fracture, and thus better understand the reasons for implant failure. Methods. Explanted NeuFlex MP joint prostheses were retrieved as part of an-ongoing implant retrieval programme. Following revision MP joint surgery the implants were cleaned and sent for assessment. Ethical advice was sought but not required. The explants were photographed. The position of fracture, if any, was noted. Patient demographics were recorded. Results. Thirty NeuFlex MP explants were available. Seven (23%) were not fractured. Eleven explants (37%) had fractured at the hinge; nine (30%) had fractured at the junction of the distal stem and hinge; and three (10%) had fractured at both the hinge and distal stem. NeuFlex MP joint explants ranged in size from 0 to 40. Smaller sizes were retrieved from smaller fingers; larger implants came from the middle and index fingers. The age at revision ranged from 43 to 81 (median 58) years. Time in vivo ranged from 6 to 120 (median 58.5) months. All but two implants were obtained from rheumatoid joints, the remainder had osteoarthritis. Discolouration of some explants had occurred; other explants appeared to show no colour change. Conclusions. This is the first report of the position of fracture of NeuFlex explants. It is also the largest report of silicone arthroplasty explants. The majority (77%) had fractured. Nine (30%) NeuFlex explants had fractured at the junction of the distal stem and hinge; the typical position seen with Swanson and Sutter/Avanta MP joint explants. Eleven (37%) fractured across the hinge; this has not previously been reported although has been seen in in vitro testing. The hinge is thinner than the hinge-stem junction so may be at risk of more rapid failure, however the median time in vivo for hinge fractures was 63 months as opposed to 54 months for fractures at the distal stem. Intriguingly, 3 (10%) NeuFlex explants suffered fractures both at the hinge and at the junction of the distal stem and hinge which has also never been reported previously. Fracture at the junction of the distal stem and hinge shows the importance of subluxing forces in rheumatoid MP joints and therefore suggests these need to be mitigated as much as possible. Fracture across the hinge could indicate this as a position which could be increased in thickness, to increase the time taken to fracture, although there may be a concomitant increase in stiffness of the implant. With improved designs, patients might suffer fewer or later failures. The latest Norwegian Arthroplasty Registry report shows that revision MP joint arthroplasties accounted for 42% of all MP joint replacement operations in 2015. Therefore, this is an important area where opportunities exist to reduce revision rates


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 54 - 54
1 Mar 2017
Nguyen T Amundsen S Choi D Koch C Wright T Padgett D
Full Access

Introduction. Contemporary total knee systems accommodate for differential sizing between femoral and tibial components to allow surgeons to control soft tissue balancing and optimize rotation. One method some manufacturers use to allow differential sizing involves maintaining coronal articular congruency with a single radius of curvature throughout sizes while clipping the medial-lateral width, called a single coronal geometry system. Registry data show a 20% higher revision rate when the tibial component is smaller than the femur (downsizing) in the DePuy PFC system, a single coronal system, possibly from increased stresses from edge loading or varying articular congruency. We examined a different single coronal geometry knee system, Smith & Nephew Genesis II, to determine if edge loading is present in downsized tibial components by measuring area and location of deviation of the polyethylene articular surface damage. Methods. 45 Genesis II posterior-stabilized polyethylene inserts (12 matched and 33 downsized tibial components) were CT scanned. 3D reconstructions were registered to corresponding pristine component reconstructions, and 3D deviation maps of the retrieved articular surfaces relative to the pristine surfaces were created. Each map was exported as a point cloud to a custom MATLAB code to calculate the area and weighted center of deviation of the articular surfaces. An iterative k-means clustering algorithm was used to isolate regions of deviation, and a shrink-wrap algorithm was applied to calculate their areas. The area of deviation was calculated as the sum of all regions of deviation and was normalized to the area of the articular surface. The location of deviation was described using the weighted center of deviation and the location of maximum deviation on the articular surfaces relative to the center of the post (Fig. 1). Pearson product moment correlations were conducted to examine the correlation between length of implantation (LOI) and the medial and lateral areas of deviation for all specimens, matched components, and downsized components. Results. The mean LOIs for downsized and matched tibial components were not different (36±28 months vs 46±26 months, p=0.24). Areas of deviation for the medial and lateral sides for both downsized and matched components increased with LOI (p<0.001). Medial and lateral sides of matched retrievals were not different in location of maximum deviation, maximum deviation, and weighted center of deviation (p>0.4). The matched and downsized retrievals did not have different centers of deviation in the medial-lateral direction, maximum deviations, or locations of maximum deviations (p>0.1). Discussion. Our results suggest that downsizing the tibial component in the Genesis II system, a single coronal geometry system, did not affect the area or location of deviation on the articular surface. Overall, the weighted center of deviation remained close to the dwell point and did not change as a function of tibial downsizing. However, we saw deviation patterns biased peripherally for inserts with low LOI in both matched and downsized cohorts. With increasing LOI, the deviation expanded to cover the majority of the available articular surface. Our results suggest the need to further examine this and other systems determine the effects of differential sizing. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_13 | Pages 1 - 1
1 Jun 2017
Panagiotopoulou V Davda K Hothi H Henckel J Cerquiglini A Goodier W Skinner J Hart A Calder P
Full Access

Introduction. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower limb lengthening. To assess macroscopic and microscopic changes to the implants and assess differences following design modification, with identification of potential surgical, implant and patient risk factors. Method. 15 nails were retrieved from 13 patients following lower limb lengthening. Macroscopic and microscopic surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analysed with Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy to identify corrosion. Results. 7 male and 3 females underwent 12 femoral lengthenings, 9 antegrade and 3 retrograde. 3 females underwent tibial lengthening. All patients obtained the desired length with no implant failure and full regenerate consolidation. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopic analysis confirmed fretting and pitting corrosion. Following sectioning black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings had evidence of corrosive debris. The latest designs had evidence of biological deposits suggestive of fluid ingress within the nail. Conclusion. This study suggests fluid ingress occurs with every generation of Precice nail despite modifications. The presence of biological fluid could be an early warning sign of potential corrosion. This in theory could lead to actuator pin fracture and implant failure. The clinical relevance is the potential re-use of a “dormant” nail in patients requiring secondary limb segment lengthening. Retraction of the nail in-situ and re-use for further lengthening requires careful consent for potential implant failure


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 146 - 146
1 Mar 2010
Kubo K Clarke I Lazennec J Catonne Y Smith E Halim C Yamamoto K Donaldson T
Full Access

While there are many variation laboratory and clinical studies using metal-on-metal (MOM) bearings after introduction of the 28mm MOM THR in 1988, the mapping of wear phenomena in such retrieval cases has been mimimal. In laboratory study, 28mm MOM bearing’s wear-rate was low with “run-in” and “steady-state” than large diameter MOM without theory of fluid-filum lubrication. In clinical results were not superior to the same way of laboratory study. We present a detailed analysis of 33 retrieved MOM hip bearings with 1–11 years follow-up,. We compiled 33 retrieval cases (MetasulTM: Zimmer/CenterPulse Inc., Austin, TX) including clinical information, ion concentrations from ball diameters, cup designs and stripe wear damage. The bearing surfaces were mapped using reflected light microscope (RLM), white light interferometer (Zygo Newview 600, Zygo.) and SEM(XL-30 FEG). Wear maps were constructed according to types of surface wear identified. Patients ranged from 36 to 76 years of age (Means: 56.9 years); 54% were males. Main causes for revision were progressive radiographic lines around the cups, osteolysis and pain. The 28mm ball diameter was used in 86% of cases (largest = 52mm ball). The CoCr liner incorporated a polyethylene adaptor in 75% of cases. Cup diameter > 50mm was present in 75% of cases. Eight femoral stems were recovered and all showed major impingement marks around the neck and five also had a metallosis (Mode-4A). Stripe wear was evident on 71% of CoCr balls with medial stripes twice as common as lateral. Stripe wear was identified in 25% of CoCr liners and extended 25–160° circumference around the liners. Clear liner rim damage was present in 10 (30%) and 3 demostrated severe damage of polyethelene adaptors. There are many limitations to such retrieval studies. These data are biased to cases that failed due to hip pain, radiographic signs of progressive osteolysis and some with high levels of metal ions. There was also the bias of having predominantly a CoCr sandwich design (polyethylene adaptor in 75% of cases). In early 1980s, the thin walled UHMWPE cup was introduced and used larger diameter balls for decreased risk of dislocation. However, unfortunally these big-ball cups produced significant PE wear debris, and diameter trends were returned to the Chanley’s small-ball paradigm again. In the same time (late of 1980’s), these second-generation MOM (28,32mm) was introduced for low wear characteristics alternate THR bearings, with sacrificing of joint stability and motion range. However, use of the small ball added well-known risks of impingement, subluxation and dislocation with rigid cups. In this study, using the ‘damage modes’ from McKellop, normal mode-1 wear occurred in only 14% of cases whereas modes 2–4 had an incidence approaching 30% each and signs of cup impingement were evident in 64% of cases. Thus summarizing MOM wear phenomena in “small” 28mm sandwich cup designs, there was retrieval evidence showing that damage modes 2–4 likely placed these patients at risk for adverse wear effects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 139 - 139
1 Jan 2013
Bolland B Maul C Cook R Roques A Wood R Latham J
Full Access

The poor outcome of large head metal on metal total hip replacements (LHMOMTHR) in the absence of abnormal wear at the articulating surfaces has focussed attention on the trunnion/taper interface. The RedLux ultra-precision 3D form profiler provides a novel indirect optical method to detect small changes in form and surface finish of the head taper as well as a quantitative assessment of wear volume. This study aimed to assess and compare qualitatively the tapers from small diameter with LHMOMTHR's. 3 groups of retrieval tapers were analysed (Group 1: 28mm CoCr heads from MOMTHRs (n=5); Group 2: Large diameter CoCr heads from LHMOMTHRs (n=5); Group 3: 28mm heads from metal on polyethylene (MOP) THRs; n=3). Clinical data on the retrievals was collated. Both bearing surfaces and head tapers were measured for wear using the Redlux profiling non contact measurement system. Measurements included taper angle and 3D surface maps. Taper angles obtained with the Redlux method were compared to those obtained using CMM measurement on 3 parts. The Redlux profiling, including imprints, was also repeated 3 times to gauge potential errors. There was no difference in mean 12/14 taper angles between groups. There was no difference in volumetric and linear wear at the bearing surface between groups. Only the LHMOMs showed transfer of pattern from the stem to the internal head taper, with clear demarcation of the contact and damaged area between head taper and stem trunnion. 3D surface mapping demonstrated wear patterns compatible with motion or deformations between taper and trunnion in the LHMOM group alone. Discussion: Differences in appearance of the taper surface between LHMOMTHRs and MOP or MOM small diameter devices highlight an area of concern and potential contributor to the mode of early failure. Further work is required to fully qualify the Redlux method capabilities


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 18 - 18
1 Mar 2005
van der Jagt D Magobotha S
Full Access

Four low-cost hip prostheses, explanted because of clinical failure within three years, were subjected to a retrieval analysis study to determine the cause of the early failure. The study aimed to determine whether the low-cost prosthesis was substandard and had consequently contributed to the need for early revision. The retrieval analysis included a photographic record, a fractographic examination, an analysis of the material composition of the components, and a mechanical property analysis. These investigations were done in accordance with the ASTM F561 standards. Results demonstrated substandard qualities in respect of all parameters analysed. We conclude that the inferior quality of these low-cost hip prostheses contributed appreciably to their early failure and revision


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 31 - 31
1 May 2019
Dall'Ava L Hothi H Di Laura A Henckel J Shearing P Hart A
Full Access

Introduction. Three-dimensional (3D) printing of porous titanium implants marks a revolution in orthopaedics, promising enhanced bony fixation whilst maintaining design equivalence with conventionally manufactured components. No retrieval study has investigated differences between implants manufactured using these two methods. Our study was the first to compare these two groups using novel non-destructive methods. Materials and methods. We investigated 16 retrieved acetabular cups divided into ‘3D printed’ (n = 6; Delta TT) and ‘conventional’ (n = 10; Pinnacle Porocoat). The groups were matched for age, time to revision, size and gender (Table 1). Reasons for revision included unexplained pain, aseptic loosening, infection and ARMD. Visual inspection was performed to evaluate tissue attachment. Micro-CT was used to assess clinically relevant morphometric features of the porous structure, such as porosity, depth of the porous layer, pore size and strut thickness. Scanning electron microscopy (SEM) was applied to evaluate the surface morphology. Results. Significant differences (p = 0.0002) were found for all morphometric parameters (Table 2). Microscopic analysis revealed uniform beads over the backside of conventional implants, due to the manufacturing technique (Figure 1a). Conversely, beads of random size were found on 3D printed implants, representing a by-product of the manufacturing process, where some starting powder particles are not completely fused together (Figure 1b). The two groups showed similar tissue attachment (3D printed 76.9 ± 27.1%; conventional 73.8 ± 12.2%; p = 0.2635). Conclusion. This was the first study to analyse retrieved 3D printed orthopaedic implants. Differences were found between these and conventional implants, but both literature and registry data do not suggest a short-mid-term clinical issue with 3D printed components. Similar tissue on growth suggested a comparable behaviour with bone in situ. The key difference is the presence of the particles on 3D printed implants, whose clinical significance needs to be investigated. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 108 - 108
1 Jan 2016
Yamane S Oonishi H Kyomoto M Iwamoto M Kawahara I Hanaoka Y Oonishi H
Full Access

One of serious issues in total hip arthroplasty (THA) is the osteolysis which results in aseptic loosening caused by the wear particles from a polyethylene (PE) acetabular cup. In addition, oxidation degradation of PE cup resulting in the fracture or the severe wear caused by the reduction of mechanical properties in vivo is also the issue. The oxidation degradation is considered to be induced by residual free radicals generated by gamma-ray irradiation for cross-linking to reduce wear or for sterilization. In this study, (1) wear property, (2) oxidation degradation of retrieved PE and highly cross-linked PE (CLPE) cups against alumina ceramic femoral heads, and (3) the correlation between those properties were evaluated. The radiographic wear of six conventional PE cups with the mean follow-up of 19.1–23.3 years and 60 CLPE cups with the mean follow-up of 3.1–9.1 years were measured by a non-radiostereometric analysis method (Vectorworks. ®. 10.5 software package). As a retrieval analysis, 26 retrieved acetabular cups were evaluated; 16 cups were ethylene oxide gas-sterilized conventional PE cups with clinical use for 16.0–24.9 years and 10 cups were gamma-ray-sterilized CLPE cups with clinical use for 0.9–6.7 years. The linear and the volumetric wear were measured using a three-dimensional (3D) coordinate measurement machine. The shapes of unworn and worn surfaces with 15- and 30-point intervals, respectively, were measured. Oxidation degradation of the surface, sub-surface and inner for both worn and unworn parts of the retrieved cups was measured using a Fourier-transform infrared (FT-IR) spectroscopy. Oxidation indices were calculated using the peak at 1740 cm. −1. and 1370 cm. −1. according to ASTM F2012. In the radiographic analysis, the linear wear rate of CLPE cups was significantly lower than that of conventional PE cups [Fig. 1]. In the retrieval analysis, the linear wear rate of CLPE cups (mean: 0.07 mm/year) showed a 51% reduction (p = 0.002) compared to conventional PE cups (mean: 0.14 mm/year) [Fig. 2]. The retrieval and the radiographic analysis for both conventional PE and CLPE cups showed similar results (p = 0.7 and 0.1, respectively). Maximum oxidation indices for CLPE cups were similar to those of conventional PE cups regardless of the difference of clinical duration [Fig. 3]. This result is different from in vivo wear, which increases as the clinical duration. For both conventional PE and CLPE cups, the oxidation indices of subsurface were higher than those for surface. The worn parts showed higher oxidation indices than those for unworn parts. From the results, even when the free radicals were so few or absent, the oxidation degradation would be induced in vivo. In conclusion, the wear resistance for CLPE cups was greater than that for conventional PE cups from both radiographic and retrieval analyses. The in vivo oxidation degradation might not be caused by only residual free radicals. It was found that oxidation degradation of PE cups when used with alumina ceramic femoral heads is not correlated to their wear properties


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 404 - 404
1 Nov 2011
Clarke IC Kubo K Lombardi A McPherson E Turnbull A Gustafson A Donaldson D
Full Access

Ceramic-on-ceramic alumina bearings (ALX) have demonstrated low wear with minimal biological consequences for almost four decades. An alumina-zirconia composite (BIOLOX-DELTATM) was introduced in 2000 as an alternative ceramic. This contains well-distributed zirconia grains that can undergo some surface phase transformations from tetragonal to monoclinic. We analyzed 5 cases revised at 1–7 years to compare to our simulator wear studies. For the retrieved DELTA bearings, two important questions were. how much tetragonal to monoclinic transformation was there in the zirconia phase and. how much did the articular surfaces roughen, either as a result of this transformation or from formation of stripe wear zones?. The retrieval cases were photographed and logged with respect to clinical and revision details. The DELTA balls varied from 22mm to 36mm diameters. These had been mated with liner inserts varying by UHMWPE, BIOLOX-FORTE and BIOLOX-DELTA materials. Bearing features were analyzed for roughness by white-light interferometry, for wear by SEM, for dimensions by CMM and for transfer layers by EDS technique. Surface transformations on DELTA retrievals were mapped by XRD. The four combinations of 36mm diameter BIOLOX-FORTE and BIOLOX-DELTA were studied in a hip simulator, which was run in ‘severe’ micro-separation test mode to 5 million cycles. Wear rates, wear stripes, bearing roughness and wear debris were compared to the retrieval data. In two DELTA ball cases, there were conspicuous impingement signs, stripe wear and black metallic smears. It is to be noted that the metal transfer sites (EDS) appeared to be from the revision procedures. The retrieved balls run with alumina liners showed monoclinic phase peaking at 32% on the particular surface and internal bore. On the fracture surface of case 1, the monoclinic content had increased to 40%. Various surface roughness indices were assessed on the bearings. The polished articular surfaces averaged roughness (Sa) of the order 3 nm, representing extremely smooth surfaces. The main wear zone was only marginally rougher (5 nm). In contrast the stripe wear zones had roughness of the order 55–140 nm. In the laboratory, the DELTA bearings provided a 3–6 fold wear reduction compared to FORTE controls. Roughness of stripes increased to maximum 113nm on controls. Roughness of wear stripes showed FORTE with the highest and DELTA with the lowest values. DELTA bearings also revealed much milder wear by SEM imaging. Phase transformations showed peaks at < 30% for both main wear zone and stripe wear sites. It is hypothesized that the concentration of monoclinic phase reached a certain level due to compression contraint imposed by the alumina matrix. With implant wear, additional tetragonal grains of zirconia are exposed and these will also transform to tetragonal. This consistency between laboratory and retrieval studies confirmed the stable nature of the bearings. The BIOLOX-DELTA combination provides optimal potential for a clinically relevant reduction in stripe wear


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 23 - 23
1 Jun 2012
Crane EOT Reid GT McCracken JA Martin DJ
Full Access

NHS Greater Glasgow & Clyde has six hospitals that provide an inpatient trauma service, but only two have facilities to receive patients by helicopter. The Southern General Hospital contains regional Neurosurgical and Spinal Injuries services and attracts the majority of major trauma delivered by helicopter. This study explores the impact that Emergency Medical Retrieval (EMRS) and Air Ambulance services have on the Trauma & Orthopaedic department at our Hospital. We examined the period 1. st. January 2010 to 31. st. December 2010 identifying Trauma & Orthopaedic admissions brought to our hospital by the Emergency Medical Retrieval and Air Ambulance services. These patients were identified from records kept by our Trauma Nurse Practitioner and an additional search of the hospital admissions database. Details of the admissions were extracted from this database, clinical records and various electronic patient records. Patients admitted to other departments were excluded from the study. 48 admissions (30 male, 18 female) were identified. Age ranged from 16-87 years. 16 patients had multiple injuries. 8 required High-Dependency or Intensive Care admission and there was 1 death in our cohort. 21 patients required surgery. In total, these patients required approximately 52.5 hours of operative time. These patients accounted for 373 inpatient days with an average hospital stay of 7.7 days (1-36 days). In addition, 25 patients have required a total of 35 outpatient appointments to date. This study quantifies the significant impact on inpatient and outpatient Trauma & Orthopaedic services from helicopter derived admissions. Some patients admitted under Neurosurgery and Spinal Injuries also undergo surgery, but were not included in the study, representing an additional workload. We believe this study supports an argument for additional investment in this growing trauma service, especially given the recent expansion of EMRS to cover the whole of Scotland


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 14 - 14
7 Jun 2023
Smeeton M Wilcox R Isaac G Anderson J Board T Van Citters DW Williams S
Full Access

Dual Mobility (DM) Total Hip Replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. The in-vivo mechanics of these implants is not well understood, despite their increased use in both elective and trauma settings. Therefore, the aim of this study was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment techniques.

Retrieved DM liners (n=20) were visually inspected for the presence of seven established modes of polyethylene damage. If embedded debris was identified on the external surface, its material composition was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation using a validated methodology.

Visual inspection of the liners revealed that scratching and pitting were the most common damage modes on either surface. Burnishing was observed on 50% and 15% of the internal and external surfaces, respectively. In addition, embedded debris was identified on 25% of the internal and 65% of the external surfaces. EDX analysis of the debris identified several materials including iron, titanium, cobalt-chrome, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners.

The results of this study provide insight into the in-vivo mechanics of DM bearings. For example, the results suggest that the internal bearing (i.e., between the head and liner) acts as the primary articulation site for DM-THRs as evidenced by a higher incidence of burnishing and larger, more concentrated regions of penetration across the liners’ internal surfaces. Furthermore, circumferential, and crescent-shaped damage patterns were identified on the articulating surfaces of the liners thus providing evidence that these components can rotate within the acetabular shell with varying degrees of mobility. The mechanics of DM bearings are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted.

Finally, the results of this study suggest that DM liners may be susceptible to ex-vivo surface damage and thus caution is advised when handling and/or assessing these types of components.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 69 - 69
4 Apr 2023
Smeeton M Wilcox R Isaac G Anderson J Board T Van Citters D Williams S
Full Access

Dual mobility (DM) total hip replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. Although DM THRs have shown good overall survivorship and low dislocation rates, the mechanisms which describe how these bearings function in-vivo are not fully understood. Therefore, the study aim was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment methods.

Retrieved DM liners (n=18) were visually inspected for the presence of surface damage, whereby the internal and external surfaces were independently assigned a score of one (present) or zero (not present) for seven damage modes. The severity of damage was not assessed. The material composition of embedded debris was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation [1].

Scratching and pitting were the most common damage modes on either surface. Additionally, burnishing was observed on 50% of the internal surfaces and embedded debris was identified on 67% of the external surfaces. EDX analysis of the debris identified several materials including titanium, cobalt-chrome, iron, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners.

The incidence of burnishing was three times greater for the internal surfaces, suggesting that this acts as the primary articulation site. The external surfaces sustained more observable damage as evidenced by a higher incidence of embedded debris, abrasion, delamination, and deformation. In conjunction with the highly variable damage patterns observed, these results suggest that DM kinematics are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 36 - 36
7 Jun 2023
Hothi H Henckel J Di Laura A Skinner J Hart A
Full Access

3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved.

We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision.

Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth.

The additively manufactured cups were revised after a median (IQR) time of 24.9 months (20.5 to 45.6) from patients with a median (IQR) age of 61.1 years (48.4 to 71.9), while the conventional cups had a median (IQR) time to revision of 46.3 months (34.7 to 49.1, p = 0.366) and had been retrieved from patients with a median age of 66.0 years (56.9 to 68.9, p = 0.999).

The additively and conventionally manufactured implants had a median (IQR) bone area fraction of 65.7% (36.4 to 90.6) and 33.9% (21.9 to 50.0), respectively (p < 0.001).

A significantly greater amount of bone ingrowth was measured into the backside of the additively manufactured acetabular cups, compared to their conventional counterparts (p < 0.001). Bone occupied a median of 60.0% and 5.7% of the porous depth in the additively manufactured and conventional cups, respectively.

3D printed components were found to achieve a greater amount of bone ingrowth than their conventionally manufactured counterparts, suggesting that the complex porous structures generated through this manufacturing technique may encourage greater osteointegration.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 23 - 23
1 Jul 2014
Gobezie R
Full Access

Aseptic loosening of the glenoid after total shoulder replacement is a challenging problem to manage clinically. In the right circumstances, arthroscopic retrieval of loose polyethylene glenoids can be a valuable tool in the shoulder surgeon's repertoire for dealing with this uncommon problem. The purpose of this talk is to demonstrate the technique for arthroscopic removal of a loose glenoid and review the clinical circumstances where this procedure may play a valuable role


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 34 - 34
1 Mar 2017
Mueller U Lee C Thomsen M Heisel C Kretzer J
Full Access

Introduction. This study was performed to investigate the failure mechanism of one specific hip arthroplasty cup design that has shown a high clinical failure rate. The aim of this study was to identify general design problems of this polyethylene inlay. Material and Methods. 55 consecutive retrievals of a cementless screw ring (Mecron) were collected. In any case a 32 mm ceramic head was used. All implants failed due to aseptic loosening. The follow-up of the implants was 3 to 16 years. We recorded backside wear, fatigue of the polyethylene at the flanges on the outer rim and at the cup opening (32 mm inner diameter). To assess the deformation of the inlay, the smallest and the median diameter of the cup opening were measured using a 3 dimensional coordinate measuring machine (Multisensor, Mahr, Germany). Results. 90% of the explants showed signs of wear on the backside of the inlay. Another typical and so far not described alteration was collar fatigue in 68%. 38% of the inlays showed rim creep: Examples for Backside wear, collar fatigue and rim creep are illustrated in Fig. 1. 90% had a diameter of 32.1 mm or less, and even 46% had a diameter less than 32 mm. Discussion. The investigated design is at the lower limit of the allowed machining tolerance of the cup opening (32 + 0.1 mm) and has no additional clearance (which some manufacturers add). It seems that the inlays yield at the dome because of the viscoelastic properties of polyethylene and the open dome area of the attached screw ring. This leads to excessive wear at the dome area and it triggers a “brake drum” effect at the cup opening. Thereby torsional stresses at the implant bone interface increase which lead to failure of the implant. To avoid this type of failure, PE inlays should have enough clearance at the cup opening and the inlay should have dome contact to the closed metal shell


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 166 - 166
1 Mar 2010
Clarke I Lazennec Y Cattonne Y Kubo K Anderson I McPherson E Donaldson T
Full Access

FDA approval of metal-on-metal (MOM: 28, 32mm) bearings has provided 10 years of clinical experiences in USA. However there has been no detailed mapping of wear phenomena in retrieval cases. We present an analysis of 28 cases, MOM retrievals with 1 to 10 years follow-up, radiographic reviews and metal ion studies. Ball diameters ranged from 28mm to 42mm. Two balls were the early design with skirts. Main indicators for revision were the progressive radiographic changes indicative of osteolysis, with associated hip pain. Approximately 54% of patients were males and ages ranged from 36 to 76 years of age. Only 7 femoral stems were recovered but all had impingement marks. Only three cases lacked any evidence of stripe wear and these were in very elderly patients. Approximately 85% of these cases showed some evidence of stripe wear and multiple stripes were clearly visible on 50% of the femoral balls. The medial ball stripes were twice as common as lateral. Stripe wear was identified in 25% of CoCr liners. In the hip simulator studies generally show ‘run-in’ wear rates of 1–7mm3 per million cycles (Mc). We noted that above the 5mm3/Mc threshold, the serum generally appeared black. In contrast, the ‘steady-state’ wear rates of 0.1–1.6 mm3/Mc showed the true potential of MOM bearings. However there were often examples of higher wear (7–20 mm3/Mc), which gave confounding trends in published studies. Our studies of metal ions in the simulator lubricant provided a very accurate representation of MOM wear. There are many limitations in comparing in-vitro to in-vivo wear performance. Our retrieval data are biased to cases that failed due to hip pain, had radiographic signs of progressive osteolysis and some showed high levels of metal ions. There was also the bias of having predominantly a CoCr sandwich design (polyethylene adaptor). Use of the small ball added the well-known risks of impingement, subluxation and dislocation with rigid cups. Using the ‘damage modes’ from McKellop, we found only normal Mode-1 wear to be rare in these cases, whereas Modes# 2–4 had an incidence approaching 30% each. Signs of impingement were evident in 85% of our cases. Thus summarizing these MOM wear phenomena in retrieved 28mm sandwich cups, the evidence implicated impingement and 3rd-body wear modes (#2–4) as the clinical risk for adverse wear effects at 10 years follow-up. The in-vitro wear studies have not yet simulated such adverse clinical effects


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 39 - 39
1 Aug 2018
Bostrom M
Full Access

Trunnionosis is an important failure mechanism of total hip arthroplasties as has recently been reported by the England and Wales national joint registry. Adverse local tissue reaction has also recently been associated with total hip arthroplasty (THA) with metal on polyethylene and ceramic on polyethylene articulations. The contributing factors in the mechanism of this failure pattern have not been elucidated, however they are likely multifactorial to include corrosion, fretting, taper design, implantation time, metal particulate debris, and wear at the metal on metal interface. Furthermore, dissimilar metallic combinations have been shown to exacerbate tribocorrosion. Authors have also reported on the use of ceramic heads to reduce trunniononis, however, tribocorrosion is still present. The majority of the literature regarding modular head neck taper fretting and corrosion involves cobalt chrome (CoCr) alloy. Little is known about head neck fretting corrosion with Oxinium femoral heads. To measure fretting, corrosion, and wear on the female tapers of retrieved Oxinium femoral heads and to determine how demographic and device factors affect these measurements. Ninety-two (92) retrieved 12/14 Oxinium heads were graded using the modified Goldberg score for subjectively grading corrosion and fretting on the taper surface. A novel silicone molding technique was validated, then applied to the female tapers of the retrievals and of two pristine Oxinium femoral heads, sizes 32+0 and 32+4. The molds were scanned using a Konica Minolta 3D laser scanner for reconstruction of the topography, dimensions, and surface features of the tapers. Geomagic software was used to align the retrieved to the pristine 3D models, allowing measurement of surface deviations (from wear) that had occurred while the heads were implanted. Patient demographic and implant data were correlated with Goldberg scores and wear deviations. The mean Goldberg score was 1.6. Goldberg scores of 1 (minimal), 2 (mild), and 3 (moderate) were present in 41 of the 92 heads (45%), 43 heads (47%), and 8 heads (8%) respectively. No implants received a score of 4 (severe). A positive significant correlation was found between length of implantation and increased female taper fretting (R = 0.436, p < 0.01). Wear deviations were significantly greater with 36mm heads compared to 32mm heads (p < 0.01) and with +4 offsets compared to 0 offsets (p = 0.013). Similar to previous work analyzing ceramic heads, Oxinium heads demonstrated predominately mild tribocorrosion grades, however do not eliminate tribocorrosion. Tribocorrosion was increased with large heads and increased offsets. This finding is consistent perhaps with greater mechanical burden that larger implants with increased offsets experience. Further investigation is needed to elucidate if Oxinium femoral heads reduce fretting and corrosion when compared to CoCr femoral heads


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 94 - 94
1 Jan 2016
Teeter M Lanting B Vasarhelyi E Ivanov T Vandekerckhove P Howard J Naudie D
Full Access

Increased modularity of total hip arthroplasty components has occurred, with theoretical advantages and disadvantages. Recent literature indicates the potential for elevated revision rates of modular neck systems and the potential for metallosis and ALVAL (Aseptic Lymphocyte dominated Vasculitis Associated Lesion) formation at the modular neck/stem site. Retrieval analysis of one modular neck implant design including SEM (Scanning Electron Microscopy) assessment was done and correlated to FEA (Finite Element Analysis) as well as clinical features of patient demographics, implant and laboratory analysis. Correlation of the consistent corrosion locations to FEA indicates that the material and design features of this system may result in a biomechanical reason for failure. The stem aspect of the modular neck/stem junction may be at particular risk


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 108 - 108
1 Mar 2013
Higgs G Kurtz S Hanzlik J MacDonald D Kane WM Day J Klein GR Parvizi J Mont M Kraay M Martell J Gilbert J Rimnac C
Full Access

Introduction. Wear debris generation in metal-on-metal (MOM) total hip arthroplasty (THA) has emerged as a compelling issue. In the UK, clinically significant fretting corrosion was reported at head-taper junctions of MOM hip prostheses from a single manufacturer (Langton 2011). This study characterizes the prevalence of fretting and corrosion at various modular interfaces in retrieved MOM THA systems used in the United States. Methods and Materials. 106 MOM bearing systems were collected between 2003 and 2012 in an NIH-supported, multi-institutional retrieval program. From this collection, 88 modular MOM THA devices were identified, yielding 76 heads and 31 stems (22 modular necks) of 7 different bearing designs (5 manufacturers) for analysis. 10 modular CoCr acetabular liners and 5 corresponding acetabular shells were also examined. Mean age at implantation was 58 years (range, 30–85 years) and implantation time averaged 2.2 ± 1.8 years (range, 0–11.0 years). The predominant revision reason was loosening (n=52). Explants were cleaned and scored at the head taper, stem taper, proximal and distal neck tapers (for modular necks), liner, and shell interfaces in accordance with the semi-quantitative method of Goldberg et al. (2002). Results. Fretting and corrosion were observed on 68/76 (89%) head tapers, 21/31 (68%) stem tapers, 15/22 (68%) proximal modular neck tapers, 20/22 (91%) distal modular neck tapers, 10/10 (100%) modular liners and 5/5 (100%) modular shells. Scores were lower at proximal stem tapers than within the head tapers (p = 0.001) but were positively correlated (ρ = 0.56, p = 0.001). At the head-neck interface, significantly more damage was noted on head tapers of devices with modular necks (p<0.001). At the neck-stem interface, damage to modular necks was localized at the curved medial and lateral surfaces. A significant correlation was observed between implantation time and corrosion/fretting score at this region (ρ = 0.78, p < 0.001). Damage was noted at all shell-liner interfaces, manifested primarily as scratching with discoloration on the backside rim of liners and circular fretting patterns on shells. Discussion. These results support the inclusion of fretting and corrosion evaluation in standardized MOM retrieval inspection protocols. Adaptation of the method developed by Goldberg and colleagues is suitable for the variety of modular connections in contemporary MOM THA implants, which may incorporate modular femoral and/or acetabular components. Further quantitative assessment of wear at modular interfaces of retrieved MOM devices is therefore warranted


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 133 - 133
1 Feb 2017
Gascoyne T Turgeon T
Full Access

Introduction. Detailed analysis of retrieved total hip replacements (THRs) is valuable for assessing implant and material successes and failures. Reduction of bearing wear and corrosion and fretting of the head-neck trunnion is essential to implant durability and patient health. This research quantifies and characterizes taper and bearing surface damage on retrieved oxidized zirconium THRs. Methods. Initially, 11 retrieved oxidized zirconium femoral heads were examined along with their associated femoral stems. Relevant patient and retrieval data was collected from clinical charts and radiographs. Taper corrosion (Figure 1) and fretting damage (Figure 2) scoring was performed following the Dyrkacz [1] method. A coordinate measuring machine was used to obtain a detailed surface map of the male and female taper surfaces. Taper surface maps were best-fit with an idealized cone followed by volume subtraction to quantify the amount of material removed as a result of fretting and corrosion processes. Scanning electron microscopy was performed on select samples to identify specific damage modes. Unique surface bumps were noted on the articular surface of select femoral heads (Figure 3). Seventeen femoral heads were added to the analysis specifically for identification of these bumps. Articular surfaces were searched under SEM magnification and bumps were identified and counted. Parametric statistical correlations were performed with SAS v9.3. Results. Mean patient age was 61 years (Range: 35–95) with mean implantation period being 2.0 years (Range: 0.1–11.4) and mean body mass index of 29 kg/m. 2. (Range: 22–46). Revision for infection (n=11), peri-prosthetic fracture (n=5) and dislocation (n=5) were the main reasons for revision. Mean corrosion damage scores were 2.0 and 3.6 (head, neck) while mean fretting damage scores were 8.5 and 5.8 (head, neck). Fretting damage score was weakly correlated with implantation period (p=0.07) while corrosion damage score was not. Mean corrosion and fretting volume measured 0.40 mm. 3. and 0.87 mm. 3. (head, neck). Volume of corrosion and fretting damage did not correlate with implantation period; however neck volume correlated with inclination angle of the acetabular cup (p<0.01). Bearing diameter was not found to correlate with corrosion and fretting damage score or volume. The unique surface bumps were identified in 12 of 28 samples, with 3 samples having <10 bumps. Presence of these bumps did not appear to be related to bearing diameter, implantation period, or any damage metrics. Conclusion. Fretting damage was found to correlate with implantation period, suggesting that is a continuous in vivo process; however, this was not found for corrosion damage. Fretting damage volume correlated with acetabular cup angle; however, this may be coincidence as only 8 samples were included in the analysis. Overall, our corrosion damage scores (2.0–3.6) were lower than previously published values for 28mm & 36mm cobalt-chrome heads (4.5–13.1) [1]. However, our fretting damage scores (5.8–8.5) were higher than previously published (2.8–4.4) [1]. Greater fretting damage on the oxidized zirconium heads may be explained by the softer zirconium alloy compared to that of cobalt-chromium. Further subsurface investigation of the surface bumps is underway using a focused ion beam mill


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 93 - 93
1 Feb 2017
Kurtz S MacDonald D Kocagoz S Arnholt C Underwood R Rimnac C Gilbert J
Full Access

Introduction. There is considerable interest in the orthopaedic community in understanding the multifactorial process of taper fretting corrosion in total hip arthroplasty (THA). Previous studies have identified some patient and device factors associated with taper damage, including length of implantation, stem flexural rigidity, and head offset. Due to the complexity of this phenomenon, we approached the topic by developing a series of matched cohort studies, each attempting to isolate a single implant design variable, while controlling for confounding factors to the extent possible. We also developed a validated method for measuring material loss in retrieved orthopaedic tapers, which contributed to the creation of a new international standard (ASTM F3129-16). Methods. Based on our implant retrieval collection of over 3,000 THAs, we developed independent matched cohort studies to examine (1) the effect of femoral head material (metal vs. ceramic, n=50 per cohort) and (2) stem taper surface finish (smooth vs. microgrooved, n=60 per cohort). Within each individual study, we adjusted for confounding factors by balancing implantation time, stem taper flexural rigidity, offset, and, when possible, head size. We evaluated fretting and corrosion using a four-point semiquantitative score. We also used an out-of-roundness machine (Talyrond 585) to quantify the material loss from the tapers. This method was validated in a series of experiments of controlled material removal on never-implanted components. Results. In the first study, the ceramic cohort exhibited a 92% reduction in cumulative volumetric loss from both the head and neck taper surfaces compared to the CoCr cohort (p < 0.001). In the CoCr cohort, there was greater material loss from femoral head tapers as compared with stem tapers (p < 0.0001). There was also a correlation between visual scoring and volumetric material loss (ρ = 0.67, p < 0.01). In the second study, taper damage was not different between the smooth and microgrooved taper cohorts when evaluated at the head bore (p=0.14) or the stem tapers (p=0.35). There was also no difference in material loss between the most damaged CoCr heads in the two cohorts (p>0.05). Conclusions. Our findings suggest that fretting and corrosion damage and material loss from the stem taper are mitigated, and on the head taper, eliminated with the use of a ceramic vs. metal femoral head. We also found that fretting and corrosion damage was insensitive to differences in stem taper surface finish and the presence of microgrooves. Although visual scoring was effective for preliminary screening to separate tapers with no or mild damage from tapers with moderate to severe damage, it was not capable of discriminating within the large range of material loss observed at the taper surfaces with high fretting-corrosion scores. Thus, for moderate to severely damaged conical tapers, direct measurement is necessary. A drawback of a matched cohort approach is that a large retrieval collection is necessary to effectively match an investigational group of implants with an appropriate control cohort. Notwithstanding this limitation, the matched cohort approach has been an effective approach to study the complex multifactorial problem of taper fretting and corrosion


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 88 - 88
1 Mar 2009
Walter W Kurtz S Tuke M Hozack W Holley K Campbell D Hooper G Garino J Spriggins T
Full Access

Squeaking is a rare complication of hard-on-hard hip bearings. Occasionally the noise is troublesome enough to warrant revision surgery. The purpose of this study is to contribute to the understanding of the mechanism(s) underlying squeaking. We analyzed 10 alumina ceramic-on-ceramic bearings from squeaking hips collected at revision surgery. The reason for revision was given as squeaking (6 cases) or squeaking and pain (4 cases). Six of the 10 patients were male, average patient age was 48. Bearings were retrieved after an average of 23 months in service (11 to 61 months). There were 4 different designs of acetabular component from 2 different manufacturers. Nine have an elevated metal rim which is proud of the ceramic and one does not. Two bearings were 36mm in diameter, 6 were 32mm and 2 were 28mm. All 10 bearings showed evidence of edge loading wear. Mean dimensions of the wear patch were 37mm by 12mm on the acetabular component and 32mm by 13mm on the femoral heads. Wear dimension was not related to bearing diameter. Seven of the 10 implants also had evidence of impingement of the femoral neck against the elevated metallic rim or the ceramic insert or both. There was no chipping or fracture of any of the ceramic components. Squeaking is a recently recognized complication of hard on hard bearing surface. This retrieval study is the first of its kind, to our knowledge attempting to unravel the mechanism of this undesirable complication. Although impingement seems to be present in majority of cases, the latter does not seem to be necessary. Edge loading wear was the common factor in all cases and this may prove to be a critical mechanism


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 11 - 11
1 May 2016
MacDonald D Mehta K Klein G Hartzband M Levine H Mont M Kurtz S
Full Access

Introduction. Thermally treated 1st generation highly crosslinked polyethylenes (HXLPE) have demonstrated reduced penetration and osteolysis rates, however, concerns still remain with respect to oxidative stability and mechanical properties of these materials. To address these concerns, manufacturers have introduced the use of antioxidants to quench free radicals while maintaining the mechanical properties of the HXLPE. Two common antioxidants are α-tocopherol (Vitamin-E) and pentaerythritol tetrakis (PBHP). These may be either mixed prior to consolidation, or diffused throughout the polymer after consolidation and irradiation. In vitrostudies have shown that these materials are oxidatively stable and have improved mechanical properties compared to 1st generation HXLPEs; however, few studies have investigated the in vivo performance of anti-oxidant stabilized HXLPE. The purpose of this study was to investigate the revision reasons, oxidation, and mechanical properties of retrieved short-term anti-oxidant HXLPE. Methods. Between 2010 and 2015, 73 anti-oxidant HXLPE components were collected as a part of an IRB approved, multi-institutional retrieval analysis program during routine revision surgery. Of the seventy-three components, 30 (41%) were acetabular liners, whereas, 43 were tibial inserts. The components were fabricated from three different materials: Vitamin-E Diffused HXLPE (n=30; E1, Biomet), Vitamin-E Blended (n = 41; Vivacit-E, Zimmer) and PBHP blended (n = 2, AOX, DePuy). The hip and knee components were implanted for 0.7 ± 0.8 years (Range: 0.0–2.25 years) and 0.8 ± 1.1 years (Range: 0.0–4.5 years), respectively. Implantation time, patient weight, age, gender, and activity levels were similar between hip and knee components (Table 1). For oxidation analysis, thin slices (∼200μm) were taken from medial condyle and central eminence of the tibial inserts or the superior/inferior axis from hip components. The slices were boiled in heptane for six hours to extract lipids absorbed in vivo. 3-millimeter FTIR line scans were taken perpendicular to the surface of interest, according to the ASTM F2102. Mechanical properties were assessed using the small punch test (ASTM F2183). Forty-three explants were available for destructive testing. Results. The predominant revision reasons were loosening, instability, and infection (Figure 1). Oxidation was low in both the hip and knee components (Mean OI≤0.1; Figure 2). For both tibial inserts and acetabular liners, there was no correlation between implantation time and oxidation indices (p>0.05). In the tibial inserts, the AP face had slightly higher oxidation indices than the articulating surface (Mean difference = 0.04; p=0.03). There was no difference in ultimate load between hips and knees at the surface (p=0.14) or the subsurface (p=0.38). Discussion. This study analyzed the revision reasons, oxidative stability, and mechanical properties of short-term retrieved 2nd generation HXLPE. The observations of this study show that anti-oxidant infused HXLPE exhibited low oxidative indices (Mean OI<0.1). There was no difference observed in the mechanical properties of these materials between hip and knee applications. However, this study is limited by short implantation times. This is unavoidable because the materials have only recently become clinically available. The data presented serves as a benchmark for future studies when longer-term retrieved implants become available


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 282 - 282
1 Sep 2005
van der Jagt D Schepers A
Full Access

Good short-term results with Mt Blanc uncemented acetabular cups have been previously reported. However, in the medium term, we have observed acetabular loosening related to large granulomatous lytic lesions. To determine the cause of the polyethylene load causing the granulomatous lytic lesions, we subjected six explanted Mt Blanc acetabular cups to retrieval analysis. We also reviewed the literature on polyethylene locking mechanisms in uncemented metal-backed cups and on the deformability of metal-backed cups. We subjected the retrieved cups to stereo-photographic analysis and to dye penetration and surface scanning electron microscopy techniques. We demonstrated severe polyethylene wear and particle generation on the back surface of the polyethylene insert. This was due both to two-body sliding wear, as characterised by surface deformation and delamination of the polyethylene, and to three-body abrasive wear, as characterised by surface roughness and embedded titanium particles. The literature confirmed that the locking mechanism of the Mt Blanc cup was particularly poor and the deformability greater than in other cups tested. This confirmed the wear patterns on the back-surface of the polyethylene liner. We caution against the use of uncemented cups that have poor locking mechanisms for the polyethylene liners and those that deform excessively. The combination of poor locking mechanisms and titanium shells is especially dangerous


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 117 - 117
1 Aug 2012
Aarvold A Smith J Tayton E Jones A Dawson J Briscoe A Lanham S Dunlop D Oreffo R
Full Access

Background. Skeletal stem cells can be combined with human allograft, and impacted to produce a mechanically stable living bone composite. This strategy has been used for the treatment of femoral head avascular necrosis, and has been translated to four patients, of which three remain asymptomatic at up to three year follow-up. In one patient collapse occurred in both hips due to widely distributed and advanced AVN disease, necessitating bilateral hip arthroplasty. However this has provided the opportunity to retrieve the femoral heads and analyse human tissue engineered bone. Aims. Analysis of retrieved human tissue-engineered bone in conjunction with clinical follow-up of this translational case series. Methods. A parallel in vitro culture of the implanted cell-graft constructs was set up at the time of surgery, with serial cell viability stains performed up to six weeks. Patient follow-up was by serial clinical and radiological examination. Tissue engineered bone from the two retrieved femoral heads was analysed histologically by Alcian blue & Sirius red stain and bi-refringence, by micro computed tomography (microCT) for both bone density and morphology, and by compression testing for mechanical strength. Normal trabecular and cortical bone from the femoral heads was used as controls. Results. Parallel in vitro analysis demonstrated sustained cell growth and viability on the allograft. Histologically, the retrieved tissue engineered specimens demonstrated a mature trabecular micro-architecture and organization identical to normal trabecular bone. MicroCT revealed trabecular morphology within the tissue-engineered bone, with bone density of 1400 Grey scale units (compared to 1200 for natural trabecular bone and 1800 for cortical bone). Axial compression testing showed no difference in strength between engineered and trabecular bone. Conclusions. Widespread residual necrosis in the femoral heads of one patient resulted in collapse requiring hip arthroplasty, but analysis of the tissue engineered bone sections has demonstrated the translational potential of a living bone composite to restore both the biological and mechanical characteristics of bone defects. Clinical follow-up shows this to be an effective new treatment for focal early stage avascular necrosis of the femoral head, and this unique retrieval analysis data confirms the potential of cell-based strategies for clinical treatment of bone defects


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 154 - 154
1 Jul 2014
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani A Parvizi J Kraay M Rimnac C Klein G
Full Access

Summary Statement. This study assesses oxidation, mechanical behavior and revision reasons of 2. nd. generation HXLPE used in total hip and knee arthroplasty. While oxidation was low for both X3 and E1 HXLPEs, oxidative regional variations were detected in the sequentially annealed cohort. Introduction. First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1. st. generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2. nd. generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2. nd. generation HLXPEs. The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA. Methods. 251 2. nd. Generation HXLPE hip and knee components were consecutively retrieved during revision surgeries and continuously analyzed in a prospective, IRB approved, multicenter study. 123 acetabular liners (Implanted 1.2y; Range 0–5.0y) and 117 tibial inserts (Implanted 1.6y; Range 0–5.8y) were highly crosslinked and annealed in 3 sequential steps (X3). Five acetabular liners (Implanted 0.6y; Range 0–2.0y) and six tibial inserts (Implanted 1.3y; Range 0.5–1.8y) were diffused with Vitamin E (E1). Patient information was collected from medical records. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Surface damage of tibial components was assessed using the Hood method. Thin sections were taken from the acetabular liners (along the superior/inferior axis) and the tibial components (along the medial condyle and central spine) for oxidation analysis and analyzed according to ASTM 2102. Mechanical behavior was assessed via the small punch test (ASTM 2183). Results. The liners and tibial components fabricated from both HXLPEs were revised predominantly for loosening, instability, and infection. The average penetration rate for the Sequentially Annealed group was low (PR=0.045mm/yr). Pitting, scratching and burnishing were the predominant damage mechanisms of the tibial inserts within both material groups, with no evidence of delamination. Oxidation indices were low (Mean OI≤0.3) and similar between liners and inserts of the Sequentially Annealed components at the bearing and backside surface (p≥0.15). Oxidation was positively correlated with implantation time at the bearing surface of the Sequentially Annealed groups (Rho>0.29, p<0.005). The Ultimate Load of the Sequentially Annealed acetabular liners was statistically higher than the tibial components (p<0.001), however the mean difference was minimal (∼6N). Discussion. This study evaluated the properties of 2. nd. generation HXLPEs used in THA and TKA. Sequentially Annealed liners had penetration rates comparable with 1. st. generation HXLPEs. While oxidation was low for both sequentially annealed and Vitamin E HXLPEs, we were able to detect regional variations in the oxidative in the sequentially annealed cohort. Longer-term retrievals are necessary to fully assess the oxidative stability of Vitamin E diffused HXLPE used in TKA and THA


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 411 - 411
1 Jul 2010
Kendrick BJL Simpson D Bottomley NJ Marks B Pandit H Beard D Gill HS Dodd CA Murray DW Price AJ
Full Access

Purpose: This study was designed to establish the poly-ethylene wear rates in the Oxford medial unicompert-mental knee replacement. Introduction: The Oxford meniscal bearing knee was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study of the Oxford UKA, which reported very low wear rates in some specimens, but abnormal patterns of wear in others, including impingement. There has been no further investigation of these abnormal wear patterns. Methods: Forty-seven bearings were retrieved from patients who had received a medial Oxford UKA for anteromedial osteoarthritis of the knee, none of which had previously been studied. Mean time to revision was 8.4 years (SD 4.1) and 20 had been implanted for over 10 years. The macroscopic pattern of polyethylene wear and the linear penetration (dial gauge measurement) was recorded for each bearing. Results: The mean linear penetration rate (LPR) was 0.07mm/year. The patterns of wear fell into 4 categories, each with a different LPR; 1) No abnormal macroscopic appearance, n=16 (LPR = 0.01mm/year), 2) Abnormal macroscopic wear with extra-articular impingement, n=16 (LPR = 0.05mm/year), 3) Abnormal macroscopic wear with intra-articular impingement, n=6 (LPR = 0.10mm/year), 4) Abnormal macroscopic wear with impingement and signs of incongruous articulation, n=9 (LPR = 0.14mm/year). The differences in LPR were statistically significant (p< 0.05). Conclusion: The results show that very low polyethylene wear rates are possible if the device functions normally. However if the bearing displays abnormal function (extra-articular, intra-articular impingement or incongruous articulation) wear rates increase significantly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 182 - 182
1 Dec 2013
Teeter M Pang H McCalden RW Naudie D MacDonald S
Full Access

Background:. Polyethylene wear in total knee arthroplasty (TKA) is influenced by patient, surgeon and implant factors. The objective of this study is to assess the effect of limb alignment, implant position and joint line position on the pattern of wear in posterior stabilized (PS) tibial inserts. Methods:. This was a retrieval analysis of 83 PS liners collected from patients who underwent revision surgery from 1999 to 2011. Inserts were divided into 16 zones and a microscopic analysis of surface damage was carried out. We determined overall damage with a scoring system. Pre-revisions radiographs were reviewed and analyzed for correlation with the wear profile. Results:. The mean age was 73 years old (range 45 to 96 years old) and the mean duration of implantation was 3.5 years (range 0.1 to 10.6 years). The most common reason for revision was infection (71%, 59 of 83 liners), followed by aseptic loosening (6%, 5 of 83 liners) and instability (6%, 5 of 83 liners). The most common mode of wear was burnishing, followed by abrasion and pitting. The total damage score was significantly higher in knees with postoperative varus alignment more than 3 degrees (p = 0.03). Postoperative varus alignment was associated with significantly more wear in the medial compartment (p = 0.03). The total damage score to the post was significantly more in knees with joint line elevation more than 5 mm (9.7 ± 3.9, compared to 6.5 ± 3.7 in knees with less joint line elevation) (p = 0.05). The most commonly affected compartment was the medial compartment. Conclusion:. Limb malalignment and implant malposition resulted in more wear in PS TKA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 26 - 26
1 Nov 2015
Skinner J Sabah S Henckel J Cook E Hothi H Hart A
Full Access

Introduction. The National Joint Registry (NJR) for England, Wales and Northern Ireland contributes important information on the performance of implants and surgeons. However, the quality of this data is not known. This study aimed to perform an independent validation of primary metal-on-metal hip procedures recorded on the NJR through linkage to the London Implant Retrieval Centre (LIRC). Patients/Materials & Methods. Primary, metal-on-metal hip arthroplasties performed between 1st April 2003 and 5th November 2013 were recruited from the NJR (n=67045). Retrieved, metal-on-metal components were recruited from the LIRC (n=782). Data linkage and validation checks were performed. Results. 476 procedures (60.9%) on the LIRC were successfully linked to the NJR. However, 306 procedures (39.1%) could not be linked. The outcome recorded by the NJR (as either revised, unrevised or death) for a primary procedure was incorrect in 79 linked cases (16.6%). The rate of registry-retrieval linkage and correct assignment of outcome code improved over time. The rates of error for component reference numbers on the NJR were: femoral head category number 14/229 (5.0%); femoral head batch number 13/232 (5.3%); acetabular component category number 2/293 (0.7%) and acetabular component batch number 24/347 (6.5%). Discussion. Registry-Retrieval linkage provided a novel means for data validation, particularly for component fields. This study suggests that NJR reports may underestimate revision rates for many types of metal-on-metal hip. This is topical given the increasing scope for NJR data. We recommend a system for continuous, independent evaluation of NJR data quality and validity


The early failure and revision of bimodular primary total hip arthroplasty prostheses requires the identification of the risk factors for material loss and wear at the taper junctions through taper wear analysis. Deviations in taper geometries between revised and pristine modular neck tapers were determined using high resolution tactile measurements. A new algorithm was developed and validated to allow the quantitative analysis of material loss, complementing the standard visual inspection currently used. The algorithm was applied to a sample of 27 retrievals (in situ from 2.9 to 38.1 months) of the withdrawn Rejuvenate modular prosthesis. The mean wear volumes on the flat distal neck piece taper was 3.35 mm. 3. (0.55 to 7.57), mainly occurring in a characteristic pattern in areas with high mechanical loading. Wear volume tended to increase with time to revision (r² = 0.423, p = 0.001). Implant and patient specific data (offset, stem size, patient’s mass, age and body mass index) did not correlate with the amount of material loss observed (p >  0.078). Bilaterally revised implants showed higher amounts of combined total material loss and similar wear patterns on both sides. The consistent wear pattern found in this study has not been reported previously, suggesting that the device design and materials are associated with the failure of this prosthesis. Cite this article: Bone Joint J 2015;97-B:1350–7


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 126 - 127
1 Mar 2008
Tanzer M Karabasz D Krygier J Bobyn J
Full Access

Purpose: A porous tantalum cylindrical shaped implant (Osteonecrosis Intervention Implant, Zimmer, Warsaw, IN) has been designed to provide subchondral bony support of the subchondral plate, be osteoconductive and allow revascularization of an osteonecrotic femoral head. This study evaluates retrieved implants obtained at the time of conversion to total hip arthroplasty to determine the ability of this device to fulfill its objectives. |. Methods: Eighteen femoral heads with the tantalum implant still in situ were evaluated with contact radiographs and scanning electron microscopy to assess femoral head and bony anatomy, bone growth into the implant and femoral head revascularization. Retrievals from 12 males and 6 females with an average age of 46 years old (range, 31–61) and Stage I or II osteonecrosis were evaluated. |. Results: At a mean of 13.4 months (range, 3–36) postoperatively, all femoral heads demonstrated subchondral collapse. The bone surrounding the implant remained necrotic with no evidence of revascularization or healing. Ingrowth was marginal and averaged less than 5%. Conclusions: This tantalum implant in its present design and surgical technique does not appear to uniformly provide structural support and promote healing of early osteonecrosis of the femoral head. This retrieval study suggests that successful results with this implant in certain cases of early osteonecrosis may be more attributable to the surgical technique requiring a core decompression, rather than the implant itself. |


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 386 - 386
1 Dec 2013
Kurtz S Zielinska O MacDonald D Cates H Mont M Malkani AL Parvizi J Rimnac C
Full Access

Introduction:. First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1. st. generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2. nd. generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2. nd. generation HLXPEs. The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA. Methods:. 251 2. nd. Generation HXLPE hip and knee components were consecutively retrieved during revision surgeries and continuously analyzed in a prospective, IRB approved, multicenter study. 123 acetabular liners (Implanted 1.2y; Range 0–5.0y) and 117 tibial inserts (Implanted 1.6y; Range 0–5.8y) were highly crosslinked and annealed in 3 sequential steps (X3). Five acetabular liners (Implanted 0.6y; Range 0–2.0y) and six tibial inserts (Implanted 1.3y; Range 0.5–1.8y) were diffused with Vitamin E (E1). Patient information was collected from medical records (Table 1). Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Surface damage of tibial components was assessed using the Hood method. Thin sections were taken from the acetabular liners (along the superior/inferior axis) and the tibial components (along the medial condyle and central spine) for oxidation analysis and analyzed according to ASTM 2102. Mechanical behavior was assessed via the small punch test (ASTM 2183). Results:. The liners and tibial components fabricated from both HXLPEs were revised predominantly for loosening, instability, and infection (Figure 1). The average penetration rate for the Sequentially Annealed group was low (PR = 0.045 mm/yr). Pitting, scratching and burnishing were the predominant damage mechanisms of the tibial inserts within both material groups, with no evidence of delamination. Oxidation indices were low (Mean OI≤0.3) and similar between liners and inserts of the Sequentially Annealed components at the bearing and backside surface (Figure 2, p ≥ 0.15). Oxidation was positively correlated with implantation time at the bearing surface of the Sequentially Annealed groups (Rho > 0.29, p < 0.005). The Ultimate Load of the Sequentially Annealed acetabular liners was statistically higher than the tibial components (p < 0.001), however the mean difference was minimal (∼6N). Discussion:. This study evaluated the properties of 2. nd. generation HXLPEs used in THA and TKA. Sequentially Annealed liners had penetration rates comparable with 1. st. generation HXLPEs. While oxidation was low for both sequentially annealed and Vitamin E HXLPEs, we were able to detect regional variations in the oxidative in the sequentially annealed cohort. Longer-term retrievals are necessary to fully assess the oxidative stability of Vitamin E diffused HXLPE used in TKA and THA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 420 - 420
1 Dec 2013
McPherson E Burgett M Halim T Donaldson T Clarke I
Full Access

Controversy has existed for decades over the role of fretting-corrosion in modular CoCr heads used with stems of CoCr vs Ti6Al4V. Since retrieval data on taper performance remains scant, we report here an18-year survivorship of a Ti6Al4V: CoCr combination (APR design; Intermedics Inc). Unique to this study were the threaded profiles present on both stem and head tapers (Fig. 1). This female patient was revised for pain, osteolysis and recurrent hip dislocation at 17 years, 10 months. A prior MPE hip replacement performed for her severely dysplastic right hip had lasted 11 years. At this 2nd revision, the 28 mm CoCr head was found dislocated posteriorly and superiorly. Metallosis was evident in the tissues. The polyethylene liner showed extensive rim damage on both anterior and posterior aspects. The neck of her APR Revision stem (Intermedics Inc) had worn through the polyethylene rim and impinged on the metal cage. The cage was found loose, the liner had disassociated, and the peri-trochanteric areas were compromised by massive osteolysis. The femoral stem and head were removed together without disassembly. The femoral stem and acetabular construct were replaced by an ARCOS revision system using 36 mm head with a Freedom cup (cemented to Max-Ti cage; Biomet Inc.). The complete femoral neck and head were bi-valved assembled in horizontal plane for direct imaging by interferometry and SEM (Fig. 1a). After sectioning the head separated from the stem. Quantitative imaging used 1 to 5 regions with 6-replicate measurements per region and differentiation into contact and non-contact zones (Fig. 1b). Visual corrosion mapping (3) was recorded digitally in 4 anatomical views (Figs 1b–f). The thread profile on contact zone inside the head (Fig. 2a) had a pitch of approximately 40 μm and a peak-to-valley depth of 4 μm overall (Fig. 2b profile section of thread: PV = 2 μm). The thread profile on stem trunnion (Fig. 3a) had a pitch of approximately 125 μm and a peak-to-valley depth of 3.5 μm overall (Fig. 2b profile section of thread: PV = 1 μm). Thus the stem trunnion thread was much coarser than the head. Overall corrosion grading was judged very mild. Overall we were satisfied that this Ti6Al4V: CoCr combination taper junction with threaded interfaces had performed very well for 18 years. Nevertheless, our visual grading was subject to opinion and thus unrewarding. The continuing project will quantify the contacting and non-contacting regions of head and stem (Fig. 1b)


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 446 - 446
1 Nov 2011
Oonishi H Kim S Oonishi H Kyomoto M Iwamoto M Ueno M
Full Access

In total hip arthroplasty (THA), one of concerned issues is osteolysis due to wear debris of ultra-high molecular weight polyethylene (PE) which often leads to aseptic loosening. Reduction of PE wear debris is essential to prevent osteolysis, and different bearing combination as well as improvement of the bearing material itself have been attempted. Hence alumina ceramics was introduced for THA, aiming to reduce PE wear debris. Ceramic on PE couple showed good results in clinical wear compared with metal on PE couples. Highly cross-linked PE (HXLPE) with gamma-ray or electron-beam irradiation followed by thermal treatment has also demonstrated a remarkably low wear in the previous in vitro studies. In in vivo studies, the wear of HXLPE acetabular cups against alumina ceramic femoral head was evaluated to compare with that of conventional PE cups against alumina ceramic femoral head. The in vivo wear of 61 HXLPE cups (Aeonian; Kyocera Corp., Kyoto, Japan, currently Japan Medical Materials Corp., Osaka, Japan) against alumina ceramic femoral head of 28 mm in diameter with clinical use for 2.1–7.1 years (mean 5.6 years) and eight conventional PE cups against an alumina ceramic femoral head of 28 mm in diameter used for 18.7–23.3 years (mean 20.4 years) were examined by radiographic analysis with Vector Works 10.5. The in vivo wear of eight retrieved HXLPE cups with clinical use for 0.9–6.7 years (mean 2.9 years) and 14 retrieved conventional PE cups used for 16.0–28.0 years (mean 22.0 years) were examined by using a three-dimensional coordinate measuring machine. The worn surfaces of retrieved HXLPE and conventional PE cups were observed by a scanning electron microscope. In the radiographic study, penetration rate of alumina head into HXLPE and conventional PE for the first 1 year were 0.24 mm/year and 0.34 mm/year respectively. One year later, the HXLPE showed significant lower penetration rate of 0.001 mm/year than the conventional PE penetration rate of 0.12 mm/year (p< 0.01). By the retrieval analysis, the mean penetration of retrieved HXLPE and conventional PE cups were 0.11 and 2.97 mm, and they were similar to the results by radiographic analysis. In the worn surface of the retrieved HXLPE cups used for around 1 year, machine marks were observed. In contrast, the worn surface of the retrieved HXLPE cups used for more than five years were smooth, and furthermore, in high magnification observation they had wear morphology different from conventional PE. These findings from this retrieval study suggest the penetration in the first 1 year detected by radiographic measurement was probably caused by creep deformation in bedding-in stage; and 1 year after, the penetration was probably caused mainly by wear. By the radiographic analysis, HXLPE cups against alumina ceramic femoral head has a 99 % lower wear rate compared with conventional PE cups. Also, retrieved HXLPE cups against alumina ceramic femoral head exhibited lower wear compared with conventional PE cups. In conclusion, we expect that the HXLPE cup used with alumina ceramic femoral head has favorable wear properties in long-term clinical use


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 595 - 595
1 Dec 2013
Choi D Wright T
Full Access

Retrieval analysis has been valuable in the assessment of in-vivo surface damage of orthopedic devices. Historically, subjective techniques were used to grade damage on the implant's surface. Microscopy improved the ability to localize and quantify damage, but cannot measure volumetric wear due to this damage. Laser scanning provides volumetric wear, but lacks image data. Recent techniques superimpose image data on laser scan data (photorendering) and combine the strengths of both methods. Our goal is to use such methods to improve our damage assessment and potentially correlate this assessment to volumetric wear. This project focused on two areas: image-stitching and photorendering. Image-stitching registers multiple images into large-scale high-resolution composites. Six total disc replacement components were imaged with a digital microscope (Moticam 2, Motic). Three sets were taken of each component: a single template at 10x zoom (1×1), a 4-image composite at 18x zoom (2×2), and a 9-image composite at 18x zoom (3×3). The 2×2 and 3×3 sets were image-stitched to resemble their template counterpart. Measurement error was defined using common pixels identified between the composite and template images for comparison with a semi-automated feature detection algorithm (Figure 1). For photorendering, a pilot study was performed on a single retrieved tibial bearing. The component was imaged with a digital microscope (VHX-2000, Keyence) under a 3D image-stitching setting, providing a high-resolution photo embedded with height values. MATLAB was used to convert the image into a photo-rendered point cloud approximating the surfaces. The component was then laser scanned, creating a 3D point cloud with resolution 0.127 mm. The photo-rendered point cloud data was registered to the laser scan data using an iterative closest point algorithm (Geomagic Studio, Geomagic). An analysis of all composite images showed a mean error of 0.221 mm. Figure 2 compares regions of images for the template, 2×2, and 3×3 composites. Zooming in shows the effect of the increased resolution contained in the composite. The 2×2 and 3×3 composites had mean errors of 0.231 mm and 0.209 mm, respectively; these were not significantly different. Comparisons among image types showed that components with less features exhibited larger errors during image-stitching. Figure 3 shows images resulting from each step of the photorendering process. The final image of the figure shows a qualitative result of our ability to photorender the tibial bearing surface of the component. While combining microscopy and laser scan data works anecdotally, further analyses must be performed to assure the robustness of the technique. The digital microscope's embedded image-stitching software is limited in its maximum field of view; we look to extend this by taking multiple scans and using in-house software to generate a composite of a whole implant. The improved resolution provided by microscopy offer an opportunity to automate damage assessment, yielding damage mapped images which can also be overlaid on laser scan data. This may provide a means to better quantify observed damage and yield meaningful correlations with volumetric loss due to wear


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 134 - 134
1 May 2016
Lapaj L Mroz A Wendland J Markuszewski J
Full Access

Introduction. Titanium nitride (TiN) coatings are used in total hip arthroplasty to reduce friction of bearing couples or to decrease the allergic potential of orthopaedic alloys. Little is known about performance of currently manufactured implants, since only few retrieval studies were performed, furthermore they included a small number of implants manufactured over 15 years ago. Aim of study. To examine wear and degradation of retrieved TiN coated femoral heads articulating with ultra-high molecular weight polyethylene (UHMWPE). Methods. We included eight femoral heads with a made od TiAl6V4 alloy and coated with TiN using Physical Vapour Deposition (PVD). All heads (28 and 32 mm) were retrieved after at least 12 months of use (range 12–56). The reason for revision was aseptic loosening in 6 cases, septic loosening in one case and recurrent dislocations (five episodes) in one uncemented prosthesis. One unused head was included as reference sample. All implants were evaluated with light microscopy, Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS). 30 SEM images from each implant were digitally analysed using ImageJ software to compare damage in loaded and non weight-bearing parts of the heads. Results. Studies with light microscopy revealed severe damage to the dislocated femoral head, with multiple metallic scratches. SEM studies indicated presence of multiple scratches and pinholes with a diameter of 1–10 µm (Fig1a,b,). Residue from the manufacturing process was present in all implants in form of pure Ti droplets found in round voids. In all implants we found irregular areas (diam. 20–50 µm, Fig 1c,d) where the coating was delaminated from the substrate metal with cracks arising from coating defects (Fig1e-h). Some of these debonded fragments were embedded into the PVD layer in weight-bearing parts of all heads. In one head, which was subjected to dislocations we observed deposits of titanium alloy from the acetabular shell (Fig 2a,b). The deposits were accompanied by large patches of delaminated coating as well as multiple cracks (Fig 2c,d). Small fragments of the acetabular titanium alloy damaged the coating in third body mechanism. Surprisingly in three implants we EDS analysis revealed similar spheres (diam. 1–10 µm) containing Niobium (Nb), although this element is not a part of any of the components used in the implants(Fig 2e,f). Interestingly presence of Nb droplets were associated with a higher number of other defect in these heads both in weight-baring and non weight-bearing parts of the heads suggesting inferior coating quality in these cases (Fig 2 g,h; Fig3, cases H2,H5,H8). Conclusions. Compared to previous studies we did not observe severe wear or the coating, however we observed some degradation of the film in vivo. Our results indicate that dislocation can lead to severe failure of the coating in vivo. Moreover presence of Nb residues and coexisting defects in some implants suggests inferior coating quality in these implants and indicates the need for strict monitoring of the production process. This study was funded by a grant from the National Science Centre nr 2012/05/D/NZ5/01840


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 102 - 102
1 Mar 2010
Clarke I Kubo K Hazelton C Williams P Lombardi A Turnbull A Donaldson T
Full Access

Ceramic-on-ceramic bearings (ALX: pure alumina) have been used for human hip joints for almost 40 years. However an alumina matrix composite with zirconia (AMC) was introduced in year 2000 as a high-strength ceramic with almost double the fatigue resistance (AMC = 80.5%ALZ and 18vol% ZrO2). However we have not found any retrieval studies reported for this new ceramic bearing. Wear maps were generated on three retrieved AMC femoral heads (28 and 36mm diameters) using x-ray diffraction, roughness and SEM imaging techniques. The wear study ran a physiologically appropriate, micro-separation test on 36mm ceramic balls and liners (AMC/ALZ). Wear rates were determined for the four combinations of balls and cups (ALX:AMC) with mapping of main-wear and stripe-wear zones, surface-roughness and analysis of debris morphology. In addition, the zirconia transformation to monoclinic phase was studied in AMC bearings. The retrieval study showed for the first time the wear phenomena occurring on three retrieved AMC femoral heads (at 1, 3, 6 years). Two had been paired with alumina liners and one with a polyethylene liner. Case-1 featured a 36mm ball in an UHMWPE socket, case-2 was an intact 28mm AMC ball and case-3 had a fractured ball from an IDE study. Laser interferometry and SEM were used to image ceramic wear and x-ray diffraction for analysis of transformation in the zirconia phase. Main-wear zones, stripe-wear zones, metal contamination and sites of implant impingement were also characterized. Surface roughness and in-vivo aging were quantified for both non-worn and worn areas. The SEM studies showed well-preserved articular surfaces, some with faint parallel scratches still evident. The latter likely represented the manufacturer’s original polishing marks. Multiple stripe-wear sites were identified with roughness 25–65nm (Sa) whereas polished main-wear zones averaged very low at 2–3nm. Metal impingements sites stained black with transfer of titanium increased roughness up to 140nm. Mildly worn areas of case-2 AMC ball averaged 10% transformation in the zirconia phase (tetragonal to monoclinic). In the stripe-wear zones, the monoclinic phase increased to 30%. The taper-bore and fracture surfaces in case-3 averaged 30% to 40% monoclinic, respectively. The stripe-wear zones and black metal contamination on these retrieved 28mm balls were correlated to multiple impingement sites on the rim of the alumina liners and titanium shells. The laboratory model produced stripe wear on the ceramic balls and liners. The AlX/AlX controls produced the highest run-in and steady-state wear rates at 6.3 and 2mm3/Mc respectively). In contrast, the AMC/AMC combination produced the lowest wear rates at 0.5 and 0.1 mm3/Mc, respectively). With hybrid ball:cup combinations (AlX:AMC; AMC:AlX) the wear rates were similar and showed a 3-fold reduction compared to controls. In hybrid pairings, the AMC ceramic wore preferentially more than its AlX counterpart, regardless if present as a ball or cup implant. Thus the AMC ball contributed 66% to AMC/AlX total wear whereas the ALZ ball contributed only 33% of the total AlZ/AMC wear. This study appears to be the first documentation of wear in retrieved AMC bearing surfaces. In general, the AMC surfaces worn in-vivo corresponded well to our in-vitro wear model. The stripe-wear zones in AMC femoral heads had rougher surfaces and higher monoclinic transformation than the main-wear zone. Overall the AMC ceramic appeared more resistant to stripe-wear effects created by the micro-separation and impingement phenomena


Bone & Joint Research
Vol. 7, Issue 11 | Pages 595 - 600
1 Nov 2018
Bergiers S Hothi HS Henckel J Eskelinen A Skinner J Hart A

Objectives

Previous studies have suggested that metal-on-metal (MoM) Pinnacle (DePuy Synthes, Warsaw, Indiana) hip arthroplasties implanted after 2006 exhibit higher failure rates. This was attributed to the production of implants with reduced diametrical clearances between their bearing surfaces, which, it was speculated, were outside manufacturing tolerances. This study aimed to better understand the performance of Pinnacle Systems manufactured before and after this event.

Methods

A total of 92 retrieved MoM Pinnacle hips were analyzed, of which 45 were implanted before 2007, and 47 from 2007 onwards. The ‘pre-2007’ group contained 45 implants retrieved from 21 male and 24 female patients, with a median age of 61.3 years (interquartile range (IQR) 57.1 to 65.5); the ‘2007 onwards’ group contained 47 implants retrieved from 19 male and 28 female patients, with a median age of 61.8 years (IQR 58.5 to 67.8). The volume of material lost from their bearing and taper surfaces was measured using coordinate and roundness measuring machines. These outcomes were then compared statistically using linear regression models, adjusting for potentially confounding factors.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 4 - 4
1 Sep 2012
Bolland B Culliford D Langton D Millington J Arden N Latham J
Full Access

This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological, metal ion and retrieval analysis were performed. Seventeen patients (8.6%) had undergone revision, and a further fourteen are awaiting surgery (defined in combination as failures). Twenty one (68%) failures were females. All revisions and ten (71%) awaiting revision were symptomatic. Twenty four failures (86%) showed progressive radiological changes. Fourteen revision cases showed evidence of adverse reactions to metal debris (ARMD). The failure cohort had significantly higher whole blood cobalt ion levels (p=0.001), but no significant difference in cup size (p=0.77), inclination (p=0.38) or cup version (p=0.12) compared to the non revised cohort. Female gender was associated with increased risk of failure (p=0.04). Multifactorial analysis demonstrated isolated raised Co levels in the absence of symptoms or XR changes were not predictive of failure (p=0.675). However the presence of pain (p<0.001) and XR changes (p<0.001) in isolation were significant predictors of failure. Wear analysis (n=5) demonstrated increased wear at the trunnion/head interface (mean out of roundness measurements 34.5 microns (normal range 8–10 microns) with normal wear levels at the articulating surfaces. Macroscopically corrosion was evident at the proximal and distal stem surfaces. Cumulative survival rate, with revision for any reason was 92.4% (95%CI: 87.4–95.4) at 5 years. Including those awaiting surgery, the revision rate would be 15.1% with 89.6% (95% CI: 83.9–93.4). Cumulative survival at 5 years. This MOMHTHR series has demonstrated unacceptable high failure rates with evidence of high wear at the head/trunnion interface and passive corrosion to the stem surface. Female gender was an independent risk factor of failure. Metal ion levels remain a useful aspect of the investigation work up but in isolation are not predictive of failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 3 - 3
1 Aug 2012
Bolland B Culliford D Langton D Millington J Arden N Latham J
Full Access

This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological outcome, metal ion levels and retrieval analysis were performed. Seventeen patients (8.6%) had undergone revision, and a further fourteen are awaiting surgery (defined in combination as failures). Twenty one (68%) failures were females. All revisions and ten (71%) of those awaiting revision were symptomatic. Twenty four failures (86%) showed progressive radiological changes. Fourteen revision cases showed evidence of adverse reactions to metal debris (ARMD). The failure cohort had significantly higher whole blood cobalt ion levels (p=0.001), but no significant difference in cup size (p=0.77), inclination (p=0.38) or cup version (p=0.12) in comparison to the non revised cohort. Female gender was associated with an increased risk of failure (chi squared p=0.04). Multifactorial analysis demonstrated isolated raised Co levels in the absence of either symptoms or XR changes was not predictive of failure (p=0.675). However both the presence of pain (p<0.001) and XR changes (p<0.001) in isolation were both significant predictors of failure. Wear analysis (n=5) demonstrated increased wear at the trunnion/head interface (mean out of roundness measurements of 34.5 microns +/−13.3 (+/−2SD, normal range 8-10 microns) with normal levels of wear at the articulating surfaces. There was evidence of corrosion at the proximal and distal stem surfaces. The cumulative survival rate, with revision for any reason was 92.4% (95%CI: 87.4-95.4) at 5 years. Including those awaiting surgery, the revision rate would be 15.1% with cumulative survival at 5 years of 89.6% (95% CI: 83.9-93.4). This MOMHTHR series has demonstrated unacceptable high failure rates with evidence of high wear at the head/trunnion interface and passive corrosion to the stem surface. This raises concern with the use of large heads on conventional 12/14 tapers. Female gender was an independent risk factor of failure. Metal ion levels remain a useful aspect of the investigation work up but in isolation are not predictive of failure


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 37 - 37
1 Sep 2014
van der Jagt D Pietzrak J Stein R
Full Access

Introduction. Antibiotic loaded polymethyle methacrylate spacers are commonly used in the management of septic hip replacements. Aim. The aim of this study was to determine wear patterns on the articulating surfaces of these spacers, as well as to determine the extent of PMMA particulate debris generation. Method. We took tissue specimens around the acetabulae in 12 cases at the time of the second stage procedure for septic total hip revisions. These were subjected to histological analysis to determine the extent of PMMA particulate debris contamination. We also performed a basic explant retrieval analysis of the articulating surfaces of the PMMA spacers to determine any specific wear patterns. Results. We found numerous PMMA particles in the acetabular soft tissues biopsied. The particle concentration was highest in the area of the acetabular fovea. We could also demonstrate specific wear patterns on the spacers that could be correlated with the generally mismatched articulating couple between the spacer and the bony acetabulum. We could also demonstrate some boney destruction present in the acetabulum with long-term spacer use. Conclusions. We concluded that significant amounts of PMMA particulate debris are generated by these articulating antibiotic spacers. The total volume of this debris may be determined by specific wear patterns on the spacers’ surfaces. We recommend a thorough debridement to decrease the PMMA particle load generated. Consideration in respect of the bearing surface implanted after the explantation of the PMMA spacer should take into account the effect of the debris on the bearing surfaces. We also make recommendations in respect of the design of these PMMA spacers


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 168 - 168
1 Mar 2010
Oonishi H Kim SC Oonishi H Kyomoto M Iwamoto M Ueno M
Full Access

One of important issues of concern in total hip arthroplasty (THA) is osteolysis due to wear debris of ultra-high molecular weight polyethylene (PE), and it often leads to aseptic loosening. Reduction of PE wear debris is essential to prevent osteolysis, and different bearing interfaces as well as improvement of the bearing material itself have been attempted. Alumina ceramics as the bearing material for THA was introduced in Europe and Japan in the 1970s in aim to reduce the PE wear debris. The clinical results have proved the superiority of ceramic on PE couples to metal on PE couples in wear resistance. PE materials cross-liked by irradiation have also demonstrated a significant low wear by in vitro studies. Several types of highly cross-linked polyethylene (CLPE), with the irradiation dose of 50 to 105 kGy, have been developed and extensively used since 1998. In this study, the in vivo wear and oxidation of CLPE acetabular cup combined with ceramic femoral head were evaluated using retrieved cups. Eight retrieved CLPE acetabular cups (Aeonian; Kyocera Corp., Kyoto, Japan, currently Japan Medical Materials Corp., Osaka, Japan) with clinical use for 3–80 months (mean 34 months) were examined. All cups were used against alumina or zirconia ceramic femoral heads. The linear wear of the retrieved CLPE cups was measured using a three-dimensional coordinate measurement machine. The worn surfaces of retrieved CLPE cups were observed by a scanning electron microscope (SEM). Oxidative degradation of the retrieved CLPE cups was expressed in terms of an oxidation index which was calculated from microscopic Fourier transformed infrared spectroscopy analysis, according to ASTM F2102. The linear wear rate of retrieved CLPE cups was in 0.006–0.08 mm/year range, which was similar to the results reported by the previous radiographic study. In the worn surface of the CLPE cup retrieved after clinical use shorter than 39 months, machine marks were observed. In contrast, those retrieved after clinical use of 70 and 80 months were smooth. Oxidation indices of retrieved CLPE cups were: 0.12–0.37 in worn surface and 0.13–0.34 in unworn surface, respectively. There was no difference in the oxidation indices between the worn surface and unworn surface. The retrieved CLPE acetabular cups in this study showed low and stable wear rates. The results showed a notable reduction in wear of the CLPE cups compared to that of conventional PE cups in the previous studies. And also, the oxidation indices of the retrieved CLPE cups were the same level as conventional PE cups. These findings from this retrieval study showed that there is neither progressive wear in the clinical use for 3–80 months, material failures due to wear, delamination nor cracks. The lower wear rate and smooth surface of the CLPE acetabular cup suggest the possibility of reduced wear debris from those cups articulated against the ceramic femoral head. We expect that the CLPE acetabular cup has favorable wear properties in long-term clinical use


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 51 - 51
1 Jun 2018
Kraay M
Full Access

The well-fixed femoral stem can be challenging to remove. Removal of an extensively osteointegrated cementless stem requires disruption of the entire implant-bone interface while a well-fixed cemented stem requires complete removal of all adherent cement from the underlying cortical bone in both the metaphysis and diaphysis of the femur. In these situations, access to those areas of the femur distal to the metaphyseal flare that are beyond the reach of osteotomes and high speed burrs is necessary. This typically requires use of an extended femoral osteotomy (ETO).

The ETO should be carefully planned so that it extends distal enough to allow for access to the end of the stem or cement column and still allow for stable fixation of a new implant. Too short of an ETO increases the risk of femoral perforation by straight burrs, trephines or cement removal instruments that cannot negotiate the bowed femoral canal to access the end of the cement column or end of the stem without risk of perforation. The ETO should also be long enough to allow for fixation with at least 2 cerclage cables. An ETO that is too distal makes implant and cement removal easier, but may not allow for sufficient fixation of a new revision femoral stem. After insertion of the revision stem, the osteotomy is reduced back around the stem and secured in place with cerclage cables.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 104 - 104
1 Aug 2017
Paprosky W
Full Access

The extended proximal femoral osteotomy has been used primarily in conjunction with cementless fixation, but has been described for use with cemented stems as well. The extended proximal femoral osteotomy is indicated for the removal of well-fixed cemented and cementless implants, as well as removal of cement in patients with a loose femoral component in a well-fixed cement mantle. Although the osteotomy is not required for many femoral revisions, it is an absolute indication in patients with femoral component loosening and subsequent varus remodeling of the proximal femur.

The osteotomy diminishes the risk of an inadvertent fracture of the often compromised greater trochanter especially upon removal of a failed femoral component from its subsided or migrated position. The osteotomy enhances the exposure of the acetabulum which may be difficult in the revision setting due to multiple surgeries, severe migration of the acetabular component or the heterotopic ossification.

The extended proximal femoral osteotomy can also be used in the primary setting when a proximal femoral deformity interferes with straight reaming of the femoral canal, such as in patients with various dysplasias, previous corrective osteotomies or malunions.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 917 - 924
1 Jul 2016
Whittaker RK Hothi HS Meswania JM Berber R Blunn GW Skinner JA Hart AJ

Aims

Surgeons have commonly used modular femoral heads and stems from different manufacturers, although this is not recommended by orthopaedic companies due to the different manufacturing processes.

We compared the rate of corrosion and rate of wear at the trunnion/head taper junction in two groups of retrieved hips; those with mixed manufacturers (MM) and those from the same manufacturer (SM).

Materials and Methods

We identified 151 retrieved hips with large-diameter cobalt-chromium heads; 51 of two designs that had been paired with stems from different manufacturers (MM) and 100 of seven designs paired with stems from the same manufacturer (SM). We determined the severity of corrosion with the Goldberg corrosion score and the volume of material loss at the head/stem junction. We used multivariable statistical analysis to determine if there was a significant difference between the two groups.


The authors did not receive grants or outside funding in support of their research or preparation of this manuscript. They did not receive any payments or make agreements to provide such benefit from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, educational institution, or other non profit organization with which the authors are affiliated or associated. Background: We observed early osteolysis and loosening of the rough surface-cement stem with a second generation metal-on-metal articulation. This study was to investigate the possible etiologic role of stem loosening and osteolysis by examination of the surface of the rough blast cement and related periprosthetic tissues that have been retrieved at revision. Methods: We retrospectively analyzed 39 hips (37 patients) with use of metasul metal-on-metal total hip arthroplasty. Of the femoral stem, rough surface-cement stem used in 18 hips and cementless Ti-alloy stem in 21 hips. The mean duration of follow-up was 10.2 years. Of these eight rough blast cement stem were revised, seven in loosening and one in recurrent dislocation. By using energy disperse spectroscope and back scattered electron image, histologic studies were performed to the samples of periprosthetic tissues. Skin patch tests for metal hypersensitivity were done to select patients. Results: All of cementless stems and cups showed excellent results at the last follow-up. However, eight cement hips were revised. Light microscopy showed polishing effect on retrieval femoral stem affected by the rotational force. EDS and BSE image revealed that there were abundant cement and related metal particles with size of 5-10μm. However there were few metal particles and had greater size (20–100μm) in periprosthetic tissues. Histologic finding shows perivascular infiltration of lymphocytes and accumulation of macrophages No relation was found between skin patch test and loosening. Conclusion: These findings raise the possibility that early osteolysis and loosening in patients with metal-on-metal hip replacement were associated with rough blast surface cement stem. These mixed particles such as Fe and Zr maybe trigger lymphocytic reactivity suggestive delayed type hypersensitive reaction. This study suggests that cement stem which have rough blasted surface should be considered in metal-on-metal total hip arthroplasty. Level of Evidence: Therapeutic level III-1(case-control study). See instructions to authors for a complete description of level of evidence


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 112 - 112
1 Nov 2016
Paprosky W
Full Access

The extended proximal femoral osteotomy has been used primarily in conjunction with cementless fixation, but has been described for use with cemented stems as well. The extended proximal femoral osteotomy is indicated for the removal of well-fixed cemented and cementless implants, as well as removal of cement in patients with a loose femoral component in a well-fixed cement mantle. Although the osteotomy is not required for many femoral revisions, it is an absolute indication in patients with femoral component loosening and subsequent varus remodeling of the proximal femur.

The osteotomy diminishes the risk of an inadvertent fracture of the often compromised greater trochanter especially upon removal of a failed femoral component from its subsided or migrated position. The osteotomy enhances the exposure of the acetabulum which may be difficult in the revision setting due to multiple surgeries, severe migration of the acetabular component or heterotopic ossification.

The extended proximal femoral osteotomy can also be used in the primary setting when a proximal femoral deformity interferes with straight reaming of the femoral canal, such as in patients with various dysplasias, previous corrective osteotomies or malunions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 58 - 58
1 Feb 2017
Campbell P Yuan N Ebramzadeh E
Full Access

Young osteoarthritic male patients have been considered the ideal candidates for Metal-on-Metal (MoM) hip resurfacing arthroplasty (HRA), based on generally good long term results. In contrast, hip resurfacing in young female patients has become controversial. Recently, one implant manufacturer withdrew 46mm and smaller components, citing poorer than expected 10 year outcomes in females with smaller HRAs. Whether this difference is related to gender or to component size is still debated. Possible reasons for higher failure rates reported in females include higher rates of hip dysplasia, poorer bone quality and the risk of higher wear in some smaller sized implants with low cup coverage angles.

We reviewed HRA revision specimens with the aim of comparing mode of failure, time to revision, femoral cement characteristics and acetabular bone attachment in specimens larger and smaller than 46mm and from male versus female patients.

Methods

The study included all of the MoM HRA devices in our collection. Of the 284 hip resurfacing devices with complete clinical information, 131 were from male and 153 from female patients. Femoral sizes ranged from 36 – 58mm, median and mode 46mm; median size in females was 44 and 50mm in males. Time to failure ranged from 1 to 178 months, median 24 mos. Seven designs were represented but the majority were Conserve Plus (n=105 WMT, USA) and BHR (n=78 Smith & Nephew, USA) which differ in cementing technique. 131 femoral components were sectioned and the width of the cement mantle and the amount of cement in the head were measured. Where available, the amount of bone attached to the cup porous surface (n=91), tissue ALVAL scores (n=75) and bearing wear depth (n=138) were included in the multivariate analysis.

Results

As a function of gender, there were no significant differences in time to revision, cement measurements or ALVAL scores. Wear depth was significantly higher in females (femoral 41um vs 21um; cup 50um vs 16um, p=0.05). As a function of size (46 and less = small), the <46mm group had a slightly shorter time to revision, 30 vs 38 months, p=0.04). Bone ingrowth ranged from 0 to 60% (Figure 1) and significantly less bone attachment was noted in both the smaller and larger components (p = 0.001). Other characteristics were similar in both groups. When wear-related failure modes (cup malposition, lysis, high ions) were compared, no differences between male and female or large vs small were found. The amount of cement in the femoral heads covered a wide range but femoral loosening or fracture rates were not different as a function of size or gender.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 307 - 314
1 Mar 2011
Matthies A Underwood R Cann P Ilo K Nawaz Z Skinner J Hart AJ

This study compared component wear rates and pre-revision blood metal ions levels in two groups of failed metal-on-metal hip arthroplasties: hip resurfacing and modular total hip replacement (THR).

There was no significant difference in the median rate of linear wear between the groups for both acetabular (p = 0.4633) and femoral (p = 0.0872) components. There was also no significant difference in the median linear wear rates when failed hip resurfacing and modular THR hips of the same type (ASR and Birmingham hip resurfacing (BHR)) were compared.

Unlike other studies of well-functioning hips, there was no significant difference in pre-revision blood metal ion levels between hip resurfacing and modular THR.

Edge loading was common in both groups, but more common in the resurfacing group (67%) than in the modular group (57%). However, this was not significant (p = 0.3479). We attribute this difference to retention of the neck in resurfacing of the hip, leading to impingement-type edge loading. This was supported by visual evidence of impingement on the femur.

These findings show that failed metal-on-metal hip resurfacing and modular THRs have similar component wear rates and are both associated with raised pre-revision blood levels of metal ions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 58 - 58
1 Jan 2017
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A Utzschneider S
Full Access

Knee arthroplasty with a rotating hinge knee (RHK) prosthesis has become an important clinical treatment option for knee revisions and primary patients with severe varus or valgus deformities and instable ligaments. The rotational axle constraints the anterior-posterior shear and varus-valgus moments, but currently used polyethylene bushings may fail in the mid-term due to insufficient creep and wear resistance of the material. Due to that carbon-fibre-reinforced (CFR) PEEK as an alternativ bushing material with enhanced creep, wear and fatigue behaviour has been introduced in a RHK design [Grupp 2011, Giurea 2014]. The objective of our study was to compare results from the pre-clinical biotribological characterisation to ex vivo findings on a series of retrieved implants.

In vitro wear simulation according to ISO 14243-1 was performed on rotating hinge knee devices (EnduRo® Aesculap, Germany) made out of cobalt-chromium and of a ZrN multi-layer ceramic coating for 5 million cycles. The mobile gliding surfaces were made out of polyethylene (GUR 1020, β-irradiated 30 ± 2 kGy). For the bushings of the rotational and flexion axles and the flanges a new bearing material based on CFR-PEEK with 30% PAN fiber content was used.

Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN multi-layer in regard to

loosening torques in comparison with initial fastening torques

Optical, DSLR camera and stereo light microscope analysis

distinction between different wear modes and classification with a modified HOOD-score

SEM & EDX of representative samples

surface roughness and depth profilometry

with a focus on the four CFR-PEEK components integrated in the EnduRo® RHK design.

For the rotating hinge knee design with flexion bushing and flanges out of CFR-PEEK the volumetric wear rates were 2.3 ± 0.48 mm3/million cycles (cobalt-chromium) and 0.21 ± 0.02 mm3/million cycles (ZrN multi-layer), a 10.9-fold reduction (p = 0.0016). The UHMWPE and CFR-PEEK particles were comparable in size and morphology and predominantly in submicron size [5]. The biological response to representative sub-micron sized CFR-PEEK particles has been demonstrated in vivo based on the leucoyte-endothelian-cell interactions in the synovia of a murine intra-articular knee model by Utzschneider 2010. Schwiesau 2013 extracted the frequency of daily activities in hip and knee replacement patients from literature and estimated an average of 1.76 million gait cycles per year. Thus, the 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which fits to the time in vivo of 12–60 months of the retrieved RHK devices. The in vitro surface articulation pattern of the wear simulation tests are comparable to findings on retrieved CFR-PEEK components for both types of articulations – cobalt-chromium and ZrN multi-layer coating.

For the rotating hinge knee design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN multi-layer coating.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1036 - 1041
1 Aug 2007
Knahr K Pospischill M Köttig P Schneider W Plenk H

Two Durasul highly crosslinked polyethylene liners were exchanged during revision surgery four and five years after implantation, respectively. The retrieved liners were evaluated macroscopically and surface analysis was performed using optical and electron microscopy. A sample of each liner was used to determine the oxidation of the material by Fourier transform infrared spectroscopy. Samples of the capsule were examined histologically.

The annual wear rate was found to be 0.010 and 0.015 mm/year, respectively. Surface analysis showed very little loss of material caused by wear. Histological evaluation revealed a continuous neosynovial lining with single multinucleated foreign-body giant cells. Our findings showed no unexpected patterns of wear on the articulating surfaces up to five years after implantation and no obvious failure of material.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 986 - 990
1 Sep 2004
Burnett RSJ Fornasier VL Haydon CM Wehrli BM Whitewood CN Bourne RB

We present the histological findings of an extensor mechanism allograft which was used in a total knee arthroplasty two years after implantation. Analysis of the graft was undertaken at four distinct anatomical levels and it was found to be incorporated into host tissue at each level. A wedge of fibrinoid necrosis, probably related to impingement of the graft on the tibial polyethylene insert, was seen. Impingement may play a role in the injury and necrosis of an allograft and may be one mode of failure in an extensor mechanism allograft.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 418 - 419
1 Apr 2004
Li S
Full Access

It is estimated that there will be over 12,000 total shoulder replacements implanted this year. In the best series, the survivorships of these devices are 90% at 7 years. However, there are radiographic indications that the long term success will be limited to wear and damage to the polyethylene glenoid components. Like tibial insert in total knee replacements, the glenoid is subjected to both rolling sliding motions of a metal counterface. Additionally, the compressive loads on the glenoid have been estimated to be as high as 2800N under ‘normal’ conditions. In contrast to tibial inserts, glenoid components are all typically less than 6 mm thick. In metal backed glenoid devices, the polyethylene thickness is often < 3 mm. The effect of these parameters and kinematics on polyethylene damage has not previously described. Although total shoulder replacements have been in use for over 25 years, there have been no reports describing the nature and extent of glenoid polyethylene wear and damage.

We report the determination of polyethylene damage type and severity of 38 retrieved glenoid components of at least 4 different designs. Wear and damage were considered significant when either 80% of the glenoid surface was damaged or if over 25% of the component was worn away. Abrasion, burnishing and pitting were the main modes of damage. There were 2 fractured components. There was significant UHMWPE wear and damage in 17 (45%) components. In nine of these, the component was completely worn through.. These findings are consistent with high stress, high wear conditions and thin polyethylene components.

These results indicate polyethylene wear and damage is expected to be a key factor in limiting the survivor-ship total shoulder replacements and that polyethylene damage and wear in total shoulder replacements may be higher than that found for either total hip or knee replacements.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 79 - 79
1 Mar 2017
Patel J Lal S Hall R Wilshaw S Tipper J
Full Access

Introduction

Wear debris generated by total hip replacements (THRs) may cause mechanical instability, inflammation, osteolysis and ultimately implant loosening, thus limiting the lifetime of such devices [1]. This has led to the development of biocompatible coatings for prostheses. Silicon nitride (SiN) coatings are highly wear resistant and any resultant wear debris are soluble, reducing the possibility of a chronic inflammatory reaction [2]. SiN wear debris produced from coatings have not been characterized in vivo. The aim of this research is to develop a sensitive method for isolating low volumes of SiN wear debris from periprosthetic tissue.

Methods

Commercial silicon nitride particles of <50nm (Sigma Aldrich) were incubated with formalin fixed sheep synovium at a volume of 0.01mm3 /g of tissue (n=3). The tissue was digested with papain (1.56mg/ml) for 6h and subsequently proteinase K (1mg/ml) overnight. Proteinase K digestion was repeated for 6h and again overnight, after which samples appeared visibly homogeneous [Figure 1]. Samples were then subjected to density gradient ultracentrifugation using sodium polytungstate (SPT) [3]. The resulting protein band was removed from the pellet of particles. Control tissue samples, to which no particles were added, were also subjected to the procedure. Particles were washed with filtered water to remove residual SPT using ultracentrifugation and filtered onto 15nm polycarbonate filters. The filtered particles were imaged by cold field emission scanning electron microscopy (CFE-SEM) and positively identified by elemental analysis before and after the isolation procedure. To validate whether the isolation method affected particle size or morphology, imaging software (imageJ) was used to determine size distributions and morphological parameters of the particles. A Kolmogorov-Smirnov test was used to statistically analyse the particle morphology.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1195 - 1201
1 Nov 2001
McGrath LR Shardlow DL Ingham E Andrews M Ivory J Stone MH Fisher J

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated.

The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation.

Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 349 - 349
1 Sep 2012
Heyse T Chen D Kelly N Boettner F Wright T Haas S
Full Access

Introduction

Oxidized zirconium (OxZr) is used as a ceramic surface for femoral components in total knee arthroplasty (TKA). The aim of this study was to investigate its performance by examining retrieved femoral components and their corresponding PE inserts in matched comparison with conventional chrome/cobalt/molybdenum alloy (CrCoMo).

Methods

11 retrieved posterior stabilized (PS) TKA with an OxZr femoral component were included. From a cohort of 56 retrieved TKA with CrCoMo femoral components, pairs were matched according to duration of implantation, patient age, reason for revision, and BMI. The retrieved tibial polyethylene (PE) inserts were analyzed for wear using the Hood classification. Femoral components were optically viewed at 8–32x magnification and screened for scratching, pitting, delamination, and striation. Profilometry was performed to measure surface roughness of the OxZr components using a non-contact white light profiler.


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 1 | Pages 20 - 24
1 Jan 1991
Cook S Thomas K

The causes of mechanical failure of five noncemented porous-coated components were studied. There were two cobalt-chromium alloy and three titanium alloy implants which fractured after 12 to 48 months. The implants included one acetabular component, and one femoral condylar, one patellar and two tibial components. Examination of the fractured surfaces revealed fatigue to be the mechanism of failure in all cases. The porous coating and the processes required for its fabrication had resulted in weakening and reduction of substrate thickness. Additional factors were stress concentration due to limited, localised bone ingrowth, and some features of the design of the implants.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 93 - 93
1 Jan 2016
Vandekerckhove P Teeter M Naudie D Howard J MacDonald S Lanting B
Full Access

Introduction

Coronal plane alignment is one of the contributing factors to polyethylene wear in total knee arthroplasty (TKA). The goal of this study was to evaluate the wear and damage patterns of retrieved tibial polyethylene inserts in relationship to the overall mechanical alignment and to the position of the tibial component.

Materials and methods

Based on full-length radiographs, ninety-five polyethylene inserts retrieved from primary TKA's with a minimum time in-vivo of five years were analysed for wear and damage. Four alignment groups were compared: valgus, neutral, mild varus and moderate varus. Varus and valgus positioning of the tibial component was analysed for damage score for the neutral and varus aligned groups.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 168 - 168
1 Mar 2010
Walter WL Waters TS Gillies RM Donohoo SM Hozack WJ Kurtz SM
Full Access

Squeaking in hip arthroplasty is now well-documented but hitherto poorly understood. In this paper, we report data progressively accumulated from a series of studies undertaken by our group to investigate the mechanisms of noise production associated with ceramic-on-ceramic bearings. We reviewed demographic and radiographic data comparing squeaking with silent hips. Edge loading of the acetabular components was investigated on retrieved bearings and with finite element analysis. The squeaking sound itself was further investigated through acoustic analysis. Squeaking occurs in younger, heavier, and taller patients.

We found a higher incidence of acetabular component malposition in squeaking hips and edge loading appears to be a causative factor. Finite element analysis revealed a stiffness mismatch between the shell and liner which may allow the shell to oscillate producing an audible squeak. Acoustic and modal analysis show that squeaking is due to a forced vibration and that the natural frequencies of the ceramic components are above the audible range, suggesting that resonance occurs in the metallic, not the ceramic parts. This phenomenon is related to patient factors, surgical factors, and implant factors, which may produce sound by a combination of edge loading of the ceramic and forced vibration of the acetabular shell and/or the femoral stem.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 406 - 406
1 Sep 2009
Hart A Maggiore P Sandison A Sampson B Muirhead-Allwood S Cann P Skinner J
Full Access

Introduction: Approximately 0.5 % of patients with metal on metal hip replacements develop post operative pain which is thought to be due to an immune reaction to metal wear particles, known as Aseptic Lymphocyte Dominated Vasculitis Associated Lesion (ALVAL). Treatment usually requires revision to a non metal on metal hip.. Is the development of ALVAL more likely in those patients with high wear rates?

Methods: Retrieved Metal on Metal (MOM) hip implants; periprosthetic tissue and blood samples were obtained from patients (n = 18) undergoing revision for unexplained pain at a mean of 2 years post operatively. The following variables were measured:

linear wear rate (depth of the femoral head and acetabular socket wear patch/time from operation);

the diagnosis and severity of ALVAL from histological sections of periprosthetic tissue (Wilhert grading system);

pre-revision whole blood cobalt, and chromium levels using Inductively Coupled Plasma Mass Spectrometry.

All implants and tissue samples were analysed against control samples from patients undergoing revision of MOM hips for fractured femoral neck or impingement.

Results: Linear wear rates of retrieved implants, and blood levels of cobalt and chromium from patients with unexplained plain were greater than from control patients. Histolopathological analysis of tissue showed dense inflammatory infiltrates with healthy looking endothelial cells in all vessels from both patient groups.

Discussion and Conclusion: A painful MOM hip was associated with high wear rates and blood metal levels. The local inflammatory response was similar to “ALVAL”, ie lymphocyte dominated, but not exclusive to those patients with unexplained pain. We question whether ALVAL represents a vasculitis, or merely a classical lymphocyte driven inflammatory tissue response to metal debris particles.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 110 - 110
1 Dec 2013
MacDonald D Kurtz S Kocagoz S Hanzlik J Underwood R Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Rimnac C
Full Access

Background:

Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Less is known about head-neck taper corrosion with ceramic femoral heads.

Questions/purposes:

We asked (1) whether ceramic heads resulted in less taper corrosion than CoCr heads; (2) what device and patient factors influence taper fretting corrosion; and (3) whether the mechanism of taper fretting corrosion in ceramic heads differs from that in CoCr heads.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 35 - 35
1 Jan 2016
Shon WY Yun HH Suh DH
Full Access

The PowerPoint (2007 Version; Microsoft, Redmond, Wash) method is reported to have improved repeatability and reproducibility and is better able to detect differences in radiographs than previously established manual wear measurement methods. In this study, the PowerPoint method and the Dorr and Wan method were used to calculate the polyethylene liner wear volume. The wear volumes of retrieved polyethylene liners calculated from the 3D laser scanning method were compared with each method. This study hypothesized that the wear volume calculated by the PowerPoint method would correlate well with the wear volume measured by 3D laser scanning method.

Between March 2004 and June 2009, 22 polyethylene liners from 20 patients were collected during revision Total hip arthroplasty(THA). Exclusion criteria included (1) missing an early primary postoperative radiograph or prerevision radiograph, (2) evidence of acetabular loosening or migration, (3) existence of significant mismatch between early primary postoperative radiograph and prerevision radiographs on vertical axis, and (4) liner wear-through. After applying these exclusion criteria, 17 retrieved polyethylene liners from 16 patients were included in this study. Wear volumes were calculated using the PowerPoint, the Dorr and Wan methods by 3 independent experienced observers who were unaware of the study design, and 3-dimensional (3D) laser scanning methods.

Spearman correlation coefficients for wear volume results indicated strong correlations between the PowerPoint and 3D laser scanning methods (range, 0.89–0.93). On the other hand, Spearman correlation analysis revealed only moderate correlations between the Dorr and Wan and 3D laser scanning methods (range, 0.67–0.77).

The PowerPoint method is an efficient tool for the sequential radiologic follow-up of patients after THA. The PowerPoint method can be used to monitor linear wear after THA and could serve as an alternative method when computerized methods are not available.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 187 - 188
1 Mar 2008
Stewart TD Flemming N Wroblewski M Fisher J
Full Access

The product recall of Desmarquest Zirconia heads in 2001 was associated with specified batches of material. Despite of this fact, concerns raised over the stability of Zirconia led to a vast decrease in the use of Zirconia for hip prostheses. While there is evidence in the literature suggesting that Zirconia may become unstable, there remain many prostheses with Zirconia heads in use today. The purpose of this study was to report the condition observed in retrieved Zirconia heads not included in the product recall.

The bearing surfaces of seven retrieved 22mm diameter Zirconia on UHMWPE hip prostheses were investigated to determine whether any degradation of the Zirconia occurred in-vivo. All seven of the Zirconia heads were manufactured by Saint-Gobain Cerammiques Avancees Desmarquest and implantation time varied from 1 to 10 years. Components were analysed by Talysurf, Interferometer, SEM and XRD and compared to new components.

Talysurf of the components revealed an average surface roughness ranging from 0.004 to 0.007 micrometers Ra. This was only slightly rougher than new ceramic components which generally have an Ra of 0.003 micrometers. SEM of the surfaces did not reveal any difference between the retrieved components and new components. Further surface XRD of 4 of the 7 heads, as shown in Figure 1, showed very small percentages of monoclinic phase (28 degrees 2 theta) with predominantly tetragonal phase (30 degrees 2theta), similar to what is observed in new components. Figure 1: XRD of typical retrieved ZR head surface.

All seven retrieved heads demonstrated no evidence suggesting that degradation of the Zirconia had occurred in-vivo.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 534 - 534
1 Oct 2010
Zustin J Amling M Breer S Hahn M Krause M Morlock M Rüther W Sauter G Von Domarus C
Full Access

Introduction: Periprosthetic fractures have long been recognized as one of the major complications after hip resurfacing arthroplasty. Both biomechanical factors and pathological changes of bone tissue might hypothetically influence its occurrence. We analyzed retrieved femoral remnants to identify possibly different fracture modes.

Material and Methods: 83 hips revised for periprosthetic fracture (134.5 days in situ±159.2) were analyzed macroscopically, contact radiographically and histologically. Most cases (80.7%) were treated for advanced stages of osteoarthritis. Hips with preoperative femoral head necrosis were not included. 49 (59.0%) patients were men (57.8 years old±8.5) and 34 (41.0%) women (55.1 years old±10.0; p=.3445). Occurrence of reactive changes and of avascular necrosis in addition to amount of osteonecrosis were used as the major histological criteria for classification of the fracture as acute biomechanical, acute postnecrotic or chronic.

Statistical analyses were performed using statistical software. Probability of Type I error was set to 5% (alpha=0.05).

Results: 37 (44.6%) femoral neck fractures (83.9 days±87.7) occurred earlier than the remaining 46 (55.4%) head fractures (174.1 days±89.7; p=.0129). 50(60.2%) remnants revealed complete osteonecrosis and were thus classified as acute postnecrotic fractures, 29 (34.9%) chronic fractures were characterized by finding of pseudoarthrosis or preformed callus and the remaining 4 (4.8%) were classified as acute mechanic. Acute mechanic fractures (17.5 days±8.0) failed earlier than both acute postnecrotic (146.3 days±181.7; p=.0049) and chronic (130.8 days±120.6; p=.0017) fractures.

Osteonecrosis was found in 81 (97.6%) hips revised after fracture (p< .0001). The vertical size of avascular necrosis in hips after acute postnecrotic fracture (21.1mm±8.5) was bigger (p< .0001) than in both chronic (7.3mm±7.3) and acute mechanic (0.9 mm±1.2) fractures.

Even though 33 (66.0%) of 50 patients with acute postnecrotic fracture were men (p=.0237), no significant differences between males and females were found with respect to age of patients (p=.3445) or duration of prosthesis implantation (p=.1232).

Conclusion: We analyzed hips revised for periprosthetic fracture after the resurfacing arthroplasty. Three distinct fracture modes of this complication could have been identified morphologically. Osteonecrosis secondary to the hip resurfacing arthroplasty appeared to be causative for more than a half of all fractures in present cohort. Mechanical and biomechanical factors related to the procedure might have possibly influenced the occurrence of both postnecrotic fractures and cases with vital reactive changes of tissues neighbouring the fracture line.

The proposed classification may help to understand causes of periprosthetic fractures after hip resurfacing arthroplasty.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 425 - 425
1 Apr 2004
Harman M DesJardins J Banks S Benson L LaBerge M Hodge W
Full Access

Validation of input parameters and the resulting polyethylene damage is essential for knee joint wear simulators to be useful in prospective evaluations. The purpose of this study was to compare damage patterns on polyethylene inserts wear tested on a knee simulator with inserts retrieved after well-functioning total knee arthroplasty (TKA).

Five polyethylene tibial inserts from a PCL-retaining knee prosthesis (Natural Knee) were wear tested on an Instron/Stanmore simulator in 50% bovine serum. The input consisted of ISO 14243 force-controlled testing standard to simulate human gait for 5 million cycles. Nine polyethylene tibial inserts (Natural Knee) were retrieved from patients after 52+45 months (13-124) of successful function. The inserts were retrieved post-mortem (n=7) and for pain (n=2). Articular damage was assessed and the circumference of each damage region digitized. The damage size, location and linear surface deformation were measured and the deformation rate (mm/106 cycles or mm/year) was calculated.

The linear deformation rate for all inserts decreased considerably with time. Lateral damage was located significantly more posterior than the medial damage on both the simulated and retrieved inserts, corresponding to femoral external rotation. Retrieved inserts had larger lateral damage, whereas simulator inserts had larger medial damage. The AP extent of damage on the retrieved inserts was significantly greater than the extent on the simulator inserts. Three retrieved inserts had substantial delamination, whereas none of the simulator inserts had delamination.

There was good agreement in the deformation rates for the simulator and retrieved inserts. However, retrieved inserts with delamination show an increased deformation rate and this type of damage did not occur on simulator inserts. The greater AP extent of damage and larger lateral damage on the retrieved inserts suggest that in vitro wear simulation should perhaps include a more complete range of patient activity dynamics to better predict in vivo damage.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 409 - 409
1 Dec 2013
Mann K Miller M
Full Access

INTRODUCTION:

Clinical densitometry studies indicate that following TKR implantation there is loss of bone mineral density in regions around the implant. Bone density below the tibial tray has been reported to decrease 36% at eight years after TKR. This bone loss (∼5%/year) is substantially greater than osteoporosis patients in the same age group (∼1–2%/year) and could contribute the loss of mechanical support provided by the peri-implant leading to loosening of components in the long term. High patient mass and body mass index have also been implicated in increased loosening rates, and was thought to be due to high stress or strain on the tibial constructs. These findings suggest that peri-implant bone strain may be affected by time in service and patient factors such as body mass.

The goal of this project was to assess the proximal tibial bone strain with biomechanical loading using en bloc retrieved TKR tibial components. Note that the implants were not obtained from revision surgery for a loose implant, but rather after death; thus the implants can be considered to be successful for the lifetime of the patient. We asked two research questions, guided by the clinical and laboratory observations: (1) are the peri-implant bone strain magnitudes for cemented tibial components greater for implants with more time in service and from older donors?, (2) is tibial bone strain greater for constructs from donors with high body weight and lower peri-implant BMD?

METHODS:

Twenty-one human knees with cemented total knee replacements were obtained from the SUNY Upstate Medical University Anatomical Gift Program. Clinical bone density scans were obtained of the proximal tibia in the anterior-posterior direction. Axial loads (1 body weight, 60/40% medial to lateral) were applied to the tibia through the contact patches identified on the polyethylene inserts. Strain measures were made using a non-contacting 3-D digital image correlation (DIC) system. Strain was measured over six regions of the bone surface (anterior (A), posterior (P), medial (M), lateral (L), postero-medial (PM), postero-lateral (PL)) (Figure 1).


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 2 | Pages 228 - 232
1 Mar 1992
Argenson J O'Connor J

We recovered 23 meniscal bearings from 18 failed bicompartmental Oxford knee prostheses. They had been implanted for one to nine years. The minimum thickness of the retrieved bearings was measured and compared with the thickness of 25 unused bearings. The mean penetration rate, calculated by two methods, was either 0.043 or 0.026 mm per annum. This compares with 0.19 mm per annum reported for the Charnley hip. The use of a fully congruous meniscal bearing prosthesis can reduce wear in knee arthroplasty to a very low rate.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 550 - 550
1 Nov 2011
Glyn-Jones S Roques A Esposito C Walter W Tuke M Murray D
Full Access

Introduction: Metal on metal hip resurfacing arthroplasty-induced pseudotumours are a serious complication, which occur in 1.8% of patients who undergo this procedure in our institution. The aim of this study was to measure the 3D in vivo wear on the surface of resurfacing components revised for pseudotumour, compared to a control group.

Method: Thirty-six hip resurfacing implants were divided into two groups; 18 patients with a clinical and histopathological diagnosis of pseudotumour and 18 controls (revised for femoral neck fracture and infection). Three dimensional contactless metrology (Redlux Ltd) was used to scan the surface of the femoral and acetabular components, to a resolution of 20 nanometers. The location, depth and area of the wear scar were determined for each component. A separate blinded analysis to determine the presence of absence of impingement was performed by one of the authors.

Results: The volumetric wear rate for femoral component of the pseudotumour group was 3.29 mm3/yr (SD5.7) and 0.79 mm3/yr (SD1.2) for the control group (p=0.005). In the pseudotumour group, the volumetric wear rate of the acetabular component was 2.5 mm3/yr (SD6.9) compared to 0.36 mm3/yr (SD0.80) for the control group (p=0.008). Edge-wear was detected in 89% of acetabular components in the pseudotumour group and 21% of those in the control group (p=0.01). Anterior or posterior edge-wear, consistent with impingement was present on the femoral components of 73% of patients in the pseudotumour group and 22% in the control group (p=0.01).

Discussion: This work demonstrates that implants revised for pseudotumour have significantly higher volumetric wear rates than controls. They also have a significantly higher incidence of edge-wear than controls. We suggest that a significant proportion of pseudotumours are associated with high concentrations of metal wear debris; however a minority may result from a hypersensitivity reaction to metal ions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 21 - 21
1 Jun 2023
Wade A Devane Y Nowlan N Donnelly T Green C
Full Access

Introduction. There is no doubt that the future of limb lengthening lies with internal lengthening. Complication rates are reduced and patient satisfaction is increased. The evolution of internal lengthening peaked with the dual direction, easily inserted and externally controlled PRECICE Nail. It has excelled in performance in accuracy and satisfaction. Its versatility increased with smaller sizes and increased excursion. A field safety notice was issued was issued in October 2021 by the parent company NuVasive. The advice was monitoring of current cases and a hold on implantation until after a review of process. At the National Orthopaedic Hospital Cappagh we elected to remove all implanted nails and assess the nail integrity and physiological changes associated with implantation. Materials & Methods. All patients in who a retained Precice nail at the time of the field safety notice were identified. Patients and families were contacted to explain the issued safety notice from the company and explain that we would be scheduling them for nail removal. This was part of our standard care but we prioritised this group on our waiting list. Consent was obtained for nail removal but also for histological assessment of canal scrapings, blood ion level analysis and independent assessment of the retrieved nail by our academic collaborators at University College Dublin. Ion levels were then repeated at an interval post removal with consent. Results. We identified 7 Precice nails in 5 patients still implanted. All patients had consolidated after lengthening and were ready for nail removal. Elevated Titanium blood ion levels were identified at the time of retrieval. Histological abnormalities consistent with metalosis were identified. In all cases the nail was grossly intact and examination of the motor showed no evidence of wear or failure. Follow up ion levels obtained post retrieval showed persistent elevation. Conclusions. Our retrieval audit shows persistent elevation of Titanium ion levels and abnormal histology despite apparent nail integrity. These findings require further evaluation in a larger retrieval series to determine if there is a high incidence of this phenomenon and if ion levels have a clinical effect


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims. The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. Methods. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions. Results. All nails were removed at the end of treatment, having achieved their intended lengthening (20 mm to 65 mm) and after regenerate consolidation. All nails had evidence of corrosion localized to the screw holes and the extendable junctions; corrosion was graded as moderate at the junction of one nail and severe at the junctions of five nails. EDS analysis showed surface deposits to be chromium rich. Plain radiographs showed cortical thickening and osteolysis around the junction of six nails, corresponding to the same nails with moderate – severe junction corrosion. Conclusion. We found, in fully united bones, evidence of cortical thickening and osteolysis that appeared to be associated with corrosion at the extendable junction; when corrosion was present, cortical thickening was adjacent to this junction. Further work, with greater numbers of retrievals, is required to fully understand this association between corrosion and bony changes, and the influencing surgeon, implant, and patient factors involved. Cite this article: Bone Jt Open 2021;2(8):599–610


Introduction. In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:. manufacturing-variables on as-manufactured UHMWPE;. in vivo time on these initial properties;. identifying important factors in selecting UHMWPE for the hip or knee. Methods. After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals. All retrievals were analyzed for oxidation and trans-vinylene index (TVI) using a Thermo-Scientific iN10 FTIR microscope. Mechanical properties were evaluated for 35 tibial inserts by uniaxial tensile testing using an INSTRON load frame. Cross-link density (n=289) was measured using a previously published gravimetric gel swell technique. Oxidation was reported as maximum ketone oxidation index (KOI) measured for each bearing. TVI was reported as the average of all scans for each material. Cross-link density and mechanical properties were evaluated as a function of both TVI and oxidation. Results. Minimal increase in oxidation was seen in these AO-retrievals, out to almost 7 years in vivo. In contrast, HXL-retrievals showed increasing KOI with time in vivo (annealed-HXL = 0.127/year, remelted-HXL = 0.036/year, p<0.001). HXL oxidation rate was higher in knees (0.091/year) than in hips (0.048/year), p<0.001. Cross-link density (XLD) correlated positively with TVI for both HXL (Pearson's correlation=0.591, p<0.001) and AO (Pearson's correlation=0.598, p<0.001) retrievals. AO-materials had higher TVI for the same or similar XLD than did HXL polyethylene. XLD correlated negatively with KOI for HXL retrievals (Pearson's correlation=−0.447, p<0.001). Mechanical properties varied by material across all materials evaluated, with tensile toughness correlating negatively with increasing TVI (Pearson Correlation=−0.795, p<0.001). Discussion. Irradiation cross-linking has been used effectively to improve wear resistance. Residual free radicals from irradiation are the target of AO-polyethylene, to prevent loss of UHMWPE XLD, resulting from in vivo oxidation of free radicals as seen in HXL retrievals, and toughness, resulting from oxidation or initial remelting. Despite different manufacturing variables, AO-polyethylene retrievals in this cohort had minimal oxidation and no change in XLD or toughness due to oxidation. However, toughness did vary with irradiation dose as did cross-link density. To achieve the same level of cross-linking as HXL-polyethylene required a higher irradiation dose in blended AO-polyethylene. AO-polyethylenes evaluated in this study had toughness that decreased with irradiation dose, but avoided loss of toughness due to remelting. Because AO-polyethylenes did not oxidize, they did not show the decrease of cross-link density, and potential loss of wear resistance, seen in HXL-polyethylene. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1695 - 1701
1 Nov 2021
Currier JH Currier BH Abdel MP Berry DJ Titus AJ Van Citters DW

Aims. Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. Methods. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate. Results. Five patient-specific variables and seven implant-specific variables were evaluated for significant association with lower insert wear rate. Six were significant when controlling for other factors: greater patient age, female sex, shorter duration in vivo, polished tray, highly cross-linked PE (HXLPE), and constrained knee design. Conclusion. This study confirmed that knee wear rate increased with duration in vivo. Older patients and females had significantly lower wear rates. Polished modular tibial tray surfaces, HXLPE, and constrained TKA designs were device design factors associated with significantly reduced wear rate. Cite this article: Bone Joint J 2021;103-B(11):1695–1701


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 38 - 43
1 Mar 2024
Buckner BC Urban ND Cahoy KM Lyden ER Deans CF Garvin KL

Aims. Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. Methods. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up. Results. Average HHS improved from 50.8 to 91.9 and 51.0 to 89.8 in the OxZi group and control group, respectively (p = 0.644), with no osteolysis in either group. Linear and volumetric wear rates in the OxZi group averaged 0.03 mm/year and 3.46 mm. 3. /year, respectively. There was no statistically significant difference in HHS scores, nor in linear or volumetric wear rate between the groups, and no revision for any indication. Conclusion. The radiological and clinical outcomes, and survivorship of THA with OxZi femoral heads and HXLPE liners, were excellent, and comparable to CoCr or ceramic heads at minimum ten-year follow-up. Wear rates are below what would be expected for development of osteolysis. OxZi-HXLPE is a durable bearing couple with excellent long-term outcomes. Cite this article: Bone Joint J 2024;106-B(3 Supple A):38–43


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims. The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). Methods. At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays. Results. A total of 114 explanted fixed-bearing TKAs were examined. This included 76 used with contemporary PE inserts which were compared with 15 used with older generation PEs. The Attune and NexGen (central locking) trays were found to have significantly less cement cover than Triathlon and PFC trays (peripheral locking group) (p = 0.001). The median planicity values of the PE inserts used with central locking trays were significantly greater than of those with peripheral locking inserts (205 vs 85 microns; p < 0.001). Attune and NexGen inserts had a characteristic pattern of backside deformation, with the outer edges of the PE deviating inferiorly, leaving the PE margins as the primary areas of articulation. Conclusion. Explanted TKAs with central locking mechanisms were significantly more likely to debond from the cement mantle. The PE inserts of these designs showed characteristic patterns of deformation, which appeared to relate to the manufacturing process and may be exacerbated in vivo. This pattern of deformation was associated with PE wear occurring at the outer edges of the articulation, potentially increasing the frictional torque generated at this interface. Cite this article: Bone Joint J 2021;103-B(12):1791–1801


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 68 - 68
1 Apr 2019
Van Citters D Currier B
Full Access

Introduction. While advances in joint-replacement technology have made total ankle arthroplasty a viable treatment for end-stage arthritis, revision rates for ankle replacements are higher than in hip or knee replacements [1]. The questions asked in this study were (1) what retrieved ankle devices demonstrate about ankle arthroplasty failures, and (2) how do these failures compare to those seen in the hip and the knee?. Materials and Methods. An IRB-approved retrieval laboratory received retrieved polyethylene inserts and surgeon-supplied reason for revision from 70 total-ankles (7 designs, including five currently-marketed designs) from 2002 to the present. All retrievals were rated for clinical damage. Polyethylene inserts received six months or less after retrieval (n=45) were analyzed for oxidation using Fourier Transform Infrared (FTIR) spectroscopy, reported as maximum ketone oxidation index [2]. Insert sterilization method was verified using trans-vinylene index [3]. Oxidation measured in the 45 ankle inserts versus their time in vivo was compared to oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]. Statistical analysis was performed using IBM SPSS v.22. Results. The ankle devices were retrieved most commonly for loosening (n=22) followed by polyethylene fracture (n=9). These failure modes occurred after statistically different in vivo time (loosening: mean=4.4±3.6 years; polyethylene insert fracture: mean=9.5±4.1 years; p=0.002). Presence of clinical fatigue (cracking and/or delamination) was identified in 24 of the 70 retrieved inserts, and its presence correlated with in vivo time (Spearman's rho =0.449, p<0.001). Thirteen of these fatigued inserts were analyzed by FTIR. TVI analysis confirmed the sterilization method of the fatigued inserts: 12 gamma, 1 non-gamma sterilized. All 13 fatigued inserts had maximum ketone oxidation index (KOI) of 1.2 or higher. Presence of fatigue correlated with measured oxidation (Spearman's rho =0.685, p<0.001). Six of the 9 inserts that fractured in vivo were analyzed by FTIR. All were gamma-sterilized, and all had oxidation of 1.2 or higher. Oxidation rate determined for most of the 45 ankle inserts was at or above oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]. Discussion. This retrieval study concurs with the ankle arthroplasty literature that loosening is the most common reason for ankle revision [4]. Ankle inserts retrieved as a result of implant loosening had lower oxidation and no fatigue damage resulting from their shorter in vivo time. Fatigued and/or fractured inserts were in vivo for longer times, allowing more oxidation to occur. The effect of oxidation on polyethylene tensile strength and ductility has been reported for tibial inserts [5]. Oxidation above the critical value [5] has a dramatic effect on the ability of the polyethylene to resist fatigue damage and fracture, since the toughness of the polyethylene drops to near zero. All fatigued and fractured ankle inserts had oxidation that exceeded this critical oxidation. Most ankle inserts, whether gamma or non-gamma sterilized, oxidized at or above the oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1168 - 1172
1 Jun 2021
Iliadis AD Wright J Stoddart MT Goodier WD Calder P

Aims. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. Methods. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. Results. At the time of reporting, eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localized pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal metallic wear debris. Conclusion. From our early experience with this implant we have found the process of lengthening to be accurate and reliable with good regenerate formation and consolidation. Proposed advantages of early load bearing and the ability for bilateral lengthening are promising. We have, however, encountered concerning clinical and radiological findings in several patients. We have elected to discontinue its use to allow further investigation into the retrieved implants and patient outcomes from users internationally. Cite this article: Bone Joint J 2021;103-B(6):1168–1172


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced TKA design. Cite this article: A. Cerquiglini, J. Henckel, H. Hothi, P. Allen, J. Lewis, A. Eskelinen, J. Skinner, M. T. Hirschmann, A. J. Hart. Analysis of the Attune tibial tray backside: A comparative retrieval study. Bone Joint Res 2019;8:136–145. DOI: 10.1302/2046-3758.83.BJJ-2018-0102.R2


The purpose of this study was to investigate the effectiveness of casting in achieving acceptable radiological parameters for unstable ankle injuries. This retrospective observational cohort study was conducted involving the retrieval of X-rays of all ankles taken over a 2 year period in an urban setting to investigate the radiological outcomes of cast management for unstable ankle fractures using four acceptable parameters measured on a single X- ray at union. The Picture Archiving and Communication System (PACS) was used, the X-rays were measured by a single observer. From the 1st of January 2020 to the 31st of December 2021, a total of 1043 ankle fractures were treated at the three hospitals with a male to female ratio of 1:1.7. Of the 628 unstable ankle injuries, 19% of patients were lost to follow up. 190 were managed conservatively with casts, requiring an average of 4 manipulations, with a malunion rate of 23.2%. Unstable ankle injuries that were treated surgically from the outset and those who failed conservative management and subsequently converted to surgery had a malunion rate of 8.1% and 11.0% respectively. Unstable ankle fractures pose a challenge with a high rate of radiological malunion, regardless of the treatment Casting surgery from the outset or converted to surgery, with rates of 23% and 8% and 11% respectively. In this multivariate analysis we found that conservative management was the only factor influencing the incidence of malunion, age, sex and type of fracture did not have a scientific significant influence


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 63 - 63
1 Feb 2020
Darwish O Langhorn J Van Citters D Metcalfe A
Full Access

Introduction. Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the trochlear groove in total knee components, and clinical validation is sought to ensure that these simulations are appropriate. The objective of this work was to subject several patellar designs to patient-derived deep knee bend (DKB) inputs on a 6 degree of freedom (DOF) simulator and compare the resultant wear scars to clinical retrievals. Materials and Methods. Previously reported DKB profiles were developed based on in vivo patellofemoral data and include a wide range of patient variability. The profiles chosen for this body of work were based on the stress in the patellar lateral facet; maximizing this stress whilst maintaining the ability to run the profile stably on the simulator. Load/kinematic profiles were run on three patellar designs (n=3 per group) for 220,000 cycles at 0.8Hz on an AMTI VIVO joint simulator. A comparison cohort of clinically retrieved devices of the same design was identified in an IRB-approved database. Exclusion criteria included gross delamination, cracking secondary to oxidation, and surgeon-reported evidence of malalignment leading to mal-tracking. 29 Patellae were included for analysis: PFC. ®. All Poly (n=14), ATTUNE. ®. Anatomic (n=6), and ATTUNE. ®. Medialized Dome (n=9). Mean in vivo duration was 70.1 months. Patellae were analyzed under optical microscope in large-depth-of-field mode to map the surface damage profile. Burnishing ‘heat-maps’ were generated for retrievals and simulated patellae by normalizing the patellar size and overlaying silhouettes from each component of the same type using a custom-developed MatLAB code. Results. Burnishing heat-map comparisons between retrievals and simulator specimens for each of the three designs were compared. Retrievals show more variation than simulator devices, however the general loci and relative area of burnished regions is closely aligned for each of the three designs. The retrieved and simulated burnishing scar heat-maps on all-poly PFC. ®. patellae are centered medio-laterally with a wider profile on the lateral aspect. The burnishing marks are continuous. A similar observation may be made of the ATTUNE. ®. medialized dome, retrievals and simulator specimens, though the contact areas appear to be more concentrated away from the apex. The anatomic patellae show two primary regions of contact, and minimal burnishing at the apex. The simulator specimens likewise show two principal regions of contact. Discussion. Wear scar analysis shows that joint simulation on AMTI VIVO yields clinically relevant wear patterns across a variety of device types. Clinically relevant damage provides insight that load and motion inputs to the simulator deliver results that may be used to interpret in vivo performance or analyze future designs and/or materials. This qualitative surface contact analysis will help to inform future quantitative mass loss and fatigue failure studies. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 19 - 19
7 Aug 2023
Langton D Bhalekar R Wells S Nargol M Waller S Wildberg L Tilley S Nargol A
Full Access

Abstract. Introduction. At our national explant retrieval unit, we identified an unusual pattern of backside-deformation on polyethylene (PE) inserts of contemporary total-knee-replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with central-locking trays. We reported that this backside-deformation appeared to be linked to tray debonding. Moreover, recent studies have shown high-rate of tray debonding in PS NexGen TKRs. Therefore, we hypothesised that backside deformation on PS inserts may be more than on CR inserts. Methodology. We used peer-reviewed techniques to analyse changes in the bearing (wear rate) and backside surfaces (deformation) of PE inserts using coordinate measuring machines [N=61 NexGen (CR-39 and PS-22) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside-deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software. Results. There was no statistically significant difference (p=0.238) in median (IQR) wear rate of the CR PEs 18 (12–28) mm. 3. /year and PS PEs 14 (8–20) mm. 3. /year. The PE backside-deformation median (IQR) of PS [297(242–333) µm] was significantly higher (p=0.011), when compared with CR [241(161–259) µm]. Multiple regression modelling showed that duration in-vivo (p=0.037), central-clearance between insert and tray (p<0.001) and constraint (p=0.003) were significantly associated with PE backside-deformation. 27(69%) of CR and 20(91%) PS exhibited ≤10% of cement cover on tray. Conclusion. This explant study showed backside-deformation on PS inserts was more than on CR inserts. Therefore, indicating a high-rate of tibial tray debonding in PS compared to CR NexGen TKRs