Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SHORT-TERM FOLLOW-UP RETRIEVAL STUDY ON IRRADIATED AND VITAMIN E-DIFFUSED UHMWPE BEARINGS

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary

Fifteen irradiated, vitamin E-diffused UHMWPE retrievals with up to three years in vivo service showed no appreciable oxidation, nor change in material properties from a never-implanted liner, and showed a 94% decrease in free radical content.

Introduction

Radiation cross-linking, used to improve wear resistance of ultra-high molecular weight polyethylene (UHMWPE) bearings used in total joint arthroplasty, generates residual free radicals which are the precursors to oxidative embrittlement. First generation materials adopted thermal treatments to eliminate or reduce free radical content, but came with compromises in reduced mechanical properties or insufficient stabilization. A second generation alternative method infuses an antioxidant, vitamin E, into irradiated UHMWPE to stabilise free radicals while maintaining fatigue strength. In vitro studies predict excellent oxidation and wear resistance in vitamin E-stabilised bearings, but the long-term in vivo oxidation behavior, influenced by lipid absorption and cyclic loading, remains largely unknown. Our aim was to investigate in vivo changes in UHMWPE surgically-retrieved explants that were radiation cross-linked and stabilised by vitamin E.

Patients & Methods

Fifteen surgically-retrieved irradiated, vitamin E-diffused and inert-gamma sterilised bearings (E1™, Biomet, Inc., Warsaw IN) with in vivo durations ranging from 3 days to 36.6 months were analyzed at unloaded rim/eminence and the articular surface along with one never-implanted component. Total lifetime of components was summed as shelf storage prior to implantation, in vivo duration and ex vivo duration in air. Fourier Transform Infrared Spectroscopy (FTIR) was used to measure carbonyl index (CI; per ASTM F2102-01ε1) both before and after 16 hour hexane extraction to. Extracted thin films were also reacted with nitric oxide to quantify hydroperoxides, an intermediate oxidation product associated with oxidation potential. Cross-link density was calculated from gravimetric swelling analysis per ASTM F2214. Crystallinity measurements were performed regionally using differential scanning calorimetry (DSC). Free radical content was measured by electron spin resonance (Memphis, TN).

Results

Irradiated and vitamin E-diffused retrievals showed scratching at the articular surface, but retained machining marks up to three years in vivo, indicative of no measurable wear. Retrievals showed no significant oxidation at the time of surgical removal with maximum post-hexane carbonyl indices in the barely detectable range (MCI=0.029–0.154), located at the surface of retrievals. Ex vivo oxidation was not observed after 18 months of aging in air at room temperature. There was no increase in hydroperoxides (never-implanted HI=0.62±0.04; retrieval HI= 0.62±0.04), nor change in cross-link density (never-implanted: 0.275±0.015 mol/dm3; retrieval: 0.295±0.016 mol/dm3) or crystallinity (never-implanted: 58.3±1.4%; retrievals: 60.0±3.5%). Lipid penetration increased with time, showing a higher rate of diffusion in loaded regions. Free radical content was observed to decay with increasing in vivo duration (R2=0.44; p<0.05), and by one order of magnitude (94%) by 36.6 months. A stronger negative correlation (R2=0.65) was observed between the total lifetime of the liner and free radical content.

Discussion/Conclusion

The free-radical scavenging activity of the vitamin E appears to successfully prevent both in vivo and ex vivo oxidation for short durations. Without an increase in hydroperoxides, the oxidation cascade initiated by radiation-induced and lipid-derived free radicals appears to have been halted. Retrievals also gave no indication of wear in this timeframe, similar to improved wear resistance seen in first generation materials. Continued monitoring will be necessary at longer implant durations.