Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

RETRIEVAL ANALYSIS OF DUAL MOBILITY POLYETHYLENE LINERS FOR TOTAL HIP ARTHROPLASTY

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 1 of 3.



Abstract

Dual mobility (DM) total hip replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. Although DM THRs have shown good overall survivorship and low dislocation rates, the mechanisms which describe how these bearings function in-vivo are not fully understood. Therefore, the study aim was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment methods.

Retrieved DM liners (n=18) were visually inspected for the presence of surface damage, whereby the internal and external surfaces were independently assigned a score of one (present) or zero (not present) for seven damage modes. The severity of damage was not assessed. The material composition of embedded debris was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation [1].

Scratching and pitting were the most common damage modes on either surface. Additionally, burnishing was observed on 50% of the internal surfaces and embedded debris was identified on 67% of the external surfaces. EDX analysis of the debris identified several materials including titanium, cobalt-chrome, iron, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners.

The incidence of burnishing was three times greater for the internal surfaces, suggesting that this acts as the primary articulation site. The external surfaces sustained more observable damage as evidenced by a higher incidence of embedded debris, abrasion, delamination, and deformation. In conjunction with the highly variable damage patterns observed, these results suggest that DM kinematics are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted.


*Email: