header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A RETRIEVAL ANALYSIS OF POLYETHYLENE DAMAGE IN TOTAL SHOULDER REPLACEMENTS



Abstract

It is estimated that there will be over 12,000 total shoulder replacements implanted this year. In the best series, the survivorships of these devices are 90% at 7 years. However, there are radiographic indications that the long term success will be limited to wear and damage to the polyethylene glenoid components. Like tibial insert in total knee replacements, the glenoid is subjected to both rolling sliding motions of a metal counterface. Additionally, the compressive loads on the glenoid have been estimated to be as high as 2800N under ‘normal’ conditions. In contrast to tibial inserts, glenoid components are all typically less than 6 mm thick. In metal backed glenoid devices, the polyethylene thickness is often < 3 mm. The effect of these parameters and kinematics on polyethylene damage has not previously described. Although total shoulder replacements have been in use for over 25 years, there have been no reports describing the nature and extent of glenoid polyethylene wear and damage.

We report the determination of polyethylene damage type and severity of 38 retrieved glenoid components of at least 4 different designs. Wear and damage were considered significant when either 80% of the glenoid surface was damaged or if over 25% of the component was worn away. Abrasion, burnishing and pitting were the main modes of damage. There were 2 fractured components. There was significant UHMWPE wear and damage in 17 (45%) components. In nine of these, the component was completely worn through.. These findings are consistent with high stress, high wear conditions and thin polyethylene components.

These results indicate polyethylene wear and damage is expected to be a key factor in limiting the survivor-ship total shoulder replacements and that polyethylene damage and wear in total shoulder replacements may be higher than that found for either total hip or knee replacements.

The abstracts were prepared by Nico Verdonschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.