header advert
Results 51 - 100 of 120
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 90 - 90
1 Dec 2013
Brockett C Abdelgaied A Hardaker C Fisher J Jennings L
Full Access

Introduction

Wear debris induced osteolysis and loosening continue to be causes of clinical failure in total knee replacement (TKR). Laboratory simulation aims to predict the wear of TKR bearings under specific loading and motion conditions. However, the conditions applied may have significant influence on the study outcomes (1)

The aim of this study was to examine the influence of femoral setup and kinematic inputs on the wear of a conventional polyethylene fixed bearing TKR through experimental and computational models.

Methods

Six right Sigma CR fixed bearing TKRs (DePuy Synthes, Leeds, UK) with curved polyethylene inserts (GVF, GUR1020 UHMWPE) were tested in Prosim knee simulator (Simulator Solutions, UK). The femoral bearing was set up with the centre of rotation (CoR) on either on the distal radius of the implant (Distal CoR), as indicated by the device design, or according to the ISO specification (ISO CoR; ISO14243-3). The tests were conducted under ‘High Kinematics’ (2). It was necessary to reverse the direction of the anterior-posterior displacement for the tests conducted with the ISO centre of rotation to maintain the contact region within the insert surface (Reverse High Kinematics). Tests were conducted for three million cycles, lubricated with 25% bovine serum, with wear assessed gravimetrically.

The computational wear model for the TKR was based on the contact area and an independent experimentally determined non-dimensional wear coefficient, previously validated against the experimental data (3).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 249 - 249
1 Mar 2013
Maiti R Fisher J Jin Z Rowley L Jennings L
Full Access

Introduction

Patella femoral joint bearings in total knee replacements have shown low wear (3.1 mm3/MC) under standard gait simulator conditions1. However, the wear in retrieval studies have shown large variations between 1.3 to 45.2 mm3/year2. Previous in vitro studies on the tibial femoral joint have shown wear is dependent on design, materials and kinematics3.

The aim of this study was to investigate the influence of the design (geometry) and shape on the wear rate of patella femoral joints in total knee replacements.

Materials and Methods

The Leeds/Prosim knee simulator was used to investigate the wear of two types of commercially available patellae. The PFC Sigma cobalt chrome femoral component was coupled with 2 types of patellae buttons: round and oval dome. The UHMWPE was the same for the both types – GUR1020 GVF (gamma irradiated in vacuum and foiled packed). 25% bovine serum was used as the lubricant. The test were carried out at three conditions – high medial lateral (ML) rotations (<4°) and uncontrolled ML displacement (<4 mm), low ML rotation (<1°) and uncontrolled ML displacement (<4 mm); the physiological gait cycle; and low ML rotation and controlled ML displacement (<1.5 mm). In this abstract the two designs were tested in physiological gait condition (Figure 1). Patella ML displacement and tilt were passively controlled and measured after every 300,000 cycles. A ligament resisting force equivalent to 10 N4 was applied on the lateral side of the patella to avoid patella slip.

Five samples of each design were tested for 3 million cycles at a cycle rate of 1 Hz. The wear volume was obtained gravimetrically every million cycles and presented with 95% confidence limits. Statistical significance was taken at p<0.05.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 139 - 139
1 Mar 2013
Brockett C Hardaker C Fisher J Jennings L
Full Access

Introduction

Wear of polyethylene continues to be a significant factor in the longevity of total knee replacement (TKR). Moderately cross-linked polyethylene has been employed to reduce the wear of knee prostheses, and more recently anti-oxidants have been introduced to improve the long-term stability of the polyethylene material. This is the initial study of the wear of a new anti-oxidant polyethylene and a new TKR design, which has modified femoral condylar geometry.

Materials and Methods

The wear of a new TKR the Attune knee was investigated using a physiological six station Prosim knee wear simulator (Simulator Solutions, UK). Six mid-size Attune fixed bearing cruciate retaining TKRs (DePuy Inc, Warsaw, USA) were tested for a period of 6 million cycles. The inserts were manufactured from AOX™, a compression moulded GUR1020 polyethylene incorporating Covernox™ solid anti-oxidant. The AOX polymer was irradiated to 8M Rad, to give a moderately cross-linked material.

High and intermediate kinematics, under anterior-posterior displacement control were used for this study (McEwen et al 2005). The maximum femoral axial loading was 2600N, with flexion-extension of 0 to 58°, an anterior-posterior displacement of 0–10 mm for high kinematics and 0–5 mm for intermediate, and an internal-external rotation of ±5°. The lubricant was 25% (v/v) calf serum supplemented with 0.03% (v/v) sodium azide solution in deionised water, as an antibacterial agent, and was changed approximately every 0.33 Mc. Wear was assessed gravimetrically and moisture uptake was assessed using unloaded soak controls. Volumetric wear was calculated using a density of 0.94 mg/mm3, and compared with a previous study examining the Sigma XLK TKR design which uses moderately crosslinked polyethylene which is in current clinical use (Brockett et al 2012).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 200 - 200
1 Sep 2012
Williams S Isaac G Fisher J
Full Access

INTRODUCTION

Ceramic-on-metal hip replacements (COM, where the head is a Biolox Delta ceramic and liner is Co Cr alloy), have demonstrated reduced wear under standard conditions in vitro compared to metal-on-metal (MOM) [1]. Early clinical results are also encouraging [2]. Recently concerns have been raised regarding the poor clinical performance of MOM hip resurfacings [3], particularly when cups are steeply inclined. Laboratory hip simulator testing has been used to replicate edge loading, also demonstrating elevated wear [4]. Therefore, a range of conditions to replicate sub-optimal use clinically to better predict in vivo performance should be used. The aim of this study was to compare the wear rates of MOM and COM under adverse edge loading conditions in an in vitro hip simulator test.

METHODS

Ceramic-on-metal (n=3) and metal-on-metal (n=3) 36mm hip prostheses (supplied by DePuy International Ltd, UK) were tested in the Leeds Physiological Anatomical Hip Joint Simulator. Liners were mounted to provide a clinical angle of 45o, and stems positioned anatomically. A simplified gait cycle and microseparation was applied as previously described [5] for two million cycles in 25% new born calf serum. Gravimetric analysis was completed every million cycles and wear volumes calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 22 - 22
1 Sep 2012
Brockett C John G Williams S Isaac G Fisher J
Full Access

Introduction

Concerns regarding UHMWPE wear particle induced osteolysis in total hip replacement (THR, [1]) have led to alternative materials to be sought. Carbon-fibre reinforced poly-ether-ether-ketone (CFR-PEEK) has shown reduced wear in hip and knee configurations compared with conventional polyethylene [2-4]. The aim of this study was to investigate the wear performance of a ceramic-on-CFR PEEK THR through a simulator study.

Methodology

Five 36mm diameter Biolox Delta heads were paired with extruded CFR-PEEK cups and tested in a hip wear simulator (Simulator Solutions, UK) for 10 million cycles (Mc). Tests were performed in a Prosim hip simulator, which applied a twin peak loading cycle, with a peak load of 3kN. Flexion-extension of −15 to +30 degrees was applied to the head and internal-external rotation of +/− 10 degrees was applied to the cup, components were mounted anatomically. The lubricant was 25% (v/v) calf serum supplemented with 0.03% (w/v) sodium azide. Wear was assessed gravimetrically at several intervals adjusted for moisture uptake using loaded and unloaded soak controls.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 1 - 1
1 Sep 2012
Al-Hajjar M Fisher J Tipper J Williams S Jennings L
Full Access

INTRODUCTION

Ceramic-on-ceramic hip replacements have generated great interest in recent years due to substantial improvements in manufacturing techniques and material properties1. Microseparation conditions that could occur due to several clinical factors such as head offset deficiency, medialised cup combined with laxity of soft tissue resulting in a translation malalignment, have been shown to cause edge loading, replicate clinically relevant wear mechanisms2,3 and increase the wear of ceramic-on-ceramic bearings3,4. The aim of this study was to investigate the influence of increasing the femoral head size on the wear of ceramic-on-ceramic bearings under several clinically relevant simulator conditions.

MATERIALS AND METHODS

The wear of size 28mm and 36mm ceramic-on-ceramic bearings (BIOLOX® Delta, CeramTec, Germany) was determined under different in vitro conditions using the Leeds II hip simulator. For each size bearing, two clinical cup inclination angles were considered, 55° (n=3) and 65° (n=3) for the 28mm bearing and 45° (n=3) and 65° (n=3) for the 36mm bearing. The first two (28mm study) or three (36mm study) million cycles ran under standard gait conditions and a subsequent three million cycles ran under microseparation conditions. A standard gait cycle included a twin peak load (300N–3000N), extension/flexion (−15°/+30°) and internal/external rotation (±10°). Microseparation3 was achieved by applying a 0.4–0.5mm medial displacement to the cup relative to the head during the swing phase of the standard gait cycle resulting in edge loading at heel strike. The lubricant was 25% (v/v) new-born calf serum which was changed approximately every 333,000 cycles. The wear volume was ascertained through gravimetric analysis every million cycles. One way ANOVA was performed (significance: p<0.05), and 95% confidence limits were calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 107 - 107
1 Sep 2012
Hadley M Hadfield F Hardaker C Isaac G Fisher J Wye J Barnett J
Full Access

Introduction

Hip wear simulation is a widely used technique for the pre-clinical evaluation of new bearing designs. However, wear rates seen in vitro can often be significantly different to those seen clinically. This can be attributed to the difference between the optimal conditions in a simulator and wide ranging conditions in real patients.

This study aimed to develop more clinically relevant simulator tests, looking specifically at the effects of cup inclination angle (in vivo) and stop-dwell-start (SDS) protocols on a clinically available product.

Method

Five tests using a Paul type walking cycle (ISO 14242) were carried out on two ProSim hip simulators:

28mm MoM, standard walking, cup inclination 45°, (n = 5)

36mm MoM, standard walking, cup 45°, (n = 4)

36mm MOM, SDS: 10 walking cycles and pause of 5s with stance load of 1250N cup 45°, (n = 5)

36mm MOM, SDS: 10 walking cycles and pause of 30s with stance load of 1250N, (n = 5) cup 45°

36mm MOM, standard walking, cup 55°(n = 5), and 65°(n = 5).

All samples had matched clearances, measured using a CMM (Prismo Navigator, Zeiss, Germany). Wear was measured gravimetrically (Sartorius ME235S: 0.01mg).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 2 - 2
1 Sep 2012
Al-Hajjar M Fisher J Williams S Tipper J Jennings L
Full Access

INTRODUCTION

Retrieval and clinical studies of metal-on-metal (MoM) bearings have associated increased wear1 and elevated patient ion levels2 with steep cup inclination angles and edge loading conditions. The University of Leeds have previously developed a hip simulator method that has been validated against retrievals and shown to replicate clinically relevant wear rates and wear mechanisms3,4. This method involves introducing lateral microseparation to represent adverse joint laxity and offset deficiency. This study aimed to investigate the effect of microseparation representing translational malpostion, and increased cup inclination angle, representing rotational malposition, in isolation and combined on the wear of different sizes (28 and 36mm) MoM bearing in total hip replacement (THRs).

MATERIALS AND METHODS

The wear of size 28mm and 36mm MoM THRs bearings was determined under different in vitro conditions using the Leeds II hip simulator. For each size bearing, two clinical cup inclination angles were considered, 45° (n=3) and 65° (n=3). The first three million cycles were run under standard gait conditions and subsequently three million cycles were run under microseparation conditions. Standard gait cycles included a twin peak load (300N–3000N), extension/flexion (−15°/+30°) and internal/external rotation (±10°). Microseparation4 was achieved by applying a 0.4–0.5mm medial displacement to the cup relative to the head during the swing phase of the standard gait cycle resulting in edge loading at heel strike. The lubricant was 25% (v/v) new-born calf serum. The wear volume was determined through gravimetric analysis every million cycles. One way ANOVA was performed (significance: p<0.05), and 95% confidence limits were calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 25 - 25
1 Aug 2012
AL-Hajjar M Fisher J Williams S Tipper J Jennings L
Full Access

In vitro the introduction of microseparation and edge loading to hip simulator gait cycle has replicated clinically relevant wear rates and wear mechanisms in ceramic-on-ceramic bearings[1], and elevated the wear rates of MoM surface replacements (SR) to levels similar to those observed in retrievals[2]. The aim was to assess the wear of two different sized MoM total hip replacement bearings under steep cup inclination angles and adverse microseparation and edge loading conditions.

Two tests were performed on the Leeds II hip joint simulator using two different size bearings (28mm and 36mm). Cups were mounted to provide inclination angles of 45 degrees (n=3) and 65 degrees (n=3). The first three million cycles were under standard gait conditions. Microseparation and edge loading conditions as described by Nevelos et al[1] were introduced to the gait cycle for the subsequent three million cycles. The lubricant was 25% new born calf serum. The mean wear rates and 95% confidence limits were determined and statistical analysis was performed using One Way ANOVA.

Under standard gait conditions, when the cup inclination angle increased from 45 degrees to 65 degrees, the wear of size 28mm bearing significantly (p=0.004) increased by 2.7-fold, however, the larger bearings did not show any increase in wear (p=0.9). The introduction of microseparation conditions resulted in a significant (p=0.0001) increase in wear rates for both bearing sizes under both cup inclination angle conditions. Under microseparation conditions, the increase in cup inclination angle had no influence on the wear rate for both bearing sizes (Figure 1).

With larger bearings, head-rim contact occurs at a steeper cup inclination angle providing an advantage over smaller bearings. The introduction of edge loading and microseparation conditions resulted in a significant increase in wear rates for both bearing sizes. The wear rates obtained in this study under combined increased cup inclination angle and microseparation were half of those obtained when SR MoM bearings were tested under similar adverse conditions[2]. This study shows the importance of prosthesis design and accurate surgical positioning of the head and acetabular cup in MoM THRs.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 46 - 46
1 Aug 2012
Taylor S Tsiridis E Ingham E Jin Z Fisher J Williams S
Full Access

Tribology and wear of articular cartilage is associated with the mechanical properties, which are governed by the extracellular matrix (ECM). The ECM adapts to resist the loads and motions applied to the tissue. Most investigations take cartilage samples from quadrupeds, where the loading and motions are different to human. However, very few studies have investigated the differences between human and animal femoral head geometry and the mechanical properties of cartilage.

This study assessed the differences between human, porcine, ovine and bovine cartilage from the femoral head; in terms of anatomical geometry, thickness, equilibrium elastic modulus and permeability.

Diameter of porcine (3-6 months old), bovine (18-24 months old), ovine (4 years old) and human femoral heads were measured (n=6). Plugs taken out of the superior region of each femoral head and creep indentation was performed. The human femoral heads were obtained from surgery due to femoral neck fracture. Cartilage thickness was measured by monitoring the resistive force change as a needle traversed the cartilage and bone at a constant feed rate using a mechanical testing machine. The percentage deformation over time was determined by dividing deformation by thickness. A biphasic finite element model was used to obtain the intrinsic material properties of each plug. Data is presented as the mean ± 95% confidence limits. One-way ANOVA was used to test for significant differences (p < or = 0.05).

Significant differences in average femoral head diameter were observed between all animals, where bovine showed the largest femoral head. Human cartilage was found to be significantly thicker than cartilage from all quadrupedal hips. Human cartilage had a significantly larger equilibrium elastic modulus compared to porcine and bovine cartilage. Porcine articular cartilage was measured to be the most permeable which was significantly larger than all the other species. No significant difference in permeability was observed between human and the other two animals: bovine and ovine (Table 1).

The current study has shown that articular cartilage mechanical properties, thickness and geometry of the femoral heads differ significantly between different species. Therefore, it is necessary to consider these variations when choosing animal tissue to represent human.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 103 - 103
1 Aug 2012
Hyde P Fisher J Hall R
Full Access

Spinal total disc replacement (TDR) designs rely heavily on total hip replacement (THR) technology and it is therefore prudent to check that typical TDR devices have acceptable friction and torque behaviour. For spherical devices friction factor (f) is used in place of friction coefficient (mju). The range of loading for the lumbar spinal discs is estimated at perhaps 3 times body weight (BW) for normal activity rising to up to 6 times BW for strenuous activity[1]. For walking this equates to around 2000 N, which is the maximum load required by the ISO standard for TDR wear testing[2].

Three Prodisc-L TDR devices (Synthes Spine) were tested in a single station friction simulator. Bovine serum diluted to 25% was used as a lubricating medium. Flexion-extension was ±5 deg for all experiments with constant axial loading of 500, 2000 and 3000 N. The cycle run length was limited to 100 and the f and torque (T) values recorded around the maximum velocity of the cycle point and averaged over multiple cycles.

Preliminary results shows that the 500 N loading produced the largest f of 0.05 ± 0.004. The 2000 N load, which approximates daily activity, gave f = 0.036 ± 0.05 and the 3000 N load gave f = 0.013 ± 0.003. The trend was for lower f with increasing loads.

A lumbar TDR friction factor of 0.036 for a 2000N load and the reduction in f for increasing loads is comparable to the lower end of the range of values reported for THR in similar simulator studies using metal-on-polyethylene bearing materials[3]. The 3000 N result showing that increasing the load above that expected in daily activity does not raise the f could be important when considering rotational stability and anchorage in a TDR device because frictional torque at the bearing surfaces is proportional to the product of load, device radius and f.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 55 - 55
1 Jun 2012
El-Hadi S Stewart T Jin Z Fisher J
Full Access

Background

High cup abduction angles generate increased contact stresses, higher wear rates and increased revision rates. However, there is no reported study about the influence of cup abduction on stresses under head lateralisation conditions for ceramic-on-Ceramic THA.

Material and method

A finite elements model of a ceramic-on-ceramic THA was developed in order to predict the contact area and the contact pressure, first under an ideal regime and then under lateralised conditions. A 32 mm head diameter with a 30 microns radial clearance was used. The cup was positioned with a 0°anteversion angle and the abduction angle was varied from 45° to 90°. The medial-lateral lateralisation was varied from 0 to 500 microns. A load of 2500 N was applied through the head center.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 56 - 56
1 Jun 2012
El-Hadi S Stewart T Jin Z Fisher J
Full Access

INTRODUCTION

Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from squeaking hips result from resonance of one or other or both of the metal parts and not the bearing surfaces. There is no reported in vitro study about the squeaking frequencies under lubricated regime. The goal of the study was to reproduce the squeaking in vitro under lubricated conditions, and to compare the in vitro frequencies to in vivo frequencies determined in a group of squeaking patients. The frequencies may help determining the responsible part of the noise.

METHODS

Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident(r), Stryker(r)) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster(r)). In-vitro 3 alumina ceramic (Biolox Forte Ceramtec(r)) 32 mm diameter (Ceramconcept(r)) components were tested using a PROSIM(r) hip friction simulator. The cup was positioned with a 75° abduction angle in order to achieve edge loading conditions. The backing and the cup liner were cut with a diamond saw, in order to avoid neck-head impingement and dislocation in case of high cup abduction angles (Figure1). The head was articulated ± 10° at 1 Hz with a load of 2.5kN for a duration of 300 cycles. The motion was along the edge. Tests were conducted under lubricated conditions with 25% bovine serum without and with the addition of a 3rd body alumina ceramic particle (200 μm thickness and 2 mm length). Before hand, engineering blue was used in order to analyze the contact area and to determine whether edge loading was achieved.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 51 - 51
1 May 2012
Davies J Wilshaw S Shaw D Ingham E Jin Z Fisher J
Full Access

Introduction

Articular hyaline cartilage has a unique structural composition that allows it to endure high load, distribute load to bone and enables low friction movement in joints. A novel acellular xenogenic graft is proposed as a biological cartilage replacement, for repair of osteochondral defects. Acellular porcine cartilage has been produced using repeated freeze thaw cycles and washing using hypotonic buffers and sodium dodecyl sulphate solution (SDS; Keir, 2008). DNA content of the acellular matrix was reduced by 93.3% compared to native cartilage as measured by nanodrop spectrophotometry of extracted DNA, with a corresponding reduction in glycosaminoglycan (GAG) content.

Hypothesis

It was hypothesised that penetration of decellularisation solutions into the native tissue could be improved through deformation of the cartilage under confined compression and then allowing the osteochondral pin to recover in solution, allowing removal of cellular DNA and greater retention of the GAGs.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 54 - 54
1 May 2012
Hyde P Vicars R Fisher J Brown T Hall RM
Full Access

Introduction

It is believed that wear of replacement joints vivo in is strongly dependent on input motions (kinematics) and loading. There is difficulty in accurately measuring total disc replacement (TDR) kinematics in vivo. It is therefore desirable to ascertain the sensitivity of implant wear in vitro to perturbations of the standard testing parameters. An anterior-posterior (AP) shear force input is not currently included in the present ISO and ASTM testing standards for lumbar TDRs but is known to exist in in vivo. Other joint-replacement wear tests have shown that the phasing of input motions influences the ‘cross-shear’ process of polyethylene wear. Polyethylene bearing materials do not behave linearly to axial loading changes and so the effect on wear rate is difficult to predict. The study aim was to assess the effects on wear of a ProDisc-L TDR under the following conditions: ISO 18191-1 standard inputs; an additional input AP shear; input kinematics phasing changes; axial loading changes.

Methods

A five active degree of freedom (DOF) spine simulator was used to compare the effects of varying the kinematic and loading input parameters on a ProDisc-L TDR (Synthes Spine). A four DOF standard ISO (ISO18192-1) test was followed by a five DOF test which included the AP shear force. The standard ISO test was repeated on a second simulator (of identical design) but with the phasing of the lateral bend (LB) and flexion extension (FE) motions changed to be in-phase, creating a low cross-shear motion pattern. The standard ISO test was then modified to give half the ISO standard axial loading. All tests conducted were based on the ISO18192-1 standard for lumbar implants with 15 g/l protein lubricant and modified as described. Gravimetric wear measurements were taken every million cycles (mc) in units of milligrams (mg). Six discs were tested to give statistically significant results.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 11 - 11
1 May 2012
Tipper J Vicars R Brown T Ingham E Fisher J Hall R
Full Access

Introduction

The biological response to UHMWPE particles generated by total joint replacements is one of the key causes of osteolysis, which leads to late failure of implants. Particles ranging from 0.1-1.0μm have been shown to be the most biologically active, in terms of osteolytic cytokine release from macrophages [1]. Current designs of lumbar total disc replacements (TDR) contain UHMWPE as a bearing surface and the first reports of osteolysis around TDR in vivo have appeared recently in the literature [2]. The current wear testing standard (ISO18192-1) for TDR specifies only four degrees of freedom (4DOF), i.e. axial load, flexion-extension, lateral bend and axial rotation. However, Callaghan et al. [3] described a fifth DOF, anterior-posterior (AP) shear. The aim of this study was to investigate the effect that this additional AP shear load component had on the size and morphology of the wear particles generated by ProDisc-L TDR devices over five million cycles in a spine simulator.

Methods

A six-station lumbar spine simulator (Simulation Solutions, UK) was used to test ProDisc-L TDR components (Synthes Spine, USA) under the ISO 18192-1 standard inputs and with the addition of an AP load of +175 and −140N. Wear particles were isolated at 2 and 5 mc using a modified alkaline digestion protocol [4]. Particles were collected by filtration and imaged by high resolution FEGSEM. Particle number and volume distributions were calculated as described previously [4] and were compared statistically by one way ANOVA (p<0.05).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 29 - 29
1 Mar 2012
van der Jagt D Williams S Brekon A Schepers A Isaac G Fisher J
Full Access

The search for the ideal bearing surface in Total Hip Replacements continues. The current ‘best’ materials are felt to be combinations of metal, ceramics and cross-linked polyethylene. Laboratory studies suggest that ceramic-on-metal articulations may provide distinct advantages. This study aims to identify the best bearing surface combination with the lowest adverse side effect profile.

Between February 2004 and September 2007, 164 hips were replaced in 142 patients. 39% were male and 69% were female. The average age at surgery was 53 years (17-72 years). Follow-up assessment included radiographs, the Harris Hip Score and whole blood samples for metal ion levels. Complications to date included 3 hips which needed femoral revision because of surgery related factors, and 3 cases of sepsis of which 1 settled and 2 needed revision. One hip needed revision of head and liner to a larger bearing size for recurrent dislocations, and is no longer being followed up for blood metal ions.

Post-operative whole blood metal ion levels were compared to pre-operative levels to determine the increase or decrease in metal ion levels. There were no changes in those patients with ceramic-on-ceramic and ceramic-on-polyethylene articulations. Moderately raised whole blood metal ion levels were noted at 3 months in the ceramic-on-metal group, while the metal-on-metal group show the greatest increase.

This study agrees with laboratory bearing surface wear studies demonstrating lower wear rates in the ceramic-on-metal group compared to the metal-on-metal group. With concerns related to high blood metal ion levels in metal-on-metal articulations, ceramic-on-metal bearing surfaces may well become a bearing surface of choice in the future, but progress needs to be monitored in the longer term.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 533 - 534
1 Nov 2011
Sariali E Stewart T Jin Z Fisher J
Full Access

Purpose of the study: Implantation of the acetabular socket with high inclination generates increased contract stress, wear and revision rate for total hip arthroplasty (THA). Study of ceramic-on-ceramic THA explants has revealed a high wear rate in bands, suggesting a microseparation effect generating edge loading. There have not been any studies examining the influence of the cup inclination on the contact pressures in ceramic-on-ceramic THA exposed to microseparation between the head and the cup.

Material and methods: A finite elements model of a ceramic-on-ceramic hip prosthesis was developed with ABAQUS in order to predict the surface contact and the distribution of the contract pressures, first during ideal centred function then under conditions of microseparation. A 32mm head and a radial clearance head (30μm) were used. The cup was positioned in zero anteversion and 45, 65, 70, and 90° anteversion. Progressive microseparation (0 to 500 μm) was imposed. A 2500N loading force was applied to the centre of the head.

Results: For 45° inclination, edge loading appeared for mediolateral separation greater than 30 μm and became complete for 60 μm separation. When edge loading appeared, the contact surface was elliptic. The length of the lesser axis converged towards 0.96mm; the greater axis towards 8.15mm, respectively in the anteroposterior and mediolateral directions. For inclinations of 45°, the contact pressure was 66 Mpa for the centred force. As the mediolateral separation increased, the maximal contact pressure increased, converging towards an asymptotic value of 205 MPa. Increasing the inclination angle of the cup generated an increase in the maximal contact pressure. However, this increase in contact pressure generated by the increasing inclination angle was negligible if the microseparation increased.

Discussion: Cup inclination and mediolateral laxity increase stress forces of ceramic-on-ceramic THA and should be avoided. However, the influence of the cup inclination becomes negligible beyond a separation value of 240 μm, the stress forces already having reached their asymptotic value.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 534 - 534
1 Nov 2011
Sariali E Stewart T Jin Z Fisher J
Full Access

Purpose of the study: Ceramic-on-ceramic THA explants exhibit a higher wear rate than that predicted by classical simulators. This appears to be related to edge loading, which could perhaps be reproducible in vitro by creating a microseparation between the two components. The purpose of this study was to evaluate this coefficient of friction for ceramic-on-ceramic THA with edge loading. This should enable prediction of wear in the event of microseparation.

Material and methods: Three 32mm alumina inserts (Biolox Forte Ceramtec®) were tested on a friction simulatior (Prosim®). The cup was positioned vertically (75° inclination) to reproduce edge loading. The metal-back and the acetabular insert were sectioned to avoid impingement between the neck and cup. Contact was imposed along the border of the cup, then perpendicularly to it. The tests were performed under lubrication conditions (25% bovine serum). In order to simulate severe contact pressures, the tests were also conducted with a third body inserted between the head and the edge of the cup. To obtain reference values of the centred regimen, tests were first run with identical components positioned horizontally.

Results: Edge loading was achieved for cups inclined at 75°. The coefficient of friction was 0.02±0.001 under centred conditions. For edge loading conditions, the coefficient of friction was significantly increased, to a mean 0.09±0.00 for movement along the acetabular border and 0.034±0.001 for movement perpendicular to the border. Squeaking occurred for 15 s when the third body was introduced, corresponding to a coefficient of friction 15-fold higher (0.32±0.003) than under ideal conditions.

Discussion: For the first time, the coefficient of friction of edge loading was determined under conditions of lubrication. The friction coefficient of ceramic-on-ceramic THA was greater for a very vertical cup, but remained (0.1) equivalent to the metal-on-metal coefficient under optimal conditions. When a third body was introduced, transient squeaking occurred with a very high coefficient of friction.

Conclusion: Implantation of cups with a high abduction angle induces edge loading and an increased coefficient of friction, and should be avoided.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
Masson B Lazennec J Fisher J Jenning L
Full Access

Dislocation remains one of the most common complications after total hip arthroplasty.

Precise cup position appears to be a main factor as significant variations occur for frontal and sagittal acetabular tilt and anteversion according to sitting or standing positions.

An innovative dual mobility ceramic-on-ceramic joint has been developed to solve these problems.

The dual mobility ceramic-on-ceramic joint allows to move the rotation center much deeper inside the insert in order to increase the joint stability without negative impact on the ROM. This device revealed higher torques against subluxation in comparison to the classical Al-Al systems, even with 36mm head diameters, or 41 mm metal on metal bearings.

The additional outer-bearing surface motion creates a second “adjustable acetabulum” due to the eccentration between the rotation center of the ball head and the rotation center of the bipolar head. This offset creates a resultant force that rotates the bipolar component.

Using two bearing ceramic surfaces, the intermediate component acts as a “self adjusting cup”, dealing with the variations of pelvic orientation and acetabulum anteversion.

The use of the dual mobility ceramic-on-ceramic joint seems an interesting alternative when facing difficult or unexpected situations for cup adjustment and cases with hip instability In a hip simulator in micro separation condition, the wear of the dual mobility ceramic-on-ceramic was less than 0.01 mm3/million cycles, the detection limit for wear measurement. There was no change in the surface roughness of the inserts.

The design of the joint with the mobile ceramic head prevented edge loading of the head on the edge of the cup. No stripe wear was observed.

Since 2006 more than 2000 dual mobility ceramic-on-ceramic systems have been implanted in Europe and clinical studies are conducted. The aim is to demonstrate the resistance to dislocation in primary total hip arthroplasty. Previous results over 125 patients in a prospective multicentric study show a Harris and Womac score equivalent to a standard hip prosthesis. No dislocations have been reported. No ceramic breakage or “squeaking” phenomenon appears.

Dislocation and microseparation are major causes of failure for ceramic-ceramic hip prosthesis. When no ideal solution has been found for acetabular implantation, the dual mobility ceramic-on-ceramic device is a real alternative. The exclusive design of the bipolar head give the high resistance to wear and stripe wear to the dual mobility ceramic-on-ceramic joint. Reducing the risk of dislocation and reducing wear drastically are two advantages that can place the dual mobility ceramic-on-ceramic joint as the best choice in primary Total Hip Arthroplasty. Obviously this choice applies to recurrent dislocation also.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 74 - 74
1 Jan 2011
Teramura S Russell S Bladen C Fisher J Ingam E Tomita N Tipper J
Full Access

Introduction: UHMWPE wear particles induce osteolysis and loosening of total joint replacements. Much effort has been directed at reducing the wear volume of UHMWPE, such as crosslinking treatments [1]. Recently, interest in UHMWPE with vitamin E (VE) has increased due to its improved wear resistance in knee prostheses [2], as well as improved mechanical properties. The aim of this study was to culture human peripheral blood mononuclear cells (PBMNCs) with known volumes of clinically relevant wear debris from UHMWPE with and without VE in order to quantify and compare their respective biological activities.

Methods: For UHMWPE with VE, GUR1050 UHMWPE powder was mixed with VE at 0.3% (w/w) and 3% (w/w) using a screw cone mixer. The wear rates were evaluated using a six-station multidirectional pin on plate wear simulator against a smooth CoCr plate (Ra 0.01–0.03 micrometres), in 25% bovine serum, under a load of 160N and a frequency of 1 Hz. Endotoxin-free clinically relevant wear debris was generated aseptically for cell culture studies, using a single-station multidirectional pin on plate wear rig housed in a class II safety cabinet. PBMNCs were isolated from blood collected from three healthy donors then cultured with debris at particle volume (μm3) to cell number ratios of 100:1 using the agarose gel technique [3]. Cells without particles were used as the negative control, and LPS at 200 ng/ml was the positive control. Cell viability was assessed by ATP-Lite assay, and TNF-alpha, interleukin (IL)-1beta, IL-6 and IL-8 were measured by ELISA at 12 and 24 h.

Results: The 3% VE UHMWPE was found to have a higher wear rate than both the Virgin and the 0.3% VE UHMWPE, although there were no significant differences. Particle size and volume distributions were similar for all materials, with the mode of the frequency distributions being in the 0.1–1 micron size range. Cell viability was not adversely affected by any of the treatments. Cells cultured with virgin UHMWPE debris secreted significantly higher quantities (P< 0.05) of TNF-alpha compared to debris from both the 0.3% and the 3% VE UHMWPE, which released comparable levels of TNF-alpha to the cell only control group. The results for the other cytokines, IL-1beta, IL-6 and IL-8, and for the two additional donors showed similar trends as the results for TNF-alpha.

Discussion: The biological response to wear particles is strongly influenced by particle size and volume [3]. Cells cultured with wear debris of UHMWPE containing VE released very low levels of cytokines in comparison with virgin UHMWPE, even there were no significant differences in particle size. Differences in the chemical composition of the particles or different rates of protein adsorption may explain these differences. VE has anti-inflammatory properties, which may act by free radical scavenging. VE has been shown to reduce production of reactive oxygen species and pro-inflammatory cytokines such as TNF-alpha and IL-1beta from monocytes [4]. The anti-inflammatory effects of UHMWPE particles containing VE are currently being investigated.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 35 - 35
1 Jan 2011
Williams S Brockett C Hardaker C Isaac G Fisher J
Full Access

Ceramic-on-metal (ceramic head and metal liner, COM) hip replacements have shown reduced wear in comparison to metal-on-metal (MOM) bearings. This has been attributed to reduced corrosive and adhesive wear, and differential hardness. The study assessed the performance of ceramic and metal bearings in different configurations under adverse conditions, ceramic heads on metal liners (COM) were compared to metal heads on ceramic inserts (MOC), with head on cup rim loading under micro-separation hip joint simulation.

Components used were made of zirconia-platelet toughened alumina (Biolox Delta) and CoCrMo alloy. Hip simulator testing applied a twin-peak loading cycle and walking motions with the prosthesis in the anatomical position. Testing was conducted in calf-serum for 2-million cycles. A standard simulator cycle was adapted, the head sub-luxed in the swing-phase forcing the head onto the cup rim at heel strike.

The overall mean wear rate for the MOC bearings (0.71±0.30mm3/Mc) was significantly higher than the wear rate for the COM bearings (0.09±0.025mm3/Mc). The contact of the head against the rim of the cup caused deep stripe wear on the metallic heads of the MOC bearings. This region on the head is exposed to high stress conditions and susceptible to damage in edge contact, the effect of this is increased when the cup is a harder material than the head. The wear of a metal-on-metal (MOM) couple under similar conditions was almost two-fold greater than the MOC couple (1.58mm3/Mc, Williams et al., 2006) providing further evidence of the reduced wear with COM in comparison to MOM.

The COM concept allows thin metal shells to be used with larger ceramic heads and protects against ceramic liner chipping. COM bearings are undergoing clinical trials, early data suggests reduced metal ion release in patients compared to metal-on-metal.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 67 - 67
1 Jan 2011
Al-Hajjar M Jennings LM Leslie IJ Fisher J
Full Access

Ceramic-on-ceramic total hip replacements (THRs) have shown low wear volumes in standard gait hip simulator studies1. However clinical reports have indicated a variation in wear rates and formation of stripe wear on the ceramic femoral heads2. The aim of this study was to investigate the influence of different clinical conditions such as cup inclination angle and microseparation (head offset deficiency) on the wear of ceramic-on-ceramic THRs. The six station Leeds II hip joint simulator was used to investigate the wear of size 28mm ceramic-on-ceramic bearing couples. The alumina matrix composite ceramic material (AMC, Biolox Delta, CeramTec AG, Germany) was used in this study. The lubricant used was 25% bovine serum. The study was carried out for a total of five million cycles; the first two million cycles under standard gait conditions and a further three million cycles under microseparation conditions. During microseparation, a lateral movement of 0.5mm was applied to the cup relative to the head during the swing phase of the gait cycle3. Three of the cups were mounted to provide a clinical angle of 55°, which is referred to as the ‘standard’ condition; and the other three cups were mounted to provide a clinical angle of 65°, which is referred to as the ‘steep angle’ condition. These combinations provided four different testing conditions: standard, steep cup angle, microseparation, and combination of steep cup angle and microseparation conditions. Volumetric wear was determined gravimetrically and statistical analysis was performed using One Way ANOVA (significance at p< 0.05). Increasing the cup inclination angle from 55° to 65° had no significant effect on the wear rate in Biolox Delta ceramic-on-ceramic THRs under both standard (p> 0.42) and microseparation (p> 0.55) conditions. Under standard gait conditions, the mean wear rate for both cup inclination angles was very low at 0.05 mm3/million cycles. The introduction of microseparation to the standard gait cycle significantly increased the mean wear rates (p< 0.01) to 0.13 mm3/ million cycles for the ‘standard’ cup inclination angle of 55° and 0.11 mm3/million cycles for the ‘steep’ cup inclination angle of 65°. A stripe of wear on the head also formed, with corresponding superior rim wear on the cup. For comparison, the steady state wear rate of HIPed third generation alumina ceramic (Biolox Forte) under microseparation conditions was 1.3 mm3/million cycles [4]. In conclusion, increasing the cup inclination angle by 10° had no influence on the wear rate of Biolox Delta ceramic-on-ceramic bearings. The introduction of microseparation conditions significantly increased the wear rate and resulted in stripe-like wear on the femoral head, which has previously been observed on retrieved ceramic prosthesis. However, these wear rates were still low, and were ten times lower than those previously reported for Biolox Forte.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 71 - 71
1 Jan 2011
Kheir E Stapleton T Shaw D Jin Z Ingham E Fisher J
Full Access

Introduction: The aim of this study was to develop a technique to decellularise a porcine cartilagebone construct with a view to using this as a biological scaffold for transplantation into human osteochondral defect as a cartilage substitute.

Methods: Decellularisation was based on a modification of the technique of Booth et al (2002). Cartilage bone matrix (n=9) were decellularised by exposing the tissue to 2 cycles of dry freeze-thaw followed 2 more cycles with the addition of hypotonic (10mM tris-HCl, pH8.0) buffer. Samples were then cycled through hypotonic buffer, followed by ionic detergent (0.1% [w/v] sodium dodecyl sulphate [SDS]) in the presence of protease inhibitors (aprotinin 10 KIU/ml) and 0.1% (w/v) ethylene diamine tetraacetic acid (EDTA). This was followed by washes in PBS with aprotinin and incubation in nuclease solution containing DNase (50U/ml) and RNase (1U/ml). Decontamination using 0.1% (v/v) peracetic acid in PBS was then incorporated to achieve disinfection of the tissue samples. Finally, samples were washed in PBS. Three decellularisation protocols were used depending on the number of hypotonic/SDS cycles: this was either done once, three or six times referred to as DC1, DC3 and DC6 respectively. Fresh & decellularised cartilage were compared histologically using haematoxylin and eosin staining, to visualize cellular content, sirius red, to visualise collagen fibres & alcian blue, to visualise glycosaminoglycans (GAG). Immunohistochemistry staining for galactose-α-1,3-galactose (α-gal), collagen I, II & VI was performed for fresh and decellularised samples. DNA assay: Genomic DNA was extracted using a DNA isolation kit for tissues (Roche Applied Sciences). Collagen and DMB sulphated sugar assay, as described by Stapleton et al. (2008), were performed to measure collagen and GAG content. The biphasic property of fresh and decellularised cartilage was determined using a pin on plate indentation test.

Results: H& E staining revealed the absence of visible whole cells. Sirius red stain gave evidence of the retention of collagen following decellularisation. In contrast, the acellular matrix showed evidence of loss of GAGs. There was no evidence of the expression of α-gal in the acellular scaffold. DNA analysis revealed the absence of genomic DNA in comparison to fresh tissues (ANOVA, p< 0.05). The decellularisation process had minimal effect on the collagen content of the cartilage. Nevertheless there was a significant difference in the sulphated sugar content of the fresh tissue when compared to the decellularised tissue (ANOVA, p< 0.05), indicating loss of 92% GAG. Biomechanical testing of decellularised tissues showed a significant change (ANOVA, p< 0.05) in comparison to the fresh cartilage.

Discussion: In conclusion this study has generated data on the production of an acellular cartilage bone matrix scaffold for use in osteochondral defect repair. To our knowledge, this is the first study that has successfully removed whole cells and α-gal from xenogeneic cartilage and bone tissue. Future studies are required to investigate methods to recellularise the acellular matrix using an appropriate cell type and mechanical conditioning and to investigate replenishing GAG loss following decellularisation.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 74 - 74
1 Jan 2011
Richards L Bladen C Fisher J Ingham E Tipper J
Full Access

Introduction: Nanometre sized UHMWPE particles have recently been isolated from periprosthetic tissues and hip simulator lubricants [1,2]. The biological response to UHMWPE particles of 0.1 μm and above has been well characterised, with particles in the 0.1–1.0 μm size range having the highest biological activity [3]. The purpose of the study was to determine the biological activity of nanometre-sized particles in terms of osteolytic cytokine release from primary human monocytes.

Methods: Monocytes were isolated from peripheral blood from 5 healthy donors by density gradient centrifugation over Lymphoprep. Cells were cultured using the agarose gel technique [3] at particle volume (μm3):cell number ratios of 10:1 and 100:1. The particles used were:

1 Polystyrene FITC-conjugated FluoSpheres (FS; Invitrogen) in 20 nm, 40 nm, 0.2 μm and 1.0 μm sizes.

2a Complete Ceridust® 3615 (CD), a low MW polyethylene powder (size range 15 nm – 53 μm).

2b Nanometresized Ceridust® (fractionated by filtration using 10, 1, 0.1, 0.05 & 0.015 μm filters).

3 Clinically relevant GUR 1120 UHMWPE debris produced aseptically using a multidirectional wear rig.

All particles were tested for the presence of endotoxin prior to culture with cells. Cells without particles were used as a negative control and 200 ng/ml LPS was used as a positive control. Cell viability was assessed using the ATP Lite assay (Perkin Elmer) and ELISA was used to determine TNF-alpha, IL-1beta, IL-6 and IL-8 release at 3, 6, 12 and 24 h.

Results: FluoSpheres and CD had no effect on cell viability at 10 or 100:1. Clinically relevant UHMWPE particles had no effect on cell viability at 10:1, however, at 100:1 significant differences (P< 0.05) were seen at 3, 12 and 24 h for Donors 1 and 3. The 40 nm, 0.2μm and 1.0 μm FS caused significant elevation of TNF-α release at the 12 and 24 h time points at 100:1. There was no significant increase in TNF-α release for the 20 nm FS (3/5 donors). Particle volume and particle size showed correlation with cellular response, with the 20 nm FS showing the lowest biological activity. Clinically relevant UHMWPE particles and nanometre sized CD produced significantly higher quantities of TNF-alpha at 100:1. Release of interleukins IL-1beta, IL-6 and IL-8 followed a similar trend to TNF-alpha release.

Discussion: This study found that all nanometre-sized particles had the potential to provoke inflammatory cytokine release from macrophages. Particle volume and particle size played critical roles in initiating cellular responses. There was a lower particle size limit, with the 20 nm FS showing the lowest activity. Nanometre-sized polyethylene particles (CD) caused elevated TNF-α release, and since it has been shown that nanometre-sized UHMWPE particles are produced in large numbers in vivo [2], the relative contribution of these particles to osteolysis should be considered. The biological response to nanometre-sized clinically relevant UHMWPE particles is currently under investigation.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 511 - 511
1 Oct 2010
Brockett C Breckon A Fisher J Isaac G Schepers A Williams S
Full Access

Ceramic-on-metal (COM) bearings have shown reduced wear and friction compared with metal-on-metal (MOM) bearings in-vitro. Lower wear has been attributed to a reduction in corrosive wear, smoother surfaces, improved lubrication and differential hardness reducing adhesive wear. Clinical studies have also shown reduced metal ion levels in-vivo compared with MOM bearings. The aim of this study was to examine two explanted COM bearings (one head and cup, one head only), and to assess the effect of in-vivo changes on the wear performance of the COM bearings by comparing the wear of the explanted bearings with three new COM implants in a hip wear simulator.

Two 28mm diameter COM bearings were provided for analysis. These were visually examined and surface profilometry was performed using a 2-D contacting profilometer (Form Talysurf, Taylor Hobson, UK). Scanning electron microscopy was used to image the regions of transfer on the ceramic heads, and EDX to assess the transfer composition (Philips XL30 ESEM).

Hip simulator testing was conducted for 2 million cycles (Mc) comparing the explanted bearings with three new 28mm COM bearings. Tests were performed in a Prosim simulator (SimSol, UK), which applied a twin peak loading cycle, with a peak load of 3kN. Flexion-extension of − 15 to 30 degrees was applied to the head and internal-external rotation of +/− 10 degrees was applied to the cup, components were mounted in the anatomical position. The lubricant was 25% (v/v) calf serum supplemented with 0.03% (w/v) sodium azide and was changed approximately every 0.33Mc. Wear was measured gravimetrically at 0.5, 1 and 2 Mc.

Regions of material transfer, identified on both ceramic explant heads, were shown to be CoCr material by EDX analysis, suggesting metallic transfer from the metal cup. Profilometry traces across metallic transfer showed comparable surface roughness measurements compared to unworn material.

The overall mean wear rate for the new COM bearings at 2Mc was 0.047 ± 0.06mm3/Mc. The mean wear rate for the explanted head articulated with a new cup was slightly lower at 0.034mm3/Mc. The mean wear rate for the explanted head and cup was highest at 0.15mm3/Mc. It was noted that the explanted head/cup had higher bedding in wear compared with the other bearings, but still significantly less than a new MOM bearing (mean bedding-in wear rate 2.03 ± 2.59 mm3/Mc). The steady-state wear was comparable with the new bearings. As the orientation of these implants in-vivo was unknown, it is proposed that the elevated wear during bedding-in of the explanted head/cup bearing may be due to the alignment of the components. The wear rates of the explanted ceramic head against a new cup were comparable with the new bearings, suggesting that the presence of metallic transfer on the ceramic head does not adversely affect the wear behaviour of COM bearings.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 529 - 529
1 Oct 2010
Sariali E Fisher J Jin Z Stewart T
Full Access

Introduction: Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from squeaking hips result from resonance of one or other or both of the metal parts and not the bearing surfaces. There is no reported in vitro study about the squeaking frequencies under lubricated regime. The goal of the study was to reproduce the squeaking in vitro under lubricated conditions, and to compare the in vitro frequencies to in vivo frequencies determined in a group of squeaking patients. The frequencies may help determining the responsible part of the noise.

Methods: Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident®, Stryker®) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster®). In-vitro 3 alumina ceramic (Biolox Forte Ceramtec®) 32 mm diameter (Ceramconcept®) components were tested using a PROSIM® hip friction simulator. The cup was positioned with a 75° abduction angle in order to achieve edge loading conditions. The backing and the cup liner were cut with a diamond saw, in order to avoid neck-head impingement and dislocation in case of high cup abduction angles. The head was articulated ± 10° at 1 Hz with a load of 2.5kN for a duration of 300 cycles. The motion was along the edge. Tests were conducted under lubricated conditions with 25% bovine serum without and with the addition of a 3rd body alumina ceramic particle (200 μm thickness and 2 mm length).

Results: Edge loading was obtained incompletely. In-vitro, no squeaking occurred under edge loading conditions. However, with the addition of an alumina ceramic 3rd body particle in the contact region, squeaking was obtained at the beginning of the tests and stopped after ~20 seconds (dominant frequency 2.6 kHz). In-vivo, recordings had a dominant frequency ranging between 2.2 and 2.4 kHz.

Discussion: For the first time, squeaking was reproduced in vitro under lubricated conditions. In-vitro noises followed edge loading and 3rd body particles and despite, the severe conditions, squeaking was intermittent and difficult to reproduce. However, squeaking is probably more difficult to reproduce because the cup was cut and the head was fixed in the simulator, preventing vibration to occur

Squeaking noises of a similar frequency were recorded in-vitro and in-vivo. The lower frequency of squeaking recorded in-vivo, demonstrates a potential damping effect of the soft tissues. Therefore, the squeaking in the patients was probably related to the bearing surfaces and modified lubrication conditions that may be due to edge loading. The determined values of frequencies may help to analyze the squeaking patients in order to determine the mechanism generating the sound.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 520 - 520
1 Oct 2010
Isaac G Breckon A Brockett C Fisher J Schepers A Van Der Jagt D Williams S
Full Access

The combination of a ceramic head articulating against a metal acetabular liner (CoM) has shown reduced metal ion levels compared with a metal-on-metal bearing (MoM) in hip simulator studies. A randomized prospective clinical trial was undertaken using CoM and MoM bearings in an otherwise identical total hip procedure. The initial clinical results were encouraging. This report comprises a further review of metal ion data.

Patients received identical components with the exception of the bearing surface material but all were 28mm diameter. All components were supplied by DePuy International Ltd. Patients were assessed pre-operatively, 3m, 12m and > 24m (median 32m). Whole blood samples were collected at regular follow-ups, frozen and analysed in batches using high resolution Inductively Coupled Plasma – Mass Spectrometry (ICP-MS). All recruited patients are included irrespective of outcome. However some patients failed to attend specific follow-ups and some contaminated samples had to be discarded. Statistical significance was analyzed using a non-parametric comparison (Mann-Whitney test). After 3m and 12m implantation there were between 21 and 24 patients available for analysis in both the CoM and MoM cohort and after > 24m point 10 and 9 respectively.

There were four outliers (either Cr or Co > 10ug/l) in both the CoM and MoM groups. In common with previous studies (with the exception of two marginal outliers), these were related to component position. They were implanted with either a cup abduction angle of > 55°, an anteversion angle of > 30° or both. Other studies with the same design of component have reported no significant outliers.

The median Cr and the Co levels are lower with the CoM bearing compared with the MoM at all measurements points following implantation. The median background (pre-operative) levels for the combined CoM and MoM group were Cr: 0.22ug/l and Co: 0.49ug/l. These were significantly different (p=0.006).

In the CoM group, the median 12m Cr and Co values were 0.43ug/l and 0.72ug/l respectively. The comparable values for MoM are 0.68ug/l and 0.83ug/l. Increases in metal ion levels from pre-operative levels are used as the primary ion level outcome in this study because the background level will comprise of the order of 30–50% of the overall value. The increase in Cr for CoM and MoM from pre-op levels to 12m significantly different for Cr (p=0.015). It has a lower significance for combined metal ion levels (p=0.029). This difference in not significant for Co (p=0.195).

In agreement with predictions from hip simulator studies, CoM bearings in this study produced lower levels of metal ions than comparable MoM bearings at all time points. However the difference is less than that predicted in the laboratory and is much more pronounced with Cr than with Co.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 398 - 398
1 Jul 2010
Jennings LM Al-Hajjar M Leslie IJ Fisher J
Full Access

Introduction: There is increasing interest in the use of ceramic on ceramic bearings for hip replacement, due to recognition of their extremely low wear and biocompatibility of the wear debris [1].

The aim of this study was to investigate the influence of cup inclination angle and head position on the wear of ceramic-on-ceramic total hip replacements.

Methods: The wear of Biolox Delta alumina matrix composite ceramic (CeramTec AG, Germany) was investigated using the six station Leeds II Physiological Anatomical hip joint simulator, using 25% bovine serum as a lubricant. Three ceramic-on-ceramic bearings were mounted with the cup providing a clinical angle of 55o (representing the standard condition) and three were mounted to provide a clinical angle of 65o (representing the steep cup angle condition). Simulator studies were carried out under standard gait conditions for 2 million cycles, and under micro-separation conditions for a further 3 million cycles. Micro-separation and dynamic lateralisation of the position of the head replicate head/cup rim contact at heel strike and simulate stripe wear on a ceramic femoral head as found on ceramic-on-ceramic retrievals [2]. Volumetric wear was determined gravimetrically and statistical analysis was performed using One Way ANOVA.

Results: There was no difference in the wear rates under standard gait conditions for the standard and steep cup angles, with a wear rate of 0.05 mm3/million cycles. Under micro-separation conditions the wear rates increased significantly to 0.13 and 0.11 mm3/million cycles for the standard and steep cup angles respectively. However, there was no significant difference between the standard and steep cup angle groups.

Discussion: Micro-separation and dynamic lateralisation of the position of the head during gait simulation significantly increased wear. However, the inclination of the cup in ceramic-on-ceramic THRs did not have a significant effect on the wear under either standard gait or micro-separation conditions.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 313 - 313
1 May 2010
Williams S Brockett C Hardaker C Isaac G Fisher J
Full Access

Ceramic-on-metal (ceramic head and metal liner, COM) hip replacements have shown reduced wear in comparison to metal-on-metal (MOM) bearings (Firkins et al., 1999). This has been attributed to a reduction in corrosive wear, differential hardness and a reduction in adhesive wear. In a clinical report on the use of a metal-on-ceramic hip replacement (Valenti et al., 2007) which consisted of a stainless steel head and alumina ceramic insert at revision 6-months post-op massive metallosis and macroscopic wear was observed.

The aim of this study was to assess the performance of ceramic and metal bearings in different configurations under adverse conditions, ceramic heads on metal liners (COM) were compared to metal heads on ceramic inserts (MOC), with head on cup rim loading under micro-separation hip joint simulation.

Components used were made of zirconia-platelet toughened alumina (Biolox Delta) and high carbon (0.2wt%) CoCrMo alloy (DePuy International Ltd, UK). Hip simulator testing applied a twin-peak loading cycle and walking motions with the prosthesis in the anatomical position. The lubricant (25% calf-serum) was changed every 0.33Mc, wear was measured gravimetrically. Testing was conducted for 2-million cycles, a standard simulator cycle was adapted so the head subluxed in the swing phase forcing the head onto the cup rim at heel strike (Williams et al., 2006).

The total overall mean wear rate for the MOC bearings (0.71±0.30mm3/Mc) was significantly higher than the wear rate for the COM bearings (0.09±0.025mm3/Mc). The contact of the head against the rim of the cup at heel strike caused deep stripe wear on the metallic heads of the MOC bearings. This region on the head is exposed to high stress conditions and susceptible to damage in edge contact, the effect of this is increased when the cup is a harder material than the head. The wear of a metal-on-metal (MOM) couple under similar conditions was almost two-fold greater than the MOC couple (1.58mm3/Mc, Williams et al., 2006) providing further evidence of the reduced wear with COM in comparison to MOM.

The explant described Valenti et al. included a stainless steel head, this is a softer material compared to CoCr, and wears at a higher level. It can be postulated that the wear under adverse conditions would be further increased.

The COM concept can provide increased design flexibility; thin metal shells can be used with larger ceramic heads. Additionally the design protects against ceramic liner chipping. COM bearings are currently undergoing clinical trials, early data suggests reduced metal ion release in patients with COM bearings compared to metal-on-metal (Williams et al., 2007).


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 103 - 104
1 Mar 2010
Sariali* E Stewart* T Jin* Z Fisher* J
Full Access

Introduction: The use of hard-on-hard hip prostheses has highlighted specific problems like the “stripe-wear” and the squeaking. Many authors have related these phenomena to a micro-separation between the cup and the head. The goal of the study was to model the hip kinematics under micro-separation regime in order to develop a computational simulator for total hip prosthesis including a joint laxity, and to use it to perform a sound analysis.

Method: A three-dimensional model of the Leeds II hip simulator was developed on ADAMS® software. A spring was used to introduce a controlled micro-separation (less than 500 microns) during the swing phase of the walking cycle. The increase of the load during the stance phase induced a relocation of the head in the cup. Values of the medial-lateral separation predicted from the model were compared to experimental data measured using a LVDT of less than 5 microns precision. Theoretical wear path predicted from the model was compared to the literature data. The frequencies of the vibratory phenomena were determined, using the Fourier transformation.

Results: There was an excellent correlation between the theoretical prediction and the experimental measurement of the medial-lateral separation during the walking cycle (0.92). Edge-loading contact occurred during 57% of the cycle according to the model and 47% according to the experimental data. Velocity and acceleration were increased during the relocation phase in a chaotic manner, leading to vibration. The contact force according to the model had also a chaotic variation during the micro-separation phase, suggesting a chattering movement. Fourier transformation showed many frequencies in the audible area.

Discussion: A three-dimensional computational model of the kinematics of the hip after total replacement was developed and validated with an excellent precision under microseparation. It highlighted possible explanations for the squeaking that may occur during either relocation phase or edge loading.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 58 - 58
1 Mar 2010
McCann* L Ingham E Jin Z Fisher J
Full Access

Total meniscectomy has been shown to induce osteoarthritic changes in the underlying articular cartilage(AC) and bone in the natural knee (Fairbank 1948; McDermott 2006). This indicates the meniscus plays an important protective role, providing joint congruity and distributing contact forces, hence reducing contact stress. However, no friction and wear studies have been performed on meniscectomy. The aim of this study was to study the tribological response of the medial compartmental natural knee with and without the intact meniscus, under physiological dynamic loading and motion. The effect of normal and reduced loading was investigated.

Eighteen month old bovine medial compartmental knees were used. A pendulum friction simulator (Simulation Solutions, UK) was used to apply a dynamic axial loads with peak loads of 1000N (normal) and 260N (reduced). Flexion-extension of amplitude 23degrees was applied and the experiments ran for 3600 cycles at 1Hz. Lubricant was 25% bovine serum in saline. A 9.4 Tesla MRI (Bruker) scanner and Analyze software (Mayo Clinic, US) were used to calculate wear volumes. A surface profilometer (Talysurf, Taylor-Hobson, UK) was used to measure the surface roughness of the specimen before and after the test.

Coefficient of friction was found to increase with increased loading, with and without meniscus. With meniscus intact, no wear was found on AC and contact stresses were 4.9MPa and 2.8MPa, for normal and reduced loading respectively. On removal of meniscus, friction was higher at both loading conditions and surface fibrillation found on some of the AC surfaces. Contact stresses rose to 17.2MPa and 8.6MPa for normal and reduced loading.

This study has shown for the first time, the direct elevation of the coefficient of friction, immediate surface fibrillation and biomechanical wear of AC upon removal of the meniscus. On removal of meniscus, peak stresses rose and surface damage occurred on AC surfaces. The removal of the meniscus means forces act across smaller areas and contact stresses are increased. Wear is increased due to the subsequent increase in direct solid-solid contact and loss of fluid support due to the unique biphasic nature of AC. This further supports retaining meniscus whenever possible in knee joint surgery.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 100 - 100
1 Mar 2010
Udofia I Jin Z Williams S Isaac G Fisher J
Full Access

Metal-on-metal hip resurfacing has been introduced recently, due to its potential advantages of biomechanics and biotribology. However, a number of problems have been identified from clinical retrievals, including significant elevation of wear when the implant is mal-positioned. Our hypothesis is that implant mal-position and micro-lateralisation can result in edge contact, leading to increases in wear. The aim of this study was to investigate the combined effect of cup position and micro-lateralisation on the contact mechanics of metal-on-metal hip resurfacing prosthesis, in particularly to identify conditions which resulted in edge contact.

Finite element (FE) method was used. A generic metal-on-metal hip resurfacing prosthesis was modelled. The bearing diameters of the femoral head and acetabular cup components were 54.49mm and 54.6mm respectively, with a diametral clearance between the head and the cup of 0.11mm. The resurfacing components were implanted into a hemi-pelvic hip joint bone model and all the materials in the FE model were assumed to be homogenous, isotropic and linear elastic (Udofia et al 2007). The FE models consisted of approximately 80,000 elements, which were meshed in I-DEAS (Version 11, EDS, USA) and solved using ABAQUS (Version 6.7-1, Dassault Systèmes). For this study, the femoral component was fixed with an inclination angle of 45° and an anteversion angle of 10°. The orientation of the acetabular cup was varied, using inclination angles of 35° and 65°, and anteversion angles between −10° to 30°. Contact at the bearing surface between the cup and femoral head was modelled using frictionless surface-based elements, simulating a fully lubricated situation, as coefficients of friction less than 0.1 would not have appreciable effects on the predicted contact mechanics. The femoral component was fixed into the femur (except the guide pin) using PMMA cement with an average thickness of approximately 1mm. The other contact interfaces in the FE model (cup/acetabulum, cement/bone and cement/femoral component) were all assumed to be rigidly bonded. The hip joint model was loaded through a fixed resultant hip joint contact force of 3200N, and was applied through medial, anterior muscle forces and subtrochanteric forces to simulate the mid-to-terminal stance phase (approximately 30% – 50%) of the gait cycle (Bergmann et al., 1993). Micro-lateralisation was modelled through displacing the femoral head laterally, up to 0.5mm, relative the centre of the cup.

Edge contact was detected once the inclination angle became greater than 65°. The effect of ante-version was to further shift the contact area towards the edge of the cup, nevertheless no edge contact was found for ante-version angles up to 25° and inclination angles below 55°. However, when the micro-lateralisation was introduced, edge contact was detected at a much smaller inclination angle. For example, even with a micro-lateralisation of 0.5 mm, edge contact occurred at an inclination angle of 45°. This study highlights the importance of surgical techniques on the contact mechanics and tribology of metal-on-metal hip resurfacing and potential outcome of these devices.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 88 - 88
1 Mar 2010
Fisher J
Full Access

Young and active patients require bearing materials that can last up to 200 million walking steps, ten fold greater than conventional polyethylene bearings.

Cross linked polyethylene provides reduced wear rate compared to conventional polyethylene, and further advantage is gained from using ceramic femoral heads. However in polyethylene bearings wear increases with the head diameter, and there is currently little opportunity to use head sizes greater then 36mm diameter. There is evidence of polyethylene fracture with steeply positioned cups.

Ceramic on ceramic bearings provide substantially lower wear rates than polyethylene bearings. Steep cups, lateralised heads or neck impingement can lead to head contact on superior rim of the cup and stripe wear, but this still results in very low wear rates. Recently developed ceramic matrix composites Biolox Delta provide greater resistance to stripe wear. In a few patients stripe wear may lead to squeaking.

Metal on metal bearings also provide substantially lower wear than polyethylene bearings. However there remains concern about elevated metal ion levels in a few patients and resultant risk of hypersensitivity reactions. In metal on metal bearings larger head sizes and reduced diametrical clearance can lead to reduced wear. Increased wear is associated with steep cups and lateralised heads resulting in rim wear.

Ceramic on metal bearings have been introduced recently as the first differential hard on hard bearings. These bearings show substantial reduction in wear, corrosive wear mechanisms, metal ion levels in laboratory simulators and initial clinical studies have shown a reduction in metal ion levels in vivo compared to metal on metal bearings.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 58 - 58
1 Mar 2010
Vicars* R Fisher J Heyes N Birrell R Hall R
Full Access

Total disc replacement is an alternative to spinal fusion in treating degenerative disc disease, whilst preserving motion and reducing the risk of subsequent DDD at adjacent levels. Current designs have evolved from technology used in total hip replacements with metal-metal or metal-PE bearing surfaces. These articulating systems may be prone to wear and it is essential the medical engineering community assess their performance using appropriate simulators

Utilising previous Leeds simulation design experience, current knowledge on spinal kinetics and prevailing Standards for spinal testing, a comprehensive set of requirements was generated from which a simulator design was produced. The Leeds Spine wear simulator, developed in conjunction with Simulation Solutions Ltd, incorporates five active degrees of freedom: axial compression, axial rotation, flexion-extension, lateral bending and anterior-posterior displacement. The fifth DOF, unique to the Leeds simulator, is anticipated to be particularly important for the study of mobile bearing devices such as the Charité. Loads and motions are applied by electro-mechanical actuators, providing accurate and precise control without the low band width suffered from pneumatics or contamination from hydraulic systems. This validation study determines the accuracy and precision of the simulator with regards to the degrees of freedom required by the newly published standard ISO 18192-1. Here, loads and motions have to be within ±5% of the maximum value and ±0.5degrees, respectively. The simulator’s response to demand input signals was determined for load and motion using independent measuring devices; a digital inclinometer for motions and load cell for force.

The load calibration was found to be within ±1% of the maximum load within the specified load range of 600–2000N. Flexion-extension, lateral bending and axial rotation were found to be within ±0.5, ±0.3 and ±0.5 degrees respectively, within and beyond the operating ranges specified by ISO.

The Leeds spine wear simulator is the first orthopaedic wear simulator to include electro-mechanical actuators for all active DOF, and the first spinal wear simulator to include a minimum of 5 active DOF. This novel simulator meets the demanding tolerances required by ISO for testing of total disc replacements. Validation of the simulator is currently being undertaken to determine its suitability against explanted devices and debris located within tissues.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 187 - 187
1 Mar 2010
Williams S Brockett C Isaac G Hardaker C Fisher J
Full Access

Ceramic head and metal liner hip replacements (COM) have shown reduced wear in comparison to metal-on-metal (MOM) bearings. The aim of this study was to further assess the performance by a wear simulator study under standard and adverse conditions, including the wear of a metal head against a ceramic liner.

Components were Biolox Delta and CoCrMo alloy. Hip simulator testing applied a simplified walking cycle to anatomically mounted prostheses. The lubricant was 25% calf-serum and wear was measured gravimetrically. In hip simulator testing with edge loading a standard cycle was adapted so the head sub-luxed in the swing phase forcing the head onto the edge of the cup at heel strike, this was applied to ceramic on metal and metal on ceramic material combinations.

Under standard conditions the total overall mean wear rate of the MOM THR (1.01±0.38mm3/Mc) was significantly higher in comparison to the COM and COC (< 0.015mm3/Mc). The overall mean wear rate for the MOC bearings (0.71±0.30mm3/Mc) was significantly higher than the wear rate for the COM bearings (0.09±0.025mm3/Mc). The contact of the head against the rim of the cup caused deep stripe wear on the metallic heads of the MOC bearings. This region on the head is exposed to high stress conditions and susceptible to damage in edge contact, the effect of this is increased when the cup is a harder material than the head. The wear of a metal-on-metal (MOM) couple under similar conditions was almost two-fold greater than the MOC couple (1.58mm3/Mc, Williams et al., 2006) providing further evidence of the reduced wear with COM in comparison to MOM.

Reduced wear from COM bearings will address some concerns associated with MOM THRs regarding reports of elevated ion levels clinically. These studies have provided valuable data demonstrating reduced wear with COM bearings. COM bearings are undergoing clinical trials, early data suggests reduced metal ion release in patients compared to metal-on-metal


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 226 - 226
1 Mar 2010
Schepers A van der Jagt D Isaac G Williams S Fisher J
Full Access

A randomised prospective study of four bearing surfaces in hip replacements is being conducted. The primary objective is to identify the best long term bearing surf ace clinically and radiographically, and metal ion levels have been measured in all cases.

Patients have been randomised to the four bearing surfaces viz. Ceramic-on-XLinked Polyethelene, Ceramic-on-Ceramic, Metal-on-Metal and Ceramic-on-Metal. Pre-operative blood samples and follow-up blood samples for metal ion analysis using ICP-MS method have been taken in all patients. As at February 2008 187 patients have been recruited, and metal ion levels at one year are available in 52 patients.

Metal ion levels are not increased with Ceramic-on-XLPE or Ceramic-on-Ceramic bearings. At one year follow-up the metal ion levels in Ceramic-on–Metal bearings is half that of Metal-on-Metal bearings using mean levels, and one third using median levels. Of note is that chromium levels in Ceramic-on-Metal bearings is the least elevated.

Due to the laboratory evidence that ceramic-on-metal bearings have the best surf ace wear characteristics with no head stripe wear on a ceramic head, and the laboratory and clinic al evidence of lower metal ion levels, Ceramic-on-Metal hip replacements could be one of the bearing surfaces of the future.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 139 - 139
1 Mar 2010
Sariali* E Stewart* T Jin* Z Fisher* J
Full Access

Introduction: The goal of the study was to compare the squeaking frequencies of Ceramic-on-Ceramic THR in-vitro and in-vivo among patients who underwent THR.

Method: Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident®, Stryker®) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster®). In-vitro 2 alumina ceramic (Biolox Forte Ceramtec®) 32 mm diameter (Ceramconcept®) components were tested using a PROSIM® hip friction simulator. The cup was positioned with a 70° abduction angle in order to achieve edge loading conditions and the head was articulated ± 10° at 1 Hz with a load of 2.5kN for a duration of 300 cycles. Tests were conducted under lubricated conditions with 25% bovine serum and with the addition of a 3rd body alumina ceramic particle (200 μm thickness and 2 mm length).

Results: In-vivo, recordings had a dominant frequency ranging between 2.2 and 2.4 kHz. In-vitro no squeaking occurred under edge loading conditions. However, with the addition of an alumina ceramic 3rd body particle in the contact region squeaking was obtained at the beginning of the tests and stopped after ~20 seconds (dominant frequency 2.6 kHz).

Discussion and Conclusion: Squeaking noises of a similar frequency were recorded in-vitro and in-vivo. In-vitro noises followed edge loading and 3rd body particles and despite, the severe conditions, squeaking was intermittent and difficult to reproduce. The lower frequency of squeaking recorded in-vivo, demonstrates a potential damping effect of the soft tissues. No damage was observed on the components, however, the test duration was very short. Squeaking may be related to third body particles that could be generated by wear or impingement between the femoral neck and the metal back. Cup design seems to be of particular importance in noisy hip, leading to a high variability of squeaking rate according to the implants.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 187 - 187
1 Mar 2010
Schepers A Jagt DV Breckon A Williams S Fisher J Isaac G
Full Access

A randomised prospective study of 4 bearing surfaces in hip replacements is being conducted. The primary objective is to identify the best long term bearing surface clinically and radiographically, and metal ion levels have been measured in all cases.

Patieents have been randomised to the 4 bearing surfaces viz. Ceramic on XLinked Poly, Ceramic on Ceramic, Metal on Metal and Ceramic on Metal. Pre operative blood samples and follow up blood samples for metal ion analysis using the ICPMS method have been taken in all patients. As at February 2008 187 patients have been recruited, and metal ion levels at 1 year are available in 52 patients.

Metal ion levels are not increased with Ceramic on XLinked Poly or Ceramic on Ceramic bearings. At 1 year follow up the metal ion levels in Ceramic on Metal bearings is half that of Metal on Metal bearings using the mean levels, and one third using the madian levels. Of note is that the chromium levels in Ceramic on Metal bearings is the least elevated.

Due to laboratory evidence that Ceramic on Metal bearings have the best surface wear characteristics with no head stripe wear, and laboratory and clinical evidence of lower metal ion blood levels, Ceramic on Metal hip replacements could be a bearing surface of the future.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 392 - 392
1 Sep 2009
Sariali E Stewart T Jin Z Fisher J
Full Access

The use of hard-on-hard hip prostheses has highlighted specific problems like the “stripe-wear” and the squeaking. Many authors have related these phenomena to a micro-separation between the cup and the head. The goal of the study was to model the hip kinematics under micro-separation regime in order to develop a computational simulator for total hip prosthesis including a joint laxity, and to use it to perform a sound analysis.

A three-dimensional model of the Leeds II hip simulator was developed on ADAMS® software. A spring was used to introduce a controlled micro-separation (less than 500 microns) during the swing phase of the walking cycle. The increase of the load during the stance phase induced a relocation of the head in the cup. Values of the medial-lateral separation predicted from the model were compared to experimental data measured using a LVDT of less than 5 microns precision. Theoretical wear path predicted from the model was compared to the literature data. The frequencies of the vibratory phenomena were determined, using the Fourier transformation.

There was an excellent correlation between the theoretical prediction and the experimental measurement of the medial-lateral separation during the walking cycle (0.92). Edge-loading contact occurred during 57% of the cycle according to the model and 47% according to the experimental data. Velocity and acceleration were increased during the relocation phase in a chaotic manner, leading to vibration. The contact force according to the model had also a chaotic variation during the micro-separation phase, suggesting a chattering movement. Fourier transformation showed many frequencies in the audible area.

A three-dimensional computational model of the kinematics of the hip after total replacement was developed and validated with an excellent precision under micro separation. It highlighted possible explanations for the squeaking that may occur during either relocation phase or edge loading.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 290 - 290
1 May 2009
Brockett C Williams S Isaac G Fisher J
Full Access

Ceramic on metal bearings for hip replacement have shown reduced friction, wear, and metal ion levels in comparison to metal on metal bearings. Lower wear has been attributed to a reduction in corrosive wear, smoother surfaces and improved lubrication and differential hardness and reduction in adhesive wear. The aim of this study was to further assess the performance of novel differential hardness COM THRs in two different bearing configurations. The effect of bearing configuration was examined by comparing COM (ceramic head on metal liner) with metal-on-ceramic (metal head on ceramic liner) (MOC) bearings in micro-separation hip simulator testing.

Components used were zirconia-platelet toughened alumina (Biolox Delta) heads and high carbon (0.2wt%) CoCrMo alloy cups, tested in COM and MOC configurations, (, (DePuy International Ltd, UK). Micro-separation hip simulator testing was conducted for 2 million cycles (Mc) using a Prosim hip simulator (SimSol, UK), which applied a twin peak loading cycle and walking motions with the prosthesis positioned in the anatomical position. The lubricant (25% calf serum) was changed approximately every 0.33Mc and wear was measured gravimetrically. A negative force was applied to the head during the swing phase, to produce a joint laxity and head – rim contact, the head relocated in the stance phase.

The total overall mean wear rate for the MOC bearings (0.71±0.30mm3/Mc) was significantly higher than the wear rate for the COM bearings (0.09±0.025mm3/ Mc). The contact of the head against the rim of the cup at heel strike caused deep stripe wear on the metallic heads of the MOC bearings. Stripes of metallic transfer were visible on all the ceramic heads (COM bearings). The COM bearings had much lower wear rates than the MOC bearings under harsh micro-separation conditions. This suggests that the head in a differential hardness bearing should be the harder material. The COM concept also provides increased design flexibility; thin metal shells can be used with larger ceramic heads. Additionally the design protects against ceramic liner chipping. COM bearings are currently undergoing clinical trials.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 289 - 290
1 May 2009
Brockett C Williams S Isaac G Jin Z Fisher J
Full Access

Large diameter metal-on-metal (MOM) bearings are becoming increasingly popular for young, active patients. Clearance is a particularly important consideration for designing MOM implants, considering historical experience of equatorial contact and high frictional torque. Lubrication theory predicts increasing the clearance will result in diminished lubrication, resulting in increased friction and wear. Clinical cases of transient squeaking in patients with resurfacing bearings have been noted in recent years, with some reporting an incidence of up to 10% between 6 months and 2 years post-implantation. This study aimed to investigate the impact of increasing clearance on the lubrication, friction and squeaking of a large diameter metal-on-metal resurfacing bearing through frictional studies.

Clinical-grade MOM implants of 55mm diameter and 100μm diametric clearance, and custom-made, 55mm bearings with diametric clearances of approximately 50μm and 200μm (DePuy International Ltd) were tested in a friction simulator. Components were inverted with a flexion-extension of ±25o applied to the head and lubricated with 25% and 100% newborn bovine serum. A peak load of 2kN, with swing-phase loads of 25N, 100N and 300N were applied.

Sound data was recorded during each friction test using a MP3 recorder and pre-amplifier. A microphone was set up at a distance of 50mm from the implant, and data recorded over a minimum of 10 seconds where sound was generated. Sound data was assessed through narrow band analysis on Frequency Master software (Cirrus Research, UK).

Lubrication was assessed by directly measuring the separation between the head and cup during the test cycle by ultrasonic methods (Tribosonics, UK). An ultrasound sensor was bonded to the back of the cup and reflection measurements were taken during the friction tests with a sampling rate of 100Hz. Using equations which related reflection coefficient to lubricant properties and thickness, values for the film thickness were calculated.

The surface replacement with the largest clearance yielded the highest friction factor for each test condition. The difference between the large clearance bearing and the smaller clearance samples was statistically significant in 25% bovine serum, the more clinically relevant lubricant (ANOVA, p< 0.05). The 50μm clearance group yielded similar results to the 100μm clearance bearing, although a slight increase in friction was observed.

Squeaking occurred during every test in the large clearance group. There was a reduced incidence of squeaking in the smaller clearances, with the lowest incidence observed in the 100μm clearance group.

The smallest separation of the head and cup was observed within the large clearance bearings. The best lubrication condition measured ultrasonically was observed within the 100μm clearance bearing. There appeared to be good correlation between friction, lubrication and the incidence of squeaking. This study suggests a large diametric clearance results in reduced lubrication, increased friction and an increased incidence of squeaking. However, there is a minimum diametric clearance that can be tolerated, as clearance must accommodate the manufacturing tolerance.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 294 - 295
1 May 2009
Udofia I McCann L Graindorge S Jin Z Fisher J
Full Access

Clinical reports of surgical intervention options, such as spacers or hemi-arthroplasties, particularly for treatment of young arthritic patients, have been poor [1]. Knowledge of the tribology of the cartilage-prosthesis interaction of these devices would potentially provide an insight to the reasons for the premature failure of these devices and the development of more appropriate intervention treatment solutions for arthritic patients. Frictional studies of articular cartilage have been reported, using simple pin-on-plate geometric configurations [2], which do not accurately represent the geometric and stress conditions in the natural joint. A more representative model, based on the medial compartment of the knee joint has been developed in the Part 1 of this study [3] for the pre-clinical tribological testing the natural joint and their related arthroplasty devices. Bearing geometry is an important consideration in limiting wear, as shown in congruous meniscal knee replacement, which exhibited lower wear rates than incongruous designs [4,5]. The aim of this study was to use a unicompartmental hemi-arthroplasty model to examine the effect of tibial conformity and stress on the friction and wear of articular cartilage.

Experiments were conducted in an anatomic pendulum friction simulator (SimSol, UK) using the medial femoral condyle of a bovine knee joint articulating against two conforming stainless steel (316L) tibial plates (R=50mm and 100mm). A simplified physiologic knee loading profile was applied represent both low loading and much higher physiological loading conditions, with peak load between 259N – 1.5kN). Tests were conducted in 25% bovine serum and run for 3600 and 300 cycles under the low and high loading conditions respectively. The motion was cycled at 1Hz with amplitude between −10°–13.1°. Cartilage wear was assessed qualitatively from surface roughness measurements using a surface profile using a surface profilometer (Taylor Hobson, UK). The friction and wear of cartilage articulating against the conforming tibial plates were compared to a positive control flat tibial plate model [3]. The conforming plate models were found to produce significantly lower cartilage friction and surface damage (μ=0.022–0.035, Ra=0.136–0.145μm) than the flat plate model (μ=0.078, Ra=2.70μm). No damage on the cartilage surface was observed under low loads, however, under higher, more physiological loading cartilage friction increased (μ=0.08) in the conforming plate model, with a significant surface damage. An anatomic unicompartmental knee joint model has been developed to successfully examine the effect of counterface conformity on cartilage friction and wear for pre-clinical testing of a hemi-arthroplasty device. Counterface conformity was shown to significantly reduce cartilage friction and wear. This was attributed to the increased surface area and reduced stresses experienced in comparison to an incongruent bearing articulation.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 533 - 533
1 Aug 2008
Jennings LM Galvin AL Fisher J
Full Access

Introduction: There is increasing interest in the coupling of highly cross-linked polyethylene with large diameter heads in the hip. The aim of this study was to determine the wear of large (size 36 mm) highly cross-linked polyethylene inserts against ceramic and cobalt chrome femoral heads using a physiological hip simulator.

Methods: Size 36 mm Biolox® Forte alumina and cobalt chrome femoral heads were coupled with highly cross-linked polyethylene inserts in the ten station Leeds ProSim Physiological Anatomical Hip Joint Simulator. The simulator was run for 10 million cycles and the change in volume of the polyethylene inserts was determined geometrically.

Results: The volume change of the ceramic/cross-linked polyethylene bearing combinations during the first two million cycles of the hip simulator test was twice that of the cobalt chrome/cross-linked polyethylene bearing combinations due to increased creep. After 2 million cycles a steady state wear rate was reached. In contrast the cobalt chrome/cross-linked polyethylene bearing combinations reached their steady state at 1 million cycles.

The steady state wear rate for the ceramic/cross-linked polyethylene bearing combinations was 4.7 mm3/million cycles. This was a significant 40% reduction compared to the wear rate of the cobalt chrome/cross-linked polyethylene bearing combinations at 8.1 mm3/million cycles (p< 0.01).

Discussion: The clinical implications of this study relate to the measurement of in vivo wear, which is routinely assessed using penetration measured from radiographs. However, penetration is a measure of both wear and creep. This means that although the penetration of polyethylene inserts coupled with metal and ceramic femoral heads may be similar, the actual wear is likely to be lower with the ceramic heads due to their elevated creep


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 169 - 169
1 Mar 2008
Jennings LM Bell CJ Ingham E Komistek R Stone MH Fisher J
Full Access

Considerable differences in kinematics between different designs of knee prostheses and compared to the natural knee have been seen in vivo. Most noticeably, lift off of the femoral condyles from the tibial insert has been observed in many patients. The aim of this study was to simulate lateral femoral condylar lift off in vitro and to compare the wear of fixed bearing knee prostheses with and without lift off.

Twelve PFC Sigma cruciate retaining fixed bearing knees (DePuy, Leeds, UK) were tested using six station simulators (Prosim, Manchester, UK). The kinematic input conditions were femoral axis loading (maximum 2.6 kN), flexion-extension (0–58°), internal/external rotation (±5°) and anterior/posterior displacement (0–5 mm). Six knees were tested under these standard conditions for 4 million cycles. Six knees were tested under these conditions with the addition of lateral femoral condylar lift off, for 5 million cycles. The lubricant used was 25% newborn calf serum. Wear of the inserts was determined gravimetrically.

Under the standard kinematic conditions the mean wear rate with 95% confidence limits was 8.8 ± 4.8 mm 3/million cycles. When femoral condylar lift off was simulated the mean wear rate increased to 16.4 ± 2.9mm 3/million cycles, which was statistically significantly higher (p < 0.01, Students t-test). The wear patterns on the femoral articulating surface of all the inserts showed more burnishing wear on the medial condyle than the lateral. However, in the simulation of lift off the medial condyle was more aggressively worn with evidence of adhesion and surface defects.

The presence of lateral femoral condylar lift off accelerated the wear of PFC Sigma cruciate retaining fixed bearing knees. The lateral lift off produced uneven loading of the bearing, resulting in elevated contact stresses and hence more wear damage to the medial side of the insert. The implications of condylar lift off include increased wear of the polyethylene and possible osteolysis.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 189 - 189
1 Mar 2008
Williams S Ingham E Stone M Fisher J
Full Access

Different wear rates have been reported for ceramic-on-ceramic (COC) and metal-on-metal (MOM) hip replacements tested in simulators with different loading conditions and lubricants. We postulate that differences in wear rates may be associated with changes in lubrication and friction in the joint. This study aimed to compare the friction of COC and MOM bearings under different lubrication regimes, simulated by varying swing-phase loads and lubricants.

Alumina COC and CoCr MOM 28mm-diameter bearings were studied in a pendulum friction simulator. Flexion-extension of +/−25 degrees was applied to the head, a peak load of 2kN and swing-phase loads of 25N,100N, 300N used. Lubricants used included water, 25% and 100%-bovine serum.

COC and MOM bearings showed increased friction as the swing-phase load increased. COC bearings produced higher friction in 100%-serum compared to 25%-serum. In contrast, friction was lower when MOM bearings were tested in 100%-serum compared to 25%-serum. When COC bearings were tested in water, the friction decreased in comparison to testing in serum, however, MOM friction was higher in water.

Increasing the swing-phase load reduced the thickness of the fluid-film in the stance-phase and this increased friction. The increase in friction when COC bearings were tested in 100%-serum (compared to 25%) may be due to the increased forces required to shear the increased concentration of proteins, similarly friction is reduced in water. MOM bearing friction was reduced in 100%-serum, in this instance increased proteins may be acting as solid-phase lubricants, and similarly MOM friction increased in water.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 187 - 188
1 Mar 2008
Stewart TD Flemming N Wroblewski M Fisher J
Full Access

The product recall of Desmarquest Zirconia heads in 2001 was associated with specified batches of material. Despite of this fact, concerns raised over the stability of Zirconia led to a vast decrease in the use of Zirconia for hip prostheses. While there is evidence in the literature suggesting that Zirconia may become unstable, there remain many prostheses with Zirconia heads in use today. The purpose of this study was to report the condition observed in retrieved Zirconia heads not included in the product recall.

The bearing surfaces of seven retrieved 22mm diameter Zirconia on UHMWPE hip prostheses were investigated to determine whether any degradation of the Zirconia occurred in-vivo. All seven of the Zirconia heads were manufactured by Saint-Gobain Cerammiques Avancees Desmarquest and implantation time varied from 1 to 10 years. Components were analysed by Talysurf, Interferometer, SEM and XRD and compared to new components.

Talysurf of the components revealed an average surface roughness ranging from 0.004 to 0.007 micrometers Ra. This was only slightly rougher than new ceramic components which generally have an Ra of 0.003 micrometers. SEM of the surfaces did not reveal any difference between the retrieved components and new components. Further surface XRD of 4 of the 7 heads, as shown in Figure 1, showed very small percentages of monoclinic phase (28 degrees 2 theta) with predominantly tetragonal phase (30 degrees 2theta), similar to what is observed in new components. Figure 1: XRD of typical retrieved ZR head surface.

All seven retrieved heads demonstrated no evidence suggesting that degradation of the Zirconia had occurred in-vivo.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 390 - 390
1 Oct 2006
Ingram J Korossis S Fisher J Ingham J
Full Access

Introduction: The anterior cruciate ligament (ACL) is the most frequently damaged ligament in the knee joint. The patella tendon autograft is the current replacement of choice, however autografts are not always available and grafting often leads to donor site morbidity. Allogeneic implants may cause an adverse immunological reaction [1] The aim of this study was to develop an acellular tendon scaffold with the mechanical and biochemical properties of tissue which could be rapidly recellularised for use in tissue engineering of the anterior cruciate ligament.

Materials and Methods: Porcine patella tendons were dissected less than 24 hours after slaughter and washed in PBS. The tendons were decellularised using 0.1% (w/ v) SDS for 24 hours. Decellularisation was assessed by haematoxylin and eosin staining and light microscopy. The glycosaminoglycan and hydroxyproline (measure of collagen) content of the scaffold were also assessed quantitatively following decellularisation. Following decellularisation the scaffolds were subject to various levels of ultrasonication in order to modify the acellular scaffold prior to reseeding in an attempt to achieve recellularisation of the scaffold. Denaturation of the collagen within the scaffold following ultrasonication was assessed using the ƒÑ-chymotrypsin assay. Decellularised and ultrasonicated scaffolds were subject to uniaxial tensile loading to failure in a Howden tensile testing machine. The sonicated scaffolds were reseeded with human tenocytes (1x105 cells.cm2) and cultured in 5% CO2 in air at 37°C for three weeks. One scaffold was removed every seven days and either fixed in 10% neutral buffered formalin prior to dehydration and H& E staining or was stained with Live/Dead stain (Molecular Probes) and observed using confocal microscopy.

Results: Porcine patella tendons were successfully decellularised using 0.1% (w/v) SDS. Following decellularisation there was no change in the biochemical composition of the scaffold. Ultrasonication of the scaffold at 360W was shown to open up spaces between collagen bundles without damaging the collagen matrix and this was confirmed with the Ą-chymotrypsin assay. Following decellularisation and ultrasonication there was no change in the ultimate force (N) needed to break the tendon scaffold. When cells were seeded onto the sonicated scaffold, the cells were shown to penetrate to the centre of the scaffold within just 3 weeks of culture. Following staining with Live/Dead stain it was shown that after three weeks in static culture approximately 50% of the cells in the centre of the scaffold were viable. In comparison the cells cultured on the acellular non-sonicated scaffold remained on the surface of the scaffold and did not penetrate the matrix during this culture period.

Conclusion: An acellular scaffold with excellent biochemical and mechanical properties has been developed which can be recellularised in an important first step towards tissue engineering of the anterior cruciate ligament. Future work will investigate culture of the reseeded scaffold under appropriate physical stimulation with a view to maintaining tissue homeostasis and increasing cell viability.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 393 - 393
1 Oct 2006
Brown C Papageorgiou I Fisher J Ingham E Case C
Full Access

Introduction: Cobalt-chrome particles from metal hip implants can accumulate in the liver, spleen, lymph nodes and bone marrow of patients. This is a concern as studies have reported neoplastic changes in cells of patients with metal implants. The aims of this study were to determine the effect of wear particles generated by metal-on-metal and ceramic-on-metal implants from hip simulations upon the viability of L929 cells and to determine their genotoxic potential when cultured with primary human fibroblasts.

Methods: Particles were generated in a 10 station Prosim hip simulator run with water as lubricant under microseparation and standard conditions. Bearings comprised medical grade HIPed ‘BIOLOX Forte’ alumina ceramic femoral heads against Ultima metal CoCr acetabular cups (CoM) and wrought CoCr alloy ASTM F1537 femoral heads and acetabular cups (MoM). Particles were sterilised at 1800C for 4 hours and cultured with L929 fibroblasts at particle volume(μm3):cell number ratios of 500:1, 100:1, 50:1, 5:1, 0.5:1, 0.05:1, 0.005:1 and 0.0005:1. Camptothecin (1 and 2μg.ml-1) and latex beads (100μm3 per cell) were used as positive and negative controls. Cultures were for 0, 1, 2, 3, 4 and 5 days at 37oC in 5%(v/v) CO2 in air. Cell viability was assessed using the ATPlite assay. Sterile particles were cultured with primary human fibroblasts at particle volume (μm3):cell number ratios of 50:1, 5:1 and 0.5:1. Cells were exposed to 30%(v/v) H2O2 (positive control) and latex beads (50μm3 per cell; negative control). Cells were cultured for 24 hours and 5 days at 37oC in 5%(v/v) CO2 in air. Genotoxicity was assessed using the comet assay. Statistical analysis between the cell-only negative controls and the cells with the particles at various concentrations, were determined by ANOVA and calculating the minimum significant difference (MSD;p< 0.05) using the T-method.

Results: Particle volume(μm3):cell ratios of 500:1, 100:1 and 50:1 caused a significant decrease in cell viability over 5 days. Wear particles from MoM implants under microseparation wear conditions were also significantly reduced viability at particle volume(μm3):cell ratios of 5:1 over 5 days. Particles from MoM implants under standard wear conditions and CoM implants under both wear conditions resulted in increases in tail length and tail moment relative to the cells only negative control for all treatment groups after 24 hours. These decreased by day 5. Tail length and tail moment were increased at 24 hours relative to day 5 for each of the three particle types. Particles generated by MoM implants under microseparation conditions had different effects upon cells. Tail lengths increased between days 1and 5 for all particle concentrations. A significant increase in tail moments between days 1 and 5 was recorded.

Discussion: This study has shown that metal particles can cause cytotoxic effects and immediate DNA damage to fibroblasts in vitro. Particles were found to reduce cell viability over 5 days and this may account for the decreases in tail length and moments between 1 and 5 days for three particle types. This is of concern as MoM and CoM implants are designed to be implanted into young patients and, despite their low wear rates generate circa 1013 particles per mm3 of wear.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 371 - 371
1 Oct 2006
Papageorgiou I Ingham E Fisher J Jones E Learmonth I Case C
Full Access

Introduction: Joint replacement surgery is one of the most common operations that take place in United Kingdom. The major problem in total hip arthroplasty is the generation of particulate wear debris and the subsequent biological responses. Wear debris induces osteolysis and a subsequent failure of the implant that lead to the liberation of greater quantities of particulate and soluble debris to bone marrow, blood, lymph nodes, liver and spleen. Recently, it has been suggested that these adverse effects depend not only on the chemical composition but also on the particulate nature of the material (size and shape). Particle size has been shown to influence the inflammatory response of macrophages to wear debris. This study evaluated whether particle size also influences the viability and mutagenic damage.

Methods: Cobalt chrome alloy particles of two sizes (large 2.9±1.1μm, small 0.07±0.04 μm) were generated and characterised by Scanning Electron Microscopy. Different concentrations of particles were added to primary human fibroblasts in tissue culture. The release of cytokines in the medium was assayed by Enzyme-Linked ImunnoSorbent Assay (ELISA). Cell viability was determined by MTT conversion and the degree of DNA damage was quantitatively analysed by the Alkaline Single Cell Gel Electrophoresis (COMET) assay with image analysis.

Results: Small particles initialise DNA damage at much lower volumetric concentrations (0.05 and 0.5 μm3/cell) than larger particles (500 μm3/cell). The difference in the doses was approximately related to the difference in surface area of the particles. DNA damage was related to a delayed decrease in cell viability, which was noted after three days of exposure.

In contrast, the release of the inflammatory cytokine TNF-α and the multifunctional growth factor TGF-β-2 occurred at lower doses (0.0005 to 5 μm3/cell for TNF-α and 0.5 to 50 μm3/cell for TGF-β-2). No release of IL-6 was detected at any dose. Only growth factor FGF-23 was increased in similar pattern to the DNA damage.

Conclusions: This study has demonstrated important differences between the mutagenicity, toxicity and inflammatory potential of small (nanometre sized) and large (micrometer sized) chrome particles.