Abstract
Ceramic-on-metal (COM) bearings have shown reduced wear and friction compared with metal-on-metal (MOM) bearings in-vitro. Lower wear has been attributed to a reduction in corrosive wear, smoother surfaces, improved lubrication and differential hardness reducing adhesive wear. Clinical studies have also shown reduced metal ion levels in-vivo compared with MOM bearings. The aim of this study was to examine two explanted COM bearings (one head and cup, one head only), and to assess the effect of in-vivo changes on the wear performance of the COM bearings by comparing the wear of the explanted bearings with three new COM implants in a hip wear simulator.
Two 28mm diameter COM bearings were provided for analysis. These were visually examined and surface profilometry was performed using a 2-D contacting profilometer (Form Talysurf, Taylor Hobson, UK). Scanning electron microscopy was used to image the regions of transfer on the ceramic heads, and EDX to assess the transfer composition (Philips XL30 ESEM).
Hip simulator testing was conducted for 2 million cycles (Mc) comparing the explanted bearings with three new 28mm COM bearings. Tests were performed in a Prosim simulator (SimSol, UK), which applied a twin peak loading cycle, with a peak load of 3kN. Flexion-extension of − 15 to 30 degrees was applied to the head and internal-external rotation of +/− 10 degrees was applied to the cup, components were mounted in the anatomical position. The lubricant was 25% (v/v) calf serum supplemented with 0.03% (w/v) sodium azide and was changed approximately every 0.33Mc. Wear was measured gravimetrically at 0.5, 1 and 2 Mc.
Regions of material transfer, identified on both ceramic explant heads, were shown to be CoCr material by EDX analysis, suggesting metallic transfer from the metal cup. Profilometry traces across metallic transfer showed comparable surface roughness measurements compared to unworn material.
The overall mean wear rate for the new COM bearings at 2Mc was 0.047 ± 0.06mm3/Mc. The mean wear rate for the explanted head articulated with a new cup was slightly lower at 0.034mm3/Mc. The mean wear rate for the explanted head and cup was highest at 0.15mm3/Mc. It was noted that the explanted head/cup had higher bedding in wear compared with the other bearings, but still significantly less than a new MOM bearing (mean bedding-in wear rate 2.03 ± 2.59 mm3/Mc). The steady-state wear was comparable with the new bearings. As the orientation of these implants in-vivo was unknown, it is proposed that the elevated wear during bedding-in of the explanted head/cup bearing may be due to the alignment of the components. The wear rates of the explanted ceramic head against a new cup were comparable with the new bearings, suggesting that the presence of metallic transfer on the ceramic head does not adversely affect the wear behaviour of COM bearings.
Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org