Advertisement for orthosearch.org.uk
Results 1 - 50 of 100
Results per page:

Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Bone & Joint Research
Vol. 5, Issue 6 | Pages 253 - 262
1 Jun 2016
Liu H Li W Liu YS Zhou YS

Objectives. This study aims to evaluate if micro-CT can work as a method for the 3D assessment and analysis of cancellous bone by comparing micro-CT with undecalcified histological sections in OVX rats. Methods. The mandible and tibia of sham, ovariectomised (OVX) and zoledronate-injected ovariectomised (OVX-ZOL) rats were assessed morphometrically. Specimens were scanned by micro-CT. Undecalcified histological sections were manufactured from the specimen scanned by micro-CT and stained with haematoxylin and eosin. Bivariate linear regressions and one-way analysis of variance were undertaken for statistics using SPSS 16.0.1 software. Results. There were highly significant correlations between undecalcified histological sections and micro-CT for all parameters (bone volume density (BV/TV), bone surface density (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp))in the mandible and tibia. Bone histomorphometric parameters analysed by both methods exhibited significant differences among sham, OVX, and OVX-ZOL groups. There were significant correlations between mandible and tibia in BV/TV, BS/BV, and Tb.Sp. Conclusions. Micro-CT is a complementary tool to histological sections in basic research that could improve our understanding of bone histomorphometry. The mandible can be used as an effective site to assess bone morphometry of OVX or metabolic bone disease rat models. Cite this article: H. Liu, W. Li, Y. S. Liu, Y. S. Zhou. Bone micro-architectural analysis of mandible and tibia in ovariectomised rats: A quantitative structural comparison between undecalcified histological sections and micro-CT. Bone Joint Res 2016;5:253–262


Bone & Joint Research
Vol. 6, Issue 4 | Pages 253 - 258
1 Apr 2017
Hsu C Lin C Jou I Wang P Lee J

Objectives. Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats. Methods. Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blot. Results. In the time course of the study, nitric oxide was increased seven and 14 days after OA induction. Pro-inflammatory cytokines including tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were decreased. L-NG-Nitroarginine methyl ester (L-NAME, a non-specific nitric oxide synthase inhibitor) significantly decreased cartilage nitric oxide and blocked immune suppression. Further, L-NAME decreased Matrix metalloproteinase (MMPs) and increased tissue inhibitor of metalloproteinase (TIMP) expression in meniscectomised rats. Conclusion. Nitric oxide-dependent innate immune suppression protects cartilage from damage in the early stages of OA initiation in rats. Cite this article: C-C. Hsu, C-L. Lin, I-M. Jou, P-H. Wang, J-S. Lee. The protective role of nitric oxide-dependent innate immunosuppression in the early stage of cartilage damage in rats: Role of nitric oxide in ca rtilage da mage. Bone Joint Res 2017;6:253–258. DOI: 10.1302/2046-3758.64.BJJ-2016-0161.R1


Bone & Joint Research
Vol. 3, Issue 7 | Pages 230 - 235
1 Jul 2014
van der Jagt OP van der Linden JC Waarsing JH Verhaar JAN Weinans H

Objectives. Electromagnetic fields (EMF) are widely used in musculoskeletal disorders. There are indications that EMF might also be effective in the treatment of osteoporosis. To justify clinical follow-up experiments, we examined the effects of EMF on bone micro-architectural changes in osteoporotic and healthy rats. Moreover, we tested the effects of EMF on fracture healing. Methods. EMF (20 Gauss) was examined in rats (aged 20 weeks), which underwent an ovariectomy (OVX; n = 8) or sham-ovariectomy (sham-OVX; n = 8). As a putative positive control, all rats received bilateral fibular osteotomies to examine the effects on fracture healing. Treatment was applied to one proximal lower leg (three hours a day, five days a week); the lower leg was not treated and served as a control. Bone architectural changes of the proximal tibia and bone formation around the osteotomy were evaluated using in vivo microCT scans at start of treatment and after three and six weeks. Results. In both OVX and sham-OVX groups, EMF did not result in cancellous or cortical bone changes during follow-up. Moreover, EMF did not affect the amount of mineralised callus volume around the fibular osteotomy. Conclusions. In this study we were unable to reproduce the strong beneficial findings reported by others. This might indicate that EMF treatment is very sensitive to the specific set-up, which would be a serious hindrance for clinical use. No evidence was found that EMF treatment can influence bone mass for the benefit of osteoporotic patients. Cite this article: Bone Joint Res 2014;3:230–5


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine. Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 402 - 407
1 Mar 2007
Alcantara-Martos T Delgado-Martinez AD Vega MV Carrascal MT Munuera-Martinez L

We studied the effect of vitamin C on fracture healing in the elderly. A total of 80 elderly Osteogenic Disorder Shionogi rats were divided into four groups with different rates of vitamin C intake. A closed bilateral fracture was made in the middle third of the femur of each rat. Five weeks after fracture the femora were analysed by mechanical and histological testing. The groups with the lower vitamin C intake demonstrated a lower mechanical resistance of the healing callus and a lower histological grade. The vitamin C levels in blood during healing correlated with the torque resistance of the callus formed (r = 0.525). Therefore, the supplementary vitamin C improved the mechanical resistance of the fracture callus in elderly rats. If these results are similar in humans, vitamin C supplementation should be recommended during fracture healing in the elderly


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 830 - 835
1 Jun 2007
Hara Y Ochiai N Abe I Ichimura H Saijilafu Nishiura Y

We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal. Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 254 - 257
1 Feb 2008
Nakajima T Ohtori S Inoue G Koshi T Yamamoto S Nakamura J Takahashi K Harada Y

Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry. Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted. The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones. Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 837 - 843
1 Sep 1997
Van Der Vis HM Marti RK Tigchelaar W Schüller HM Van Noorden CJF

We examined the cellular responses to various particles injected into the knees and the intramedullary femoral cavities of rats in the presence of polymethyl-methacrylate (PMMA) plugs. The intra-articular particles were mainly ingested by synovial fibroblasts. Increased numbers of macrophages were not detected and there was only a slight increase in synovial thickness. Cellular responses in the intramedullary space were similarly mild and bone resorption around the PMMA plug did not occur. Bone formation was inhibited only by polyethylene particles. In contrast to current views, our study shows that wear particles per se do not initiate bone resorption


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 705 - 709
1 Jul 1999
Hara T Hayashi K Nakashima Y Kanemaru T Iwamoto Y

We have studied the effect of hydroxyapatite (HA) coating in 15 ovariectomised and 15 normal rats which had had a sham procedure. Twenty-four weeks after operation, HA-coated implants were inserted into the intramedullary canal of the right femur and uncoated implants into the left femur. The prostheses were removed four weeks after implantation. Twelve specimens in each group had mechanical push-out tests. Sagittal sections of the other three were evaluated by SEM. The bone mineral density (BMD) of the dissected left tibia was measured by dual-energy x-ray absorptiometry. The difference in BMD between the control and ovariectomised tibiae was 35.01 mg/cm. 2. (95% CI, 26.60 to 43.42). The push-out strength of the HA-coated implants was higher than that of the uncoated implants in both groups (p < 0.0001), but the HA-coated implants of the ovariectomised group had a reduction in push-out strength of 40.3% compared with the control group (p < 0.0001). Our findings suggest that HA-coated implants may improve the fixation of a cementless total hip prosthesis but that the presence of osteoporosis may limit the magnitude of this benefit


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1191 - 1194
1 Nov 2001
Ohtori S Takahashi K Yamagata M Sameda H Moriya H Chiba T Takahashi Y

Based on a study using a retrograde neurotracer, we have previously found that the dorsal portion of the L5/6 disc in the rat is multisegmentally innervated by dorsal root ganglia (DRG) from the level of T13 to L6, and that sensory nerve fibres from DRG of T13, L1 and L2 pass through the paravertebral sympathetic trunks. In this study in newborn rats, we injected crystals of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylinedocarbocyanine perchlorate (DiI) into the DRG of T13, L1 and L2 and showed DiI-labelled sensory nerve fibres in the dorsal portion of the discs from the level of T13/L1 to L5/6. Our results show that the dorsal portion of the lumbar discs is innervated by the DRG from levels T13 to L2


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 731 - 736
1 Jul 1998
Maeda A Horibe S Matsumoto N Nakamura N Mae T Shino K

We examined solvent-dried, gamma-irradiated (SD-R) allografts and fresh-frozen (FF) allografts mechanically and morphologically. Before transplantation, FF grafts were more than six times stronger than SD-R grafts. After four weeks, the tensile strength was about the same in both groups. At 24 weeks only collagen fibrils of small diameter were observed in the SD-R grafts while in FF grafts fibrils of small and intermediate diameter were seen. Clinically, we suggest that SD-R grafts could be used as a favourable alternative to FF grafts if care was taken regarding their initial mechanical weakness.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. Results. MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, . sd. 5%) compared with MSCs from adult (15%, . sd. 3%) and young rats (25%, . sd. 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, . sd. 4%), young (47%, . sd. 17%) or adult (21%, . sd. 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. Conclusions. MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients. Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017;6:–365. DOI: 10.1302/2046-3758.66.BJR-2016-0259.R1


Bone & Joint Research
Vol. 5, Issue 10 | Pages 492 - 499
1 Oct 2016
Li X Li M Lu J Hu Y Cui L Zhang D Yang Y

Objectives. To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. Materials and Methods. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05. Results. There was no significant difference between the amount of tooth movement in the young group (0.96, standard deviation (. sd. ) 0.30mm) and that in the adult group (0.80mm, . sd. 0.28) (p > 0.05) after the seven-day force application. On the compression side, the expression of RANKL and TRAP-positive osteoclasts in both the young and the adult groups increased after the application of force for seven days, and then decreased at the end of the seven-day retention period. However, by the end of the period, the expression of RANKL on the compression side dropped to the control level in the young group (p > 0.05), while it was still higher than that on the control side in the adult group (p < 0.05). The expression of RANKL on the compression side did not show significant difference between the young and the adult groups after seven-day force application (p > 0.05), but it was significantly higher in the adult group than that in the young group after seven-day post-orthodontic retention (p < 0.05). Similarly, the decreasing trend of TRAP-positive osteoclasts during the retention period in the adult group was less obvious than that in the young group. Conclusions. The bone-resorptive activity in the young rats was more dynamic than that in the adult rats. The expression of RANKL and the number of osteoclasts in adult rats did not drop to the control level during the post-orthodontic retention period while RANKL expression and the number of osteoclasts in young rats had returned to the baseline. Cite this article: X. Li, M. Li, J. Lu, Y. Hu, L. Cui, D. Zhang, Y. Yang. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res 2016;5:492–499. DOI: 10.1302/2046-3758.510.BJR-2016-0004.R2


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results. In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion. This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


Bone & Joint Research
Vol. 3, Issue 9 | Pages 262 - 272
1 Sep 2014
Gumucio J Flood M Harning J Phan A Roche S Lynch E Bedi A Mendias C

Objectives . Rotator cuff tears are among the most common and debilitating upper extremity injuries. Chronic cuff tears result in atrophy and an infiltration of fat into the muscle, a condition commonly referred to as ‘fatty degeneration’. While stem cell therapies hold promise for the treatment of cuff tears, a suitable immunodeficient animal model that could be used to study human or other xenograft-based therapies for the treatment of rotator cuff injuries had not previously been identified. Methods . A full-thickness, massive supraspinatus and infraspinatus tear was induced in adult T-cell deficient rats. We hypothesised that, compared with controls, 28 days after inducing a tear we would observe a decrease in muscle force production, an accumulation of type IIB fibres, and an upregulation in the expression of genes involved with muscle atrophy, fibrosis and inflammation. Results . Chronic cuff tears in nude rats resulted in a 30% to 40% decrease in muscle mass, a 23% reduction in production of muscle force, and an induction of genes that regulate atrophy, fibrosis, lipid accumulation, inflammation and macrophage recruitment. Marked large lipid droplet accumulation was also present. Conclusions . The extent of degenerative changes in nude rats was similar to what was observed in T-cell competent rats. T cells may not play an important role in regulating muscle degeneration following chronic muscle unloading. The general similarities between nude and T-cell competent rats suggest the nude rat is likely an appropriate preclinical model for the study of xenografts that have the potential to enhance the treatment of chronically torn rotator cuff muscles. Cite this article: Bone Joint Res 2014;3:262–72


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives. Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes. Methods. A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage. Results. The HFS diet, in the absence of trauma, resulted in increased joint damage in the shoulder and knee joints of rats. Hip joint damage, however, was not significantly affected by DIO, consistent with findings in human studies. The total Mankin score was increased in DIO animals compared with the chow group, and was associated with percentage of body fat. Positive significant predictive relationships for total Mankin score were found between body fat and two serum mediators (interleukin 1 alpha (IL-1α) and vascular endothelial growth factor (VEGF)). Conclusion. Systemic inflammatory alterations from DIO in this model system may result in a higher risk for development of knee, shoulder, and multi-joint damage with a HFS diet. Cite this article: K. H. Collins, D. A. Hart, R. A. Seerattan, R. A. Reimer, W. Herzog. High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model. Bone Joint Res 2018;7:274–281. DOI: 10.1302/2046-3758.74.BJR-2017-0201.R2


Bone & Joint Research
Vol. 3, Issue 3 | Pages 76 - 81
1 Mar 2014
Okabe YT Kondo T Mishima K Hayase Y Kato K Mizuno M Ishiguro N Kitoh H

Objectives. In order to ensure safety of the cell-based therapy for bone regeneration, we examined in vivo biodistribution of locally or systemically transplanted osteoblast-like cells generated from bone marrow (BM) derived mononuclear cells. Methods. BM cells obtained from a total of 13 Sprague-Dawley (SD) green fluorescent protein transgenic (GFP-Tg) rats were culture-expanded in an osteogenic differentiation medium for three weeks. Osteoblast-like cells were then locally transplanted with collagen scaffolds to the rat model of segmental bone defect. Donor cells were also intravenously infused to the normal Sprague-Dawley (SD) rats for systemic biodistribution. The flow cytometric and histological analyses were performed for cellular tracking after transplantation. Results. Locally transplanted donor cells remained within the vicinity of the transplantation site without migrating to other organs. Systemically administered large amounts of osteoblast-like cells were cleared from various organ tissues within three days of transplantation and did not show any adverse effects in the transplanted rats. Conclusions. We demonstrated a precise assessment of donor cell biodistribution that further augments prospective utility of regenerative cell therapy. Cite this article: Bone Joint Res 2014;3:76–81


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 259 - 263
1 Feb 2009
Dimmen S Nordsletten L Engebretsen L Steen H Madsen JE

Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel. In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing. Significantly lower maximum pull-out strength (p < 0.001), energy absorption (p < 0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1150 - 1156
1 Aug 2005
Hayashi K Fotovati A Ali SA Oda K Oida H Naito M

The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives. We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods. Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results. When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion. This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J. Russell, C. L. Mendias. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017;6:57–65. DOI: 10.1302/2046-3758.61.BJR-2016-0232.R1


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives. Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Methods. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data. Results. The amount of carbon and the contact angle on both implants were significantly reduced after UV irradiation. The BIC ratios for both UV light-treated implants significantly increased at two weeks, but there was no significant difference at four weeks. There was no significant difference in the BV ratios between the UV light-treated and control implants at two or four weeks. Conclusions. This study suggests that photofunctionalisation of Ti6Al4V implants, similar to that of Ti implants, may promotes osseointegration in early but not in the late phase of osseointegration. Cite this article: R. Yamauchi, T. Itabashi, K. Wada, T. Tanaka, G. Kumagai, Y. Ishibashi. Photofunctionalised Ti6Al4V implants enhance early phase osseointegration. Bone Joint Res 2017;6:331–336. DOI: 10.1302/2046-3758.65.BJR-2016-0221.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology. Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 889 - 893
1 Jun 2010
Kocaoglu B Agir I Nalbantoglu U Karahan M Türkmen M

We investigated the effect of mitomycin-C on the reduction of the formation of peritendinous fibrous adhesions after tendon repair. In 20 Wistar albino rats the tendo Achillis was cut and repaired using a modified Kessler technique. The rats were divided into two equal groups. In group 1, an injection of mitomycin-C was placed between the tendon and skin of the right leg. In group 2, an identical volume of sterile normal saline was injected on the left side in a similar fashion. All the rats received mitomycin-C or saline for four weeks starting from the day of operation. The animals were killed after 30 days. The formation of peritendinous fibrous tissue, the inflammatory reaction and tendon healing were evaluated. The tensile strength of the repaired tendons was measured biomechanically. Microscopic evidence of the formation of adhesions and inflammation was less in group 1. There was no significant difference in the tensile load required to rupture the repaired tendons in the two groups. Mitomycin-C may therefore provide a simple and inexpensive means of preventing of post-operative adhesions


Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives. The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known. Methods. In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours. Results. A significant decrease in the survival rate of co-cultured chondrocytes was found. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay demonstrated that mechanical stress-induced apoptosis occurred significantly in co-cultured chondrocytes but administration of the TGF-β1 receptor inhibitor, SB-505124, can significantly reverse these effects. Abdominal administration of SB-505124 can attenuate markedly articular cartilage degradation in OA rats. Conclusion. Mechanical stress-induced overexpression of TGF-β1 from osteoclasts is responsible for chondrocyte apoptosis and cartilage degeneration in OA. Administration of a TGF-β1 inhibitor can inhibit articular cartilage degradation. Cite this article: R-K. Zhang, G-W. Li, C. Zeng, C-X. Lin, L-S. Huang, G-X. Huang, C. Zhao, S-Y. Feng, H. Fang. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res 2018;7:587–594. DOI: 10.1302/2046-3758.711.BJR-2018-0057.R1


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives. In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. Methods. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score. Results. Both models showed an increase in joint pain as indicated by a significant (p < 0.05) decrease in the values of %HLWD at one week post-surgery. In the osteochondral injury model, the %HLWD returned to normal within three weeks, while in the ACLT model, a significant decrease in the %HLWD was persistent over an eight-week period. In addition, OA progression was more advanced in the ACLT model than in the osteochondral injury model. Furthermore, the ACLT model exhibited a higher mean OA score than that of the osteochondral injury model at 12 weeks. Conclusion. The development of pain patterns in the ACLT and osteochondral injury models is different in that the OA progression was significant in the ACLT model. Although both can be used as models for a post-traumatic injury of the knee, the selection of appropriate models for OA in preclinical studies should be specified and relevant to the clinical scenario. Cite this article: T. Tawonsawatruk, O. Sriwatananukulkit, W. Himakhun, W. Hemstapat. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018;7:244–251. DOI: 10.1302/2046-3758.73.BJR-2017-0121.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically. Results. The total number of PBMNCs was decreased after QQ-culture, however, the number of CD34+ and CD206+ cells were found to have increased as assessed by flow cytometry analysis. In addition, gene expression of angiogenic factors was upregulated in QQMNCs. In the animal model, the rate of bone union was higher in the QQMNC group than in the other groups. Radiographic scores and bone volume were significantly associated with the enhancement of angiogenesis in the QQMNC group. Conclusion. We have demonstrated that QQMNCs have superior potential to accelerate fracture healing compared with PBMNCs. The QQMNCs could be a promising option for fracture nonunion. Cite this article: K. Mifuji, M. Ishikawa, N. Kamei, R. Tanaka, K. Arita, H. Mizuno, T. Asahara, N. Adachi, M. Ochi. Angiogenic conditioning of peripheral blood mononuclear cells promotes fracture healing. Bone Joint Res 2017;6: 489–498. DOI: 10.1302/2046-3758.68.BJR-2016-0338.R1


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives. After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods. Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Conclusions. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231–244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Bone & Joint Research
Vol. 5, Issue 4 | Pages 137 - 144
1 Apr 2016
Paterson SI Eltawil NM Simpson AHRW Amin AK Hall AC

Objectives. During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes. Methods. The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively. Results. Joint drying caused extensive chondrocyte death within the superficial regions of cartilage. Histology of dried cartilage demonstrated a loss of surface integrity at four weeks, fibrillations at eight weeks, and an increased modified Mankin score (p < 0.001). Cartilage thickness increased (p < 0.001), whereas chondrocyte density decreased at four weeks (p < 0.001), but then increased towards sham-operated levels (p < 0.01) at eight weeks. By week eight, chondrocyte pairing/clustering and cell volume increased (p < 0.05; p < 0.001, respectively). Conclusions. These in vivo results demonstrated for the first time that as a result of laminar airflow, cartilage degeneration occurred which has characteristics similar to those seen in early osteoarthritis. Maintenance of adequate cartilage hydration during open orthopaedic surgery is therefore of paramount importance. Cite this article: Dr A. Hall. Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone Joint Res 2016;5:137–144. DOI: 10.1302/2046-3758.54.2000594


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives. Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis. Methods. Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days. Results. Using micro-CT, we found that A-79175, a 5-LO inhibitor, increased bone formation in an apparent dose-related manner. Conclusions. These results indicate that 5-LO inhibition could be used therapeutically to enhance treatments that require the direct formation of bone


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives. The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12. Results. No MMP12 expression was detected in the nucleus pulposus. Expression of MMP12 in the annulus progressively increased from group I to groups II and III, mainly at the concave side. Many growth plate chondrocytes expressed MMP12 in the control group, less in group I and rare in groups II and III. Changes in cell phenotype and reduction of cell number were observed, together with disorganisation of matrix microstructure similar to disc degeneration. ProMMP12 was detected at the area of 54 kDa and active MMP12 at 22 kDa. Conclusions. Expression of MMP12 after application of asymmetric loading in a rat tail increased in the intervertebral disc but decreased in the growth plate and correlated with the degree of the deformity and the side of the wedged disc. Cite this article: Bone Joint Res 2014;3:273–9


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1517 - 1521
1 Nov 2008
Liu DD Hsieh N Chen HI

Several experimental models have been used to produce intravascular fat embolism. We have developed a simple technique to induce fat embolism using corn oil emulsified with distilled water to form fatty micelles. Fat embolism was produced by intravenous administration of these fatty micelles in anaesthetised rats, causing alveolar oedema, haemorrhage and increased lung weight. Histopathological examination revealed fatty droplets and fibrin thrombi in the lung, kidney and brain. The arteriolar lumen was filled with fatty deposits. Following fat embolism, hypoxia and hypercapnia occurred. The plasma phospholipase A. 2. , nitrate/nitrite, methylguidanidine and proinflammatory cytokines were significantly increased. Mass spectrometry showed that the main ingredient of corn oil was oleic acid. This simple technique may be applied as a new animal model for the investigation of the mechanisms involved in the fat embolism syndrome


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1024 - 1030
1 Nov 1997
Pazzaglia UE Andrini L Di Nucci A

We have used an experimental model employing the bent tail of rats to investigate the effects of mechanical forces on bones and joints. Mechanical strain could be applied to the bones and joints of the tail without direct surgical exposure or the application of pins and wires. The intervertebral disc showed stretched annular lamellae on the convex side, while the annulus fibrosus on the concave side was pinched between the inner corners of the vertebral epiphysis. In young rats with an active growth plate, a transverse fissure appeared at the level of the hypertrophic cell layer or the primary metaphyseal trabecular zone. Metaphyseal and epiphyseal trabeculae on the compressed side were thicker and more dense than those of the distracted part of the vertebra. In growing animals, morphometric analysis of hemiepiphyseal and hemimetaphyseal areas, and the corresponding trabecular bone density, showed significant differences between the compressed and distracted sides. No differences were observed in adult rats. We found no significant differences in osteoclast number between compressed and distracted sides in either age group. Our results provide quantitative evidence of the working of ‘Wolff’s law’. The differences in trabecular density are examples of remodelling by osteoclasts and osteoblasts; our finding of no significant difference in osteoclast numbers between the hemiepiphyses in the experimental and control groups suggests that the response of living bone to altered strain is mediated by osteoblasts


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives. This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone. Methods. A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity. Results. The average structural rigidity-based axial rigidity was well correlated with the average mechanically-derived axial rigidity results (R. 2. = 0.74). This correlation improved significantly (p < 0.0001) when the CT-based Structural Rigidity Analysis (CTRA) minimum axial rigidity was correlated to the mechanically-derived minimum axial rigidity results (R. 2. = 0.84). Tests of slopes in the mixed model regression analysis indicated a significantly steeper slope for the average axial rigidity compared with the minimum axial rigidity (p = 0.028) and a significant difference in the intercepts (p = 0.022). The CTRA average and minimum axial rigidities were correlated with the mechanically-derived average and minimum axial rigidities using paired t-test analysis (p = 0.37 and p = 0.18, respectively). Conclusions. In summary, the results of this study suggest that structural rigidity analysis of micro-CT data can be used to accurately and quantitatively measure the axial rigidity of bones with metabolic pathologies in an experimental rat model. It appears that minimum axial rigidity is a better model for measuring bone rigidity than average axial rigidity


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1261 - 1267
1 Sep 2007
Tohyama H Yasuda K Uchida H Nishihira J

In order to clarify the role of cytokines in the remodelling of the grafted tendon for ligament reconstruction we compared the responses to interleukin (IL)-1β, platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-β1 of extrinsic fibroblasts infiltrating the frozen-thawed patellar tendon in rats with that of the normal tendon fibroblasts, in regard to the gene expression of matrix metalloproteinase (MMP)-13, using Northern blot analysis. We also examined, immunohistologically, the local expression of IL-1β, PDGF-BB, and TGF-β1 in fibroblasts infiltrating the frozen-thawed patellar tendon. Northern blot analysis showed that fibroblasts derived from the patellar tendon six weeks after the freeze-thaw procedure in situ showed less response to IL-1β than normal tendon fibroblasts with respect to MMP-13 mRNA gene expression. The immunohistological findings revealed that IL-1β was over-expressed in extrinsic fibroblasts which infiltrated the patellar tendon two and six weeks after the freeze-thaw procedure in situ, but neither PDGF-BB nor TGF-β1 was over-expressed in these extrinsic fibroblasts. Our findings indicated that IL-1β had a close relationship to matrix remodelling of the grafted tendon for ligament reconstruction, in addition to the commencement of inflammation during the tissue-healing process


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 388 - 392
1 Mar 2008
Virchenko O Aspenberg P Lindahl TL

Thrombin has many biological properties similar to those of growth factors. In a previous study, we showed that thrombin improves healing of the rat tendo Achillis. Low molecular weight heparin (LMWH) inhibits the activity and the generation of thrombin. We therefore considered that LMWH at a thromboprophylactic dose might inhibit tendon repair. Transection of the tendo Achillis was carried out in 86 rats and the healing tested mechanically. Low molecular weight heparin (dalateparin) was either injected a few minutes before the operation and then given continuously with an osmotic mini pump for seven days, or given as one injection before the operation. In another experiment ,we gave LMWH or a placebo by injection twice daily. The anti-factor Xa activity was analysed. Continuous treatment with LMWH impaired tendon healing. After seven days, this treatment caused a 33% reduction in force at failure, a 20% reduction in stiffness and a 67% reduction in energy uptake. However, if injected twice daily, LMWH had no effect on tendon healing. Anti-factor Xa activity was increased by LMWH treatment, but was normal between intermittent injections. Low molecular weight heparin delays tendon repair if given continuously, but not if injected intermittently, probably because the anti-factor Xa activity between injections returns to normal, allowing sufficient thrombin stimulation for repair. These findings indicate the need for caution in the assessment of long-acting thrombin and factor Xa inhibitors


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (. sd. 4.5) versus 12.7% (. sd. 2.9, p < 0.019), respectively. Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 554 - 557
1 Apr 2006
Takebayashi T Cavanaugh JM Kallakuri S Chen C Yamashita T

To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1539 - 1544
1 Nov 2007
Hibino N Hamada Y Sairyo K Yukata K Sano T Yasui N

This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group. Callus formation was observed at the site of repair in the tendon suture group, whereas in the sham group callus formation was minimal. During the pull-out test, the repaired tendon-bone junction did not fail because the musculotendinous junction always disrupted first. In order to understand the factors that influenced callus formation at the site of repair, four further groups were evaluated. The nature of the sutured tendon itself was investigated by analysing healing of a tendon stump after necrosis had been induced with liquid nitrogen in 16 cases. A proximal suture group (n = 16) and a partial tenotomy group (n = 16) were prepared to investigate the effects of biomechanical loading on the site of repair. Finally, a group where the periosteum had been excised at the site of repair (n = 16) was examined to study the role of the periosteum. These four groups showed less callus formation radiologically and histologically than did the tendon suture group. In conclusion, the sutured tendon-bone junction healed and achieved mechanical strength at six weeks after suturing, showing good local callus formation. The viability of the tendon stump, mechanical loading and intact periosteum were all found to be important factors for better callus formation at a repaired tendon-bone junction


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 613 - 618
1 May 2004
Orhan Z Ozturan K Guven A Cam K

The effects of extracorporeal shock waves (ESWT) on tendon healing were assessed by observing histological and biomechanical parameters in a rat model of injury to the tendo Achillis. The injury was created by inserting an 18-G needle through tendo Achillis in 48 adult Wistar albino rats. The animals were divided into three groups. The first group received radiation only after the operation. The second received no shock waves and the third had 500 15 KV shocks on the second post-operative day. All the rats were killed on the 21st day after surgery. Histopathological analysis showed an increase in the number of capillaries and less formation of adhesions in the study group compared with the control group (p = 0.03). A significantly greater force was required to rupture the tendon in the study group (p = 0.028). Our findings suggest a basis for clinical trials using ESWT


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 126 - 130
1 Jan 2000
Kurth AHA Kim S Sedlmeyer I Hovy L Bauss F

Cancer-induced bone diseases are often associated with increased bone resorption and pathological fractures. In recent years, osteoprotective agents such as bisphosphonates have been studied extensively and have been shown to inhibit cancer-related bone resorption in experimental and clinical studies. The third-generation bisphosphonate, ibandronate (BM 21.0955), is a potent compound for controlling tumour osteolysis and hypercalcaemia in rats bearing Walker 256 carcinosarcoma. We have studied the effect of ibandronate given as an interventional treatment on bone strength and bone loss after the onset of tumour growth in bone. Our results suggest that it is capable of preserving bone quality in rats bearing Walker 256 carcinosarcoma cells. Since other bisphosphonates have produced comparable results in man after their success in the Walker 256 animal models our findings suggest that ibandronate may be a powerful treatment for maintaining skeletal integrity in patients with metastatic bone disease


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 896 - 901
1 Sep 1999
Zarzhevsky N Coleman R Volpin G Fuchs D Stein H Reznick AZ

We immobilised the right hindlimbs of six-month-old female Wistar rats for four weeks using a biplanar external fixation bridging the knee. The untreated left limbs served as a control group. An additional group of rats was allowed to recover for four weeks after removal of the frame. Immobilisation caused reduction in the wet weights of approximately 50% in the gastrocnemius, quadriceps, soleus and plantaris muscles; this was not restored completely after remobilisation. There was an increase in the activity of acid phosphatase of approximately 85% in the gastrocnemius and quadriceps muscles whereas that of creatine phosphokinase was reduced by about 40%. These values returned to nearly normal after remobilisation. Histological and ultrastructural examination showed a marked myopathy of the gastrocnemius muscle after immobilisation although the morphology was largely restored after remobilisation. We conclude that after four weeks of remobilisation, hind-limb muscles do not return to preimmobilisation weights, although biochemical activities and ultrastructural appearance are largely restored


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 767 - 773
1 Jul 2002
Skoglund B Larsson L Aspenberg PA

Wear particles commonly used for experiments may carry adherent endotoxin on their surfaces, which may be responsible for the observed effects. In this study, we attached titanium plates to the tibiae of 20 rats. After osseointegration, endotoxin-contaminated or uncontaminated high-density-polyethylene (HDPE) particles were applied. Contaminated specimens showed a dramatic resorption of bone after seven days but new bone filled the site again at 21 days. Uncontaminated specimens showed no resorption. In 18 rats we implanted intramuscularly discs of ultra-high-molecular-weight polyethylene (UHMWPE) with baseline or excess contamination of endotoxin. Excess endotoxin disappeared within 24 hours and the amount of endotoxin remained at baseline level (contamination from production). Uncontaminated titanium discs did not adsorb endotoxin in vivo. The endotoxin was measured by analytical chemistry. Locally-applied endotoxin stimulated bone resorption similarly to that in experiments with wear particles. Endotoxin on the surface of implants and particles appeared to be inactivated in situ. A clean implant surface did not adsorb endotoxin. Our results suggest that endotoxin adhering to orthopaedic implants is not a major cause for concern


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 588 - 592
1 May 2001
Wimhurst JA Brooks RA Rushton N

We used a rat model in vivo to study the effects of particulate bone cements at the bone-implant interface. A ceramic pin was implanted into the tibiae of 48 rats. Three types of particle of clinically relevant size were produced from one bone-cement base without radio-opacifier, with zirconium dioxide (ZrO. 2. ) and with barium sulphate (BaSO. 4. ). The rats were randomly assigned to four groups to receive one of the three bone cements or normal saline with 2% v/v Sprague-Dawley serum as the control. A total of 10. 9. particles was injected into the knee at 8, 10 and 12 weeks after the original surgery. The animals were killed at 14 weeks and the tibiae processed for histomorphometry. The area of fibrous tissue and the gap between the implant and bone were measured using image analysis. All three types of particle were associated with a larger area of bone resorption than the control. Only in the case of the BaSO. 4. -containing cement did this reach statistical significance (p = 0.01). Particles of bone cement appear to promote osteolysis at the bone-implant interface and this effect is most marked when BaSO. 4. is used as the radiopaque agent