Objectives. To study the vascularity and bone metabolism of the femoral head/neck
following hip resurfacing arthroplasty, and to use these results
to compare the posterior and the trochanteric-flip approaches. Methods. In our previous work, we reported changes to intra-operative
blood flow during hip resurfacing arthroplasty comparing two surgical
approaches. In this study, we report the vascularity and the metabolic
bone function in the proximal femur in these same patients at one
year after the surgery. Vascularity and bone function was assessed
using scintigraphic techniques. Of the 13 patients who agreed to
take part, eight had their arthroplasty through a posterior approach
and five through a trochanteric-flip approach. Results. One year after surgery, we found no difference in the vascularity
(vascular phase) and metabolic bone function (delayed phase) at
the junction of the femoral head/neck between the two groups of
patients. Higher radiopharmaceutical uptake was found in the region
of the
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems. We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.Aims
Methods
In this study, we aimed to explore surgical variations in the Femoral Neck System (FNS) used for stable fixation of Pauwels type III femoral neck fractures. Finite element models were established with surgical variations in the distance between the implant tip and subchondral bone, the gap between the plate and lateral femoral cortex, and inferior implant positioning. The models were subjected to physiological load.Aims
Methods
There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation. Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured.Aims
Methods
Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO), and surgical hip dislocation (SHD). This SR was registered with PROSPERO. An electronic database search of PubMed, Medline, and EMBASE for English and German language articles over the last 20 years was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We specifically analyzed and compared changes in patient-reported outcome measures (PROMs), α-angle, rate of complications, rate of revision, and conversion to total hip arthroplasty (THA). A total of 48 articles were included for final analysis with a total of 4,384 hips in 4,094 patients. All subgroups showed a significant correction in mean α angle postoperatively with a mean change of 28.8° (95% confidence interval (CI) 21 to 36.5; p < 0.01) after AMO, 21.1° (95% CI 15.1 to 27; p < 0.01) after SHD, and 20.5° (95% CI 16.1 to 24.8; p < 0.01) after HA. The AMO group showed a significantly higher increase in PROMs (3.7; 95% CI 3.2 to 4.2; p < 0.01) versus arthroscopy (2.5; 95% CI 2.3 to 2.8; p < 0.01) and SHD (2.4; 95% CI 1.5 to 3.3; p < 0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. All three surgical approaches offered significant improvements in PROMs and radiological correction of cam deformities. All three groups showed similar rates of revision procedures but SHD had the highest rate of conversion to a THA. Revision rates were similar for all three revision procedures.
The value of core decompression (CD) in the treatment of osteonecrosis of the femoral head (ONFH) remains controversial. We conducted a systematic review and meta-analysis to evaluate whether CD combined with other treatments could improve the clinical and radiological outcomes of ONFH patients compared with CD alone. We searched the PubMed, Embase, Web of Science, and Cochrane Library databases until June 2020. All randomized controlled trials (RCTs) and clinical controlled trials (CCTs) comparing CD alone and CD combined with other measures (CD + cell therapy, CD + bone grafting, CD + porous tantalum rod, etc.) for the treatment of ONFH were considered eligible for inclusion. The primary outcomes of interest were Harris Hip Score (HHS), ONFH stage progression, structural failure (collapse) of the femoral head, and conversion to total hip arthroplasty (THA). The pooled data were analyzed using Review Manager 5.3 software.Aims
Methods
Restoration of proximal medial femoral support is the keystone in the treatment of intertrochanteric fractures. None of the available implants are effective in constructing the medial femoral support. Medial sustainable nail (MSN-II) is a novel cephalomedullary nail designed for this. In this study, biomechanical difference between MSN-II and proximal femoral nail anti-rotation (PFNA-II) was compared to determine whether or not MSN-II can effectively reconstruct the medial femoral support. A total of 36 synthetic femur models with simulated intertrochanteric fractures without medial support (AO/OTA 31-A2.3) were assigned to two groups with 18 specimens each for stabilization with MSN-II or PFNA-II. Each group was further divided into three subgroups of six specimens according to different experimental conditions respectively as follows: axial loading test; static torsional test; and cyclic loading test.Aims
Methods
The paradoxical migration of the femoral neck element (FNE) superomedially against gravity, with respect to the intramedullary component of the cephalomedullary device, is a poorly understood phenomenon increasingly seen in the management of pertrochanteric hip fractures with the intramedullary nail. The aim of this study was to investigate the role of bidirectional loading on the medial migration phenomenon, based on unique wear patterns seen on scanning electron microscopy of retrieved implants suggestive of FNE toggling. A total of 18 synthetic femurs (Sawbones, Vashon Island, Washington) with comminuted pertrochanteric fractures were divided into three groups (n = 6 per group). Fracture fixation was performed using the Proximal Femoral Nail Antirotation (PFNA) implant (Synthes, Oberdorf, Switzerland; n = 6). Group 1 was subjected to unidirectional compression loading (600 N), with an elastomer (70A durometer) replacing loose fracture fragments to simulate surrounding soft-tissue tensioning. Group 2 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading), also with the elastomer replacing loose fracture fragments. Group 3 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading) without the elastomer. All constructs were tested at 2 Hz for 5000 cycles or until cut-out occurred. The medial migration distance (MMD) was recorded at the end of the testing cycles.Objectives
Methods
Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model. Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N.Objectives
Methods
To validate the precision of digitally reconstructed radiograph (DRR) radiostereometric analysis (RSA) and the model-based method (MBM) RSA with respect to benchmark marker-based (MM) RSA for evaluation of kinematics in the native hip joint. Seven human cadaveric hemipelves were CT scanned and bone models were segmented. Tantalum beads were placed in the pelvis and proximal femoral bone. RSA recordings of the hips were performed during flexion, adduction and internal rotation. Stereoradiographic recordings were all analyzed with DRR, MBM and MM. Migration results for the MBM and DRR with respect to MM were compared. Precision was assessed as systematic bias (mean difference) and random variation (Pitman’s test for equal variance).Objectives
Methods
Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.Objectives
Methods
We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.Objectives
Materials and Methods
Approximately half of all hip fractures are displaced intracapsular fractures. The standard treatment for these fractures is either hemiarthroplasty or total hip arthroplasty. The recent National Institute for Health and Care Excellence (NICE) guidance on hip fracture management recommends the use of ‘proven’ cemented stem arthroplasty with an Orthopaedic Device Evaluation Panel (ODEP) rating of at least 3B (97% survival at three years). The Thompsons prosthesis is currently lacking an ODEP rating despite over 50 years of clinical use, likely due to the paucity of implant survival data. Nationally, adherence to these guidelines is varied as there is debate as to which prosthesis optimises patient outcomes. This study design is a multi-centre, multi-surgeon, parallel, two arm, standard-of-care pragmatic randomised controlled trial. It will be embedded within the WHiTE Comprehensive Cohort Study (ISRCTN63982700). The main analysis is a two-way equivalence comparison between Hemi-Thompson and Hemi-Exeter polished taper with Unitrax head. Secondary outcomes will include radiological leg length discrepancy measured as per Bidwai and Willett, mortality, re-operation rate and indication for re-operation, length of index hospital stay and revision at four months. This study will be supplemented by the NHFD (National Hip Fracture Database) dataset.Background
Design
The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology. Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s Objectives
Methods
The aim of this review is to evaluate the current
available literature evidencing on peri-articular hip endoscopy
(the third compartment). A comprehensive approach has been set on
reports dealing with endoscopic surgery for recalcitrant trochanteric
bursitis, snapping hip (or coxa-saltans; external and internal),
gluteus medius and minimus tears and endoscopy (or arthroscopy)
after total hip arthroplasty. This information can be used to trigger
further research, innovation and education in extra-articular hip
endoscopy.
In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year.Objectives
Patients and Methods
An experimental piglet model induces avascular necrosis (AVN)
and deformation of the femoral head but its secondary effects on
the developing acetabulum have not been studied. The aim of this
study was to assess the development of secondary acetabular deformation
following femoral head ischemia. Intracapsular circumferential ligation at the base of the femoral
neck and sectioning of the ligamentum teres were performed in three
week old piglets. MRI was then used for qualitative and quantitative
studies of the acetabula in operated and non-operated hips in eight
piglets from 48 hours to eight weeks post-surgery. Specimen photographs and
histological sections of the acetabula were done at the end of the
study. Objectives
Methods
Over recent years hip arthroscopic surgery has
evolved into one of the most rapidly expanding fields in orthopaedic surgery.
Complications are largely transient and incidences between 0.5%
and 6.4% have been reported. However, major complications can and
do occur. This article analyses the reported complications and makes recommendations
based on the literature review and personal experience on how to
minimise them.
The use of two implants to manage concomitant ipsilateral femoral
shaft and proximal femoral fractures has been indicated, but no
studies address the relationship of dynamic hip screw (DHS) side
plate screws and the intramedullary nail where failure might occur
after union. This study compares different implant configurations
in order to investigate bridging the gap between the distal DHS
and tip of the intramedullary nail. A total of 29 left synthetic femora were tested in three groups:
1) gapped short nail (GSN); 2) unicortical short nail (USN), differing
from GSN by the use of two unicortical bridging screws; and 3) bicortical
long nail (BLN), with two angled bicortical and one unicortical bridging
screws. With these findings, five matched-pairs of cadaveric femora
were tested in two groups: 1) unicortical long nail (ULN), with
a longer nail than USN and three bridging unicortical screws; and
2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally
rotated 90°/sec until failure.Objectives
Methods
One commonly used rat fracture model for bone and mineral research
is a closed mid-shaft femur fracture as described by Bonnarens in
1984. Initially, this model was believed to create very reproducible
fractures. However, there have been frequent reports of comminution
and varying rates of complication. Given the importance of precise
anticipation of those characteristics in laboratory research, we
aimed to precisely estimate the rate of comminution, its importance and
its effect on the amount of soft callus created. Furthermore, we
aimed to precisely report the rate of complications such as death
and infection. We tested a rat model of femoral fracture on 84 rats based on
Bonnarens’ original description. We used a proximal approach with
trochanterotomy to insert the pin, a drop tower to create the fracture
and a high-resolution fluoroscopic imager to detect the comminution.
We weighed the soft callus on day seven and compared the soft callus
parameters with the comminution status.Objectives
Methods
An experimental rabbit model was used to test the null hypothesis,
that there is no difference in new bone formation around uncoated
titanium discs compared with coated titanium discs when implanted
into the muscles of rabbits. A total of three titanium discs with different surface and coating
(1, porous coating; 2, porous coating + Bonemaster (Biomet); and
3, porous coating + plasma-sprayed hydroxyapatite) were implanted
in 12 female rabbits. Six animals were killed after six weeks and
the remaining six were killed after 12 weeks. The implants with
surrounding tissues were embedded in methyl methacrylate and grinded
sections were stained with Masson-Goldners trichrome and examined
by light microscopy of coded sections.Objectives
Methods