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Aims
This study was designed to develop a model for predicting bone mineral density (BMD)
loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to
identify factors that influence the prediction. Additionally, we virtually examined the efficacy
of administration of bisphosphonate for cases with severe BMD loss based on the predictive
model.

Methods
The study included 538 joints that underwent primary THA. The patients were divided
into groups using unsupervised time series clustering for five-year BMD loss of Gruen
zone 7 postoperatively, and a machine-learning model to predict the BMD loss was
developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive
exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most
important categorical predictor for BMD loss, was examined by calculating the change in
predictive probability when hypothetically switching between the inclusion and exclusion of
bisphosphonate.

Results
Time series clustering allowed us to divide the patients into two groups, and the predictive
factors were identified including patient- and operation-related factors. The area under
the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction aver-
aged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in
preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG),
creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed
significant association with the estimated patient-specific efficacy of bisphosphonate.

Conclusion
Periprosthetic BMD loss after THA is predictable based on patient- and operation-related
factors, and optimal prescription of bisphosphonate based on the prediction may prevent
BMD loss.
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Article focus
• Can artificial intelligence (AI) be used to develop a model to

predict periprosthetic bone mineral density (BMD) loss
after total hip arthroplasty (THA)?

• Based on the predictive model, can we hypothetically
examine the efficacy of bisphosphonate administration in
patients with severe BMD loss?

Key messages
• Periprosthetic BMD loss after THA can be predicted based

on patient- and operation-related factors using AI.
• Optimal prescription of bisphosphonate based on the

prediction may prevent BMD loss.

Strengths and limitations
• The strength of this study is the design of an AI-based

model to predict periprosthetic BMD loss.
• An important limitation is that the groups were divided

using time series clustering and not according to threshold
values.

Introduction
Stress shielding and bone loss in the proximal medial femur
after total hip arthroplasty (THA) remain unresolved issues.
It has been reported that bone mineral density (BMD) loss
around implants may be related to periprosthetic fractures
and later loosening,1,2 and it is expected that revision THA
for cases with severe bone loss will be difficult; therefore,
preventing periprosthetic BMD loss is desirable. Many factors

influence the BMD loss of the THA, and these factors can be
divided into operation- and patient-related factors. Operation-
related factors include the implant shape,3 stem size,4 material
component,5 and surgical approach.6 Meanwhile, patient-rela-
ted factors include preoperative lumbar spine BMD,7 femoral
canal shape,8 and postoperative clinical score.9

Identifying and preventing these  factors  before  or
immediately  after  surgery  would  be  important  because
periprosthetic  BMD loss  occurs  within  one year.10  Anti-
receptor  activator  of  NF-kappa B  ligand (RANKL)  anti-
body,11  parathyroid  hormone,3  and bisphosphonate10  have
been reported to  be  effective  in  preventing peripros-
thetic  BMD  loss.  Particularly,  bisphosphonates  are  the
most  popular  drugs  that  are  effective  in  preventing BMD
loss  for  the  lumbar  spine,  femoral  neck,12,13  and peripros-
thetic  bone,  and they  reduce the  risk  of  revision THA
due to  aseptic  loosening.14  However,  it  has  been repor-
ted that  osteonecrosis  of  the  jaw15  and atypical  femo-
ral  fractures16  have  emerged  as  potential  complications
of  bisphosphonate  therapy.  Therefore,  regarding complica-
tions,  bisphosphonate  should  only  be  used in  cases  where
periprosthetic  BMD is  expected to  decrease  severely  after
THA.

To  date,  no  model  has  been developed to  predict
postoperative  periprosthetic  BMD loss  in  advance.  In
addition,  the  lack  of  clear  prescribing criteria  and efficacy
assessment  methods  for  drugs  makes  it  difficult  to  assess
their  effect  on periprosthetic  BMD.  To  improve progno-
sis  after  THA,  it  is  essential  to  accurately  predict  peri-
prosthetic  BMD,  and  to  develop  drug prescription  criteria

Fig. 1
Flow chart showing inclusion and exclusion criteria. A total of 538 patients were enrolled in the study. BMD, bone mineral density; DXA, dual energy
X-ray absorptiometry; THA, total hip arthroplasty.
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and drug efficacy  assessment  methods  according to  the
characteristics  of  each patient.

In the field of orthopaedics, the use of artificial
intelligence (AI) has also accelerated in recent years because
information from various methods, such as imaging features,
blood tests, and physiological data, contributes to disease
onset and prognosis.17,18 Some studies have shown that
AI is promising for orthopaedic surgeons.19,20 On the other
hand, AI-based forecasting models are based on finite data,
so reproducibility and interpretability require attention. To
improve these qualities in AI models and make them usable
in clinical practice, some ‘explainable AI’ (XAI) technologies
have been proposed. SHapley Additive exPlanations (SHAP) is
an XAI technique that quantitatively calculates the impact of
each explanatory variable on the predicted results output by
the model.

This  study  was  designed to  develop an AI  model
for  predicting periprosthetic  BMD loss  in  Gruen zone 7,
which  will  become the  area  with  the  lowest  periprosthetic
BMD  after  THA.  We also  aimed to  identify  preoperative
and operative  factors  that  influence prediction by  using
SHAP.  Additionally,  we virtually  examined the  individual

efficacy  of  bisphosphonate  in  preventing BMD loss  based
on the  predictive  model.

Methods
Patients
This study was approved by Yokohama City Universi-
ty’s Institutional Review Board (number F211000006), and
informed consent was obtained as an opt-out option on the
website. The inclusion criteria for this study were as follows:
1) patients who underwent primary THA, including bilateral
THA, at our hospital between 1 October 2006 and 31 March
2019; 2) those who underwent preoperative and postopera-
tive plain radiograph imaging; 3) those who underwent BMD
measurements using dual energy X-ray absorptiometry (DXA);
and 4) those who were not enrolled in other clinical studies at
the time of the survey. During the study period, 729 patients
were included. The exclusion criterion was missing informa-
tion on BMD change at four or more of the six postoperative
measurement timepoints (i.e. six months and one, two, three,
four, and five years). Overall, 191 cases were excluded because
more than half of the BMD change information was missing.
Therefore, 538 patients were enrolled in this study (Figure 1).

Table I. Explanatory variables.

Variable Information

Demographic data
Sex, age, height, weight, BMI, operation side, smoking, alcohol, PSL, previous medical
history, diagnosis*, CDH, implant types, medicine before operation, medicine in first year

Laboratory test
WBC, RBC, Hb, Hct, PLT, TP, Alb, CK, AST, ALT, LDH, ALP, γ-GTP, BUN, Cr, eGFR, UA, Glu,
T-cho, TG, Na, K, Cl, Ca, CRP, APTT, PT-INR, D-dimer

Preoperative clinical data JOA hip score, HHS21

Preoperative imaging data (including radiograph, CT, and
DXA images)

Femoral anteversion angle, canal flare index, isthmus, A,8 Dorr classification, Tönnis
classification, preoperative lumbar BMD on the frontal/lateral side

Postoperative imaging data (including radiograph and CT
images) Abs error, stem anteversion, distance A, distance B

*Diagnosis of disease that caused the surgery.
Abs error, absolute difference between stem anteversion and femoral neck anteversion; Alb, albumin; ALP, alkaline phosphatase; ALT, alanine
aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; BMD, bone mineral density; BUN, blood urea nitrogen;
CDH, congenital dislocation of the hip; CK, creatine kinase; Cr, creatinine; DXA, dual energy X-ray absorptiometry; eGFR, estimated glomerular filtration rate;
Glu, glucose; Hb, haemoglobin; Hct, haematocrit; HHS, Harris Hip Score; JOA, Japanese Orthopaedic Association; LDH, lactate dehydrogenase; PLT, platelets;
PSL, prednisolone; PT-INR, prothrombin time-international normalized ratio; RBC, red blood cells; T-cho, total cholesterol; TG, triglyceride; TP, total protein;
UA, uric acid; WBC, white blood cells; γ-GTP, γ-glutamyl transpeptidase.

Table II. Stem types (n = 538).

Stem Manufacturer n

SL-PLUS MIA Smith & Nephew 108

Accolade TMZF Stryker 101

VerSys Fiber Metal MidCoat Zimmer Biomet 78

Accolade II Stryker 96

SL-PLUS Smith & Nephew 52

SL-PLUS MIA HA Smith & Nephew 85

VerSys Fiber Metal TAPER Zimmer Biomet 18

Table III. Types of medication for osteoporosis.

Medicine
Before operation,
n

First year after
operation, n

Bisphosphonate 59 123

Anti-RANKL antibody 6 13

PTH 2 23

SERM 7 5

VD3 53 86

PTH, parathyroid hormone; RANKL, receptor activator of NF-kappa B
ligand; SERM, selective oestrogen receptor modulator; VD3, vitamin D3.
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We retrospectively reviewed the patients’ backgrounds and
clinical and radiological parameters (Table I and Supplemen-
tary Table i). The implants used in this study are shown in
Table II. Furthermore, osteoporosis drugs used in this study are
shown in Table III.

Radiological assessment
In this study, we defined distance A as the distance from
the top of the greater trochanter to the stem shoulder and
distance B as the distance from the stem shoulder to the tip of
the lesser trochanter (Supplementary Figure a).

The definitions of other radiological parameters related
to THA measured in this study are summarized in Supplemen-
tary Table ii.

Unsupervised clustering of the five-year postoperative BMD
change rate
Prior to developing a supervised machine-learning model to
predict postoperative BMD change, we performed unsuper-
vised clustering of BMD change rates over a five-year
postoperative period. For BMD change rates, BMD meas-
ured one week after surgery was used as the baseline.
The regions of interest were centred on the periprosthetic
zones, as described by Gruen et al.22 BMD has large meas-
urement variability and missing measurements, and there is
no commonly used threshold. To reduce the influence of
measurement error and reveal potential patterns of postoper-
ative BMD change, we employed k-means clustering for time
series data. Groups according to the five-year postoperative
rate of change in BMD were identified using a longitudinal

k-means clustering method implemented in the kml pack-
age in R (R Foundation for Statistical Computing, Austria).23

The kml package allows for clustering based on changes in
longitudinal data over time. The optimal number of clusters
was selected using the statistical criteria proposed by Calinski
and Harabasz.24

Data preprocessing
Explanatory variables with < 30% missing were used.25 As a
result, 85 variables were used in the BMD prediction (Sup-
plementary Tables i, iii, and iv). In this study, missing value
completion was not performed because LightGBM,26 which
can handle missing values without completion, was employed.
Next, using the train_test_split function of the scikit-learn
package in Python (Python Software Foundation, USA), the
data were split into training and test data at a ratio of 7:3,
to preserve the proportion of the objective variable. Statis-
tical tests were performed between the training and test
data using the Mann-Whitney U test for continuous variables
and Fisher’s exact test for categorical variables. The Python
package scipy was used for the statistical tests. No significant
differences were found between the training and test data for
the aforementioned variables.

Supervised classification using machine learning
A  supervised classification  model  using LightGBM was
constructed with  groups  of  postoperative  BMD changes
identified by  longitudinal  k-means  clustering as  the
objective  variable.  Logistic  regression was  used as  the

Fig. 2
Bone mineral density (BMD) change rate clustering. Longitudinal clustering by five-year postoperative trajectory was shown, with group A being the
low BMD group (67.3%, n = 362) and group B being the non-low BMD group (32.7%, n = 176).
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baseline.  Hyperparameters  were  tuned by  fivefold  cross-
validation on the  training data  using the  Optuna package
in  Python.27  Optuna is  an  automatic  hyperparameter
optimization  software  framework  for  machine  learning.
Performances  of  the  classification models  were  evaluated
on test  data  with  the  area  under  the  ROC curve  (AUC).
For  each algorithm,  we trained  ten times  with  different
random seed values  and calculated means  and the  95%
confidence intervals  for  the  performance measures.  The
SHAP value  was  used to  evaluate  the  importance  of  the
explanatory  variables  in  the  classification.28  SHAP repre-
sents  the  contribution of  each feature  to  the  model
predictions  using the  Shapley  value  from cooperative
game theory.  The  SHAP package in  Python was  used

to  calculate  the  SHAP value.  Calibration performances  of
the  classification  models  were  evaluated by  comparing
predictions  and observations  in  each predicted probability
bin.  We used a  total  of  ten  bins  in  this  study.  Based
on the  predictive  model  for  postoperative  BMD changes,
we then examined the  individual  efficacy  of  bisphospho-
nate  in  preventing BMD loss.  We calculated  the  change
in  the  predicted probability  of  the  BMD prediction model
when virtually  changing the  bisphosphonate  prescription.
The predicted probability  was  the  probability  of  being
classified into  the  group  with  a  significant  decrease  in
BMD within  one year  after  surgery.

Statistical  analysis
The association between change in  the  predicted
probability  and explanatory  variables  was  assessed with
Welch’s  t-test  for  binary  variables,  analysis  of  variance
(ANOVA)  and Tukey's  test  for  categorical  data  of  three
or  more  types,  and Spearman’s  rank  correlation  coefficient
for  continuous  variables.  Furthermore,  false  discovery  rate
(FDR)  correction  was  performed to  address  the  multi-
ple  testing issue  using the  Benjamini-Hochberg method
implemented in  stats  R  package.

Results
Unsupervised clustering of the postoperative BMD changes
over five years
With longitudinal k-means clustering analysis, it was deter-
mined that the change in BMD loss ratio over the five-year
postoperative period could best be divided into two groups
(Supplementary Figure b). The clustering results are shown
in Figure 2. Group A had a marked decrease in BMD within
one year postoperatively, averaging 62.3% of the preopera-
tive level five years after surgery, while group B had a lesser
decrease, averaging 93.4% of the preoperative level five years
after surgery. The characteristics of each group are shown in
Supplementary Tables i, iii, iv, and v.

Fig. 3
Supervised prediction of bone mineral density (BMD) loss using
patient- and operation-related variables. LightGBM showed a higher
area under the receiver operating characteristic curve (AUC) than
logistic regression (LR). The LightGBM classifier outperformed the LR
model with a mean AUC of 0.734.

Fig. 4
The calibration curves for the predicted and observed probabilities of
LightGBM, with a Brier score of 0.196.

Fig. 5
The top 20 SHapley Additive exPlanations (SHAP) values for the
impact of variables on the discrimination in the machine learning
classifier (LightGBM). The higher the SHAP value of the feature,
the higher the patient’s risk of BMI loss. ALP, alkaline phosphatase;
BMD, bone mineral density; Cho, cholesterol; Cl, chlorine; eGFR,
estimated glomerular filtration rate; Isthms, isthmus; Plt, platelet; TG,
triglyceride; TP, total protein; WBC, white blood cell.
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Supervised prediction of BMD loss using patient- and
operation-related variables
We next developed a supervised predictive model with the
group A/B obtained by unsupervised time series clustering as
an objective variable. Figure 3 shows the receiver operating
characteristic curve (ROC) of the predictions using LR and
LightGBM. The LightGBM classifier outperformed the LR model
with a mean AUC of 0.734 (SD 0.017; 0.717 to 0.750). Figure
4 shows the calibration curve for the predicted and observed
probabilities for LightGBM classifier, with a Brier score of 0.196.
Next, we examined the importance of explanatory variables
in predicting BMD loss in the LightGBM classifier. In addition
to bisphosphonate prescription during the first postoperative
year, anatomical variables, such as preoperative lumbar BMD
on the frontal side, distance A, distance B, and stem type
(Accolade TMZF), as well as blood biomarker factors such
as alkaline phosphatase (ALP) and triglyceride (TG), were
identified as important predictors (Figure 5).

Examination of the individual efficacy of bisphosphonate in
preventing loss of BMD
To examine the patient-specific efficacy of bisphosphonate,
which was the most important categorical predictor of BMD
change, we calculated the change in predicted probability
when virtually changing the bisphosphonate prescription.
When virtually prescribing bisphosphonate to those who
were not prescribed bisphosphonate (n = 127), the predic-
ted probability decreased in most cases except for three
(Figure 6). In contrast, for those who were　originally prescri-
bed bisphosphonate (n = 35), all had an increased predicted
probability with the virtual cancellation of bisphosphonate
(Figure 7). The change in predicted probability varied widely
from patient to patient, ranging from -0.43 to 0.075 (mean =
-0.14) in the virtual prescription group and from 0.035 to 0.41
(mean = 0.19) in the virtual cancellation group (Figure 8).

In the virtual prescription group, statistical examination
of the association between changes in predicted probability
and explanatory variables showed that implant type and TG,
creatinine (Cr), estimated glomerular filtration rate (eGFR),
creatine kinase (CK), and predicted probability were signifi-
cantly associated (adjusted p < 0.05, Welch’s t-test and Tukey’s
test) (all results are summarized in Supplementary Tables i
and vi). Among these results, TG was particularly strongly
associated. Figure 9 shows the changes in predicted probabil-
ity for each implant type. When Tukey’s test was performed to
examine differences between implants, a significant differ-
ence was observed between the SL-PLUS MIA stem (Smith
& Nephew, USA) and the SL-PLUS stem (Smith & Nephew),
as well as between the SL-PLUS MIA stem and the VerSys
Fiber Metal MidCoat stem (Zimmer Biomet, USA). The SL-PLUS
stem and VerSys Fiber Metal MidCoat stem showed signifi-
cantly higher predicted probability change than the SL-PLUS
MIA stem (p < 0.05, Tukey’s test). TG was associated with
a difference in the predicted probability, with an adjusted
p-value < 0.001 (Welch’s t-test). The association between the
difference in predicted probability and TG, eGFR, Cr, and CK
values is illustrated in Figure 10 as scatter plots.

Fig. 6
Predicted probability of group A classification for those who did
not use bisphosphonate (n = 127) versus for those who used
bisphosphonate in virtual. Predicted probability decreased in most
cases except for three.

Fig. 7
Predicted probability to group A classification for those who did
use bisphosphonate (n = 35) versus for those who had not used
bisphosphonate in virtual. All had an increased predicted probability.

Fig. 8
Amount of change in the predicted probability in the with
and without bisphosphonate groups. The virtual administration
of bisphosphonate increased the efficacy by approximately 14%,
and without virtual administration the efficacy decreased by
approximately 19%.
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Discussion
Identifying predictors for periprosthetic BMD loss using
conventional statistical analysis is difficult, because many
factors are associated with each other and confound each
other. In this study, AI made it possible to deal with mul-
timodal data related to THA. In the results of the current
study, (67.3%,n=362) of the patients were classified into a
group with a marked decrease in BMD (group A), whereas
the remaining (32.7%,n=176) were classified into a group
with postoperative BMD at the same level as before surgery
(group B). These groups could be predicted with reasona-
ble accuracy by operation- and patient-related factors. The
important categorical predictor for the two groups was the
use of bisphosphonate one year after surgery, suggesting
the efficacy of bisphosphonate use immediately after THA.
Distance A and distance B, anatomical distances related to
how the implant stem is placed, were also identified as
important predictors for BMD change. Analysis using SHAP
revealed that a smaller distance A and a larger distance B
increased the probability of having a lower postoperative BMD
(i.e. being classified as group A). It could be explained that
deep stem placement prevented stress shielding to the medial
proximal femur. Accolade TMZF stem was also identified as
an important factor. Accolade TMZF stem is a β titanium
alloy with a low Young’s modulus, and has been reported to
prevent stress shielding to the proximal femur; the results of
the present study were the same as those reported previ-
ously.5 Regarding patient-related factors, preoperative lumbar
BMD was the most important factor, as shown in a previous
report.7 Additionally, ALP and TG were identified as impor-
tant predictors among preoperative blood biomarkers, and
patients with higher levels of ALP and TG tended to be
classified into group A. ALP is related to bone metabolism and
may reflect the preoperative osteoporosis status. The more
osteoporotic the condition, the more likely zone 7 BMD tends

to decrease postoperatively. TG is related to osteoporosis, and
osteogenesis is decreased in patients with hyperlipidaemia.29

Postoperatively, bone formation in zone 7 may be suppressed
in patients with hyperlipidaemia.

In  this  study,  we  also  examined the  efficacy  and
factors  affecting the  virtual  administration of  bisphospho-
nate  to  prevent  BMD loss,  because  the  risk  of  complica-
tions  makes  the  use  of  bisphosphonates  difficult  in  all
patients.  The  results  showed  that  virtual  administration of
bisphosphonate  reduced the  probability  of  BMD loss  by  an
average of  14%,  but  the  effect  varied  widely  from patient
to  patient.  The  differences  in  efficacy  were  associated
with  stem types,  with  SL-PLUS stem and VerSys  Fiber
Metal  MidCoat  stem being significantly  more  effective  than
SL-PLUS MIA stem.  Identifying the  cause  of  the  differences
in  bisphosphonate  effects  between stems  is  difficult,  and
further  research  is  needed  to  elucidate  this.  However,  it
is  important  to  confirm the  existence  of  differences  in
bisphosphonate  effects  among stem types,  considering the
aim to  prevent  periprosthetic  BMD loss.  Additionally,  TG,
Cr,  eGFR,  and CK were  identified  as  factors  related to
the  efficacy  of  bisphosphonate.  TG is  related to  osteo-
genesis;  however,  differences  in  the  effects  of  bisphosph-
onate  depending on  blood TG  levels  have  rarely  been
reported previously.  Generally,  TG metabolism is  related
to  the  peroxisome proliferator-activated receptor  gamma
(PPARγ)  signalling  pathway,30  which  plays  a  substantial  role
in  the  relationship  between lipid  biomarkers  and BMD.31

When the  PPARγ  level  increases,  osteogenesis  is  inhibited.32

Cr  and eGFR are  factors  that  reflect  renal  function,  and
bisphosphonate  becomes  more  effective  due to  decreases
excretion and enhances  efficacy  by  renal  dysfunction.33

Similar  results  were  obtained in  this  study,  with  preoper-
ative  high Cr  levels  and  low eGFR  levels  leading to  a
greater  effect  of  bisphosphonate.  From these  results,  TG
and renal  function may play  an  important  role  in  the
difference in  the  effects  of  bisphosphonate,  and caution

Fig. 9
Relationship between implant types and predicted probability
change. SL-Plus and VerSys Fiber Metal MidCoat stems were
significantly more likely to produce bisphosphonate efficacy than SL
MIA stem. *Adjusted p-value < 0.05, Tukey’s test.

Fig. 10
Relationship between continuous variables (TG, eGFR, Cr, and CK)
and predicted probability change. The lower the preoperative TG
levels, the more effective the bisphosphonate treatment. Statistics
were performed using Welch’s t-test. CK, creatine kinase; Cr,
creatinine; eGFR, estimated glomerular filtration rate; TG, triglyceride.
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should  be  taken when using bisphosphonate  in  patients
with  high TG levels,  as  their  efficacy  may be  attenuated
in  contrast  to  renal  dysfunction  such as  Cr  and eGFR.
We were  unable  to  find any  previous  studies  that  could
explain  the  association between CK and the  effect  of
bisphosphonates;  further  studies  are  needed to  explore
this.

There are several limitations to our study. First, the
sample size is not large, and it was a single-centre study.
Therefore, in the future we intend to demonstrate the validity
and reproducibility of our working hypothesis using a larger
multicentre cohort. Second, the groups were divided using
time series clustering and not according to threshold values.
The absence of clear clinical criteria for BMD loss is one of
the factors that make its prevention difficult, so future studies
will need to establish these criteria. Third, although we found
that certain stems and TG affect the efficacy of bisphospho-
nates, we could not identify a clear mechanism. However, we
believe that these factors, which could not be identified using
conventional statistical analysis, are essential in preventing
periprosthetic BMD loss and require further study. Fourth, we
only investigated medical history that might be associated
with periprosthetic BMD loss.

In conclusion, periprosthetic BMD loss after THA is
reasonably predictable based on patient- and operation-rela-
ted factors, and optimal prescription of bisphosphonates
based on the prediction related to stem types and TG, Cr,
eGFR, and CK will be effective in preventing periprosthetic
BMD loss.

Supplementary material
Figures showing the definitions of distances A and B and the
statistical criteria proposed by Calinski and Harabasz. Tables
showing the results of Welch’s t-test for the difference of predicted
probability and binary variables, radiological measurements,
preoperative peripheral blood tests, patient background and clinical
scores, patient background and radiological data, and the results
of Spearman’s rank correlation coefficient for the difference of
predicted probability and continuous variables.
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