Advertisement for orthosearch.org.uk
Results 1 - 100 of 276
Results per page:
Bone & Joint Research
Vol. 13, Issue 3 | Pages 127 - 135
22 Mar 2024
Puetzler J Vallejo Diaz A Gosheger G Schulze M Arens D Zeiter S Siverino C Richards RG Moriarty TF

Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological union scale in tibial fractures (mRUST). Results. Greater bacterial burden in the early group compared to the delayed and control groups at revision surgery indicates a retraction of the infection from one to four weeks. Infection was cleared in all animals in the early and delayed groups at euthanasia, but not in the control group. Osteotomies healed in the early group, but bone healing was significantly compromised in the delayed and control groups. Conclusion. The duration of the infection from one to four weeks does not impact the success of infection clearance in this model. Bone healing, however, is impaired as the duration of the infection increases. Cite this article: Bone Joint Res 2024;13(3):127–135


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims. The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model. Methods. A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining. Results. After 12 weeks post-surgery, the defects of the PRP group were repaired by hyaline cartilage-like tissue. However, incomplete cartilage regeneration was observed in the PRP group for three weeks. The control groups showed fibrocartilaginous or fibrous tissue, respectively, at each timepoint. Conclusion. Our study proved that the use of PRP gel without any adjuncts could successfully produce a good healing response and resurface the osteochondral defect with a better quality of cartilage in a rabbit model. Cite this article: Bone Joint Res 2021;10(3):192–202


Bone & Joint Research
Vol. 9, Issue 6 | Pages 302 - 310
1 Jun 2020
Tibbo ME Limberg AK Salib CG Turner TW McLaury AR Jay AG Bettencourt JW Carter JM Bolon B Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen AJ Abdel MP

Aims. Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits. Methods. A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein). Results. At the 24-week timepoint, there was a statistically significant increase in passive extension among rabbits treated with ketotifen compared to those treated with saline (p = 0.03). However, no difference in capsular stiffness was detected. Histopathological data failed to demonstrate a decrease in the density of fibrous tissue or a decrease in α-smooth muscle actin (α-SMA) staining with ketotifen treatment. In contrast, tryptase and α-SMA protein expression in the ketotifen group were decreased when compared to saline controls (p = 0.007 and p = 0.01, respectively). Furthermore, there was a significant decrease in α-SMA (ACTA2) gene expression in the ketotifen group compared to the control group (p < 0.001). Conclusion. Collectively, these data suggest that ketotifen mitigates the severity of contracture formation in a rabbit model of arthrofibrosis. Cite this article: Bone Joint Res 2020;9(6):302–310


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 29 - 29
1 Dec 2021
Visperas A Piuzzi N Ju M Wickramasinghe S Anis H Milbrandt N Tsai YH Klika AK Barsoum W Samia A Higuera-Rueda C
Full Access

Aim. Periprosthetic joint infection (PJI) is a devastating complication of total joint arthroplasty. While research has focused on developing better tests for disease diagnosis, treatment options have stayed relatively constant over the years with high failure rates ranging from 30%–50% and are due in part to the protective biofilm produced by some bacterial species. Current treatment options are compromised by the presence of biofilm, emphasizing the need for novel treatment strategies to be developed. Our group has developed a novel treatment (PhotothermAA) which has demonstrated in vitro its ability to target bacterial biofilm. The purpose of this study was to test this PhotothermAA technology in vivo in a rabbit model of PJI for its efficacy in eradicating biofilm. Method. Rabbits were fitted with a titanium implant into the tibial plateau and inoculated with 5×10. 6. CFU Xen36 (luminescent Staphylococcus aureus). At two weeks, rabbits underwent irrigation and debridement and treatment with PhotothermAA gel for two hours and subsequently laser heated using an 808 nm laser for 10 minutes. Gel was washed out and implant was removed for quantitative biofilm coverage analysis via scanning electron microscopy (SEM, n=3 for control and n=2 for PhotothermAA treated). Periprosthetic tissue was collected before and after treatment for toxicity studies via hemotoxylin and eosin (H&E) staining and scored for necrosis by three blinded reviewers (n=5 per group). Student's t-test was used for statistical analysis. Results. Implants isolated after PhotothermAA gel treatment had less biofilm coverage on the surface of the implant compared to non-treated control via SEM analysis (36.9% vs. 55.2%, p<0.14). PhotothermAA gel treatment and subsequent laser treatment was not harmful to surrounding tissue as no increase in necrotic tissue was observed. Conclusions. PhotothermAA gel and laser treatment safely decreases biofilm coverage on infected knee implants in a rabbit PJI model


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims. Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release. Methods. A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks. Results. IA celecoxib resulted in greater mean PEA at ten weeks (69.6° (SD 4.6) vs 45.2° (SD 9.6), p = 0.004), 16 weeks (109.8° (SD 24.2) vs 60.9° (SD10.9), p = 0.004), and 24 weeks (101.0° (SD 8.0) vs 66.3° (SD 5.8), p = 0.004). Capsular stiffness was significantly reduced with IA celecoxib (2.72 Newton per cm (N·cm)/° (SD 1.04), p = 0.008), capsular release (2.41 N·cm/° (SD 0.80), p = 0.008), and capsular release combined with IA celecoxib (3.56 N·cm/° (SD 0.99), p = 0.018) relative to IA vehicle (6.09 N·cm/° (SD 1.64)). Conclusion. IA injections of a celecoxib led to significant improvements in passive extension angles, with reduced capsular stiffness, when administered to rabbit knees with established experimental contracture. Celecoxib was superior to surgical release, and the combination of celecoxib and a surgical release did not provide any additional value. Cite this article: Bone Joint Res 2022;11(1):32–39


Bone & Joint Research
Vol. 10, Issue 3 | Pages 156 - 165
1 Mar 2021
Yagi H Kihara S Mittwede PN Maher PL Rothenberg AC Falcione ADCM Chen A Urish KL Tuan RS Alexander PG

Aims. Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods. Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 10. 9. colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively. Results. Intraosseous periprosthetic introduction of planktonic bacteria induced an acute rise in ESR and CRP that subsided by day 14, and resulted in radiologically evident periprosthetic osteolysis by day 28 accompanied by elevated WBC counts and histological evidence of bacteria in the bone tunnels after screw removal. The aseptic screw group induced no increase in ESR, and no lysis developed around the implants. Bacterial viability was confirmed by implant sonication fluid culture. Conclusion. Intraosseous periprosthetic introduction of planktonic bacteria reliably induces survivable chronic PJI in rabbits. Cite this article: Bone Joint Res 2021;10(3):156–165


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 79 - 79
24 Nov 2023
Puetzler J Vallejo A Gosheger G Schulze M Arens D Zeiter S Siverino C Moriarty F
Full Access

Aim. The time to onset of symptoms after fracture fixation is still commonly used to classify fracture-related infections (FRI). Early infections (<2 weeks) can often be treated with debridement, systemic antibiotics, irrigation, and implant preservation (DAIR). Late infections (>10 weeks) typically require implant removal as mature, antibiotic-tolerant biofilms have formed. However, the recommendations for delayed infections (2–10 weeks) are not clearly defined. Here, infection healing and bone healing in early and delayed FRI is investigated in a rabbit model with a standardized DAIR procedure. Method. Staphylococcus aureus was inoculated into 17 rabbits after plate osteosynthesis in a humerus osteotomy. The infection developed either one week (early group, n=6) or four weeks (delayed group, n=6) before a standardized DAIR procedure and microbiological analysis were performed. Systemic antibiotics were administered for six weeks (two weeks: Nafcillin+Rifampin, four weeks: Levofloxacin+Rifampin). A control group (n=5) also underwent a revision operation (debridement and irrigation) after four weeks, but received no antibiotic treatment. Rabbits were euthanized seven weeks after the revision operation. Bone healing was assessed using a modified radiographic union score for tibial fractures (mRUST). After euthanasia, a quantitative microbiological examination of the entire humerus, adjacent soft tissues, and implants was performed. Results. All animals were infected at the time of revision surgery, with the bacterial load in the early group (especially in soft tissues) being greater than in the delayed group and control group. This indicates infiltration of bacteria into areas that are more difficult to reach after four weeks of debridement. The infection was eradicated in all animals in both the early and delayed groups at euthanasia, but not in the control group (CFU median (IQR): 2.1×10. 7. (1.3×10. 7. -2.6×10. 7. ). The osteotomy healed in the early group, while bone healing was significantly impaired in both the delayed group and control group (mRUST median (IQR): early group: 16 (14–16), delayed group: 7.5 (6–10), control: 7 (5.5–9); early vs. delayed: p=0.0411, early vs. control p=0.0065). Conclusion. The maturation of the infection between the first and fourth week does not affect the success of infection eradication in this rabbit FRI model. However, bone healing appears to be impaired with increasing duration of infection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 111 - 111
4 Apr 2023
Ding Y Wu C Li S Sun Y Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process. A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a. Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage. In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims. Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect. Methods. A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus. Results. In vitro immunohistochemistry revealed that the meniscus cells migrated from the minced meniscus and proliferated in the gel. Furthermore, histological analysis suggested that the minced meniscus embedded in the atelocollagen gel produced tissue resembling the native meniscus in vivo. The minced meniscus group also had a higher Pauli’s score compared to the defect and atelocollagen groups. Conclusion. Our data show that cells in minced meniscus can proliferate, and that implantation of the minced meniscus within atelocollagen induces meniscus regeneration, thus suggesting a novel therapeutic alternative for meniscus tears. Cite this article: Bone Joint Res 2021;10(4):269–276


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions. G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083


Bone & Joint Research
Vol. 5, Issue 11 | Pages 577 - 585
1 Nov 2016
Hase E Sato K Yonekura D Minamikawa T Takahashi M Yasui T

Objectives. This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. Materials and Methods. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. Results. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R. 2. = 0.37) with Young’s modulus obtained from the tensile testing. Conclusion. Our results indicate that SHG microscopy may be a potential indicator of tendon healing. Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577–585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 78 - 78
1 Dec 2019
Pützler J Alexander M Everding J Raschke MJ Arens D Zeiter S Richards GR Moriarty FT
Full Access

Aim. Focused high energy extracorporeal shockwave therapy (fhESWT) is used to support fracture healing in non-union cases and has been shown to have antibacterial effects. We trialed fhESWT as an adjunct to conventional treatment in a clinically relevant rabbit model of fracture related infection. Method. A complete humeral osteotomy was performed in 31 rabbits and fixed with a 7-hole-LCP. A fracture-related infection (FRI) was established with Staphylococcus aureus. After two weeks, a revision surgery was performed with debridement, irrigation and implant retention. Rabbits then received: no further treatment (controls); shockwaves (at day 2 and 6 after revision, 4'000 Impulses each time with 23kV); systemic antibiotics (rifampin and nafcillin) over one week in weight adjusted dosages; or the combination of antibiotics and shockwaves. Treatments were applied over one week. Blood cultures were taken before and after shockwave sessions. After an additional week without treatment, rabbits were euthanized, and quantitative bacteriology was performed on implants and tissues to determine infection burden. Indicator organs (brain, heart, liver, lungs, kidneys and spleen) were cultured to assess possible bacteraemia due to fhESWT. Results. All rabbits were infected at revision surgery as determined by bacteriological culture of debrided materials. fhESWT in combination with antibiotic treatment lowered the bacterial burden at euthanasia hundredfold compared to antibiotic treatment alone in all samples (p=0.38). This effect was most prevalent for the implant sample (p=0.08). No significant effect was seen for fhESWT alone compared to untreated controls. No signs of bacteraemia occurred. Conclusions. The additon of systemic antibiotics had the biggest effect on reduction of bacteria. Although further lowering the bacterial burden in our model the effect of fhESWT as an adjunct was not big enough to be statistically secured in this in vivo rabbit model. In certain difficult-to-treat infections the addition of fhESWT might be beneficial. The method appears to be safe in this model of acute FRI as no signs of bacteremia occurred despite the high energy and impulse number. Further investigations are needed to identify the correct indication


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1234 - 1240
1 Sep 2018
Brady J Hardy BM Yoshino O Buxton A Quail A Balogh ZJ

Aims. Little is known about the effect of haemorrhagic shock and resuscitation on fracture healing. This study used a rabbit model with a femoral osteotomy and fixation to examine this relationship. Materials and Methods. A total of 18 male New Zealand white rabbits underwent femoral osteotomy with intramedullary fixation with ‘shock’ (n = 9) and control (n = 9) groups. Shock was induced in the study group by removal of 35% of the total blood volume 45 minutes before resuscitation with blood and crystalloid. Fracture healing was monitored for eight weeks using serum markers of healing and radiographs. Results. Four animals were excluded due to postoperative complications. The serum concentration of osteocalcin was significantly elevated in the shock group postoperatively (p < 0.0001). There were otherwise no differences with regard to serum markers of bone healing. The callus index was consistently increased in the shock group on anteroposterior (p = 0.0069) and lateral (p = 0.0165) radiographs from three weeks postoperatively. The control group showed an earlier decrease of callus index. Radiographic scores were significantly greater in the control group (p = 0.0025). Conclusion. In a rabbit femoral osteotomy model with intramedullary fixation, haemorrhagic shock and resuscitation produced larger callus but with evidence of delayed remodelling. Cite this article: Bone Joint J 2018;100-B:1234–40


Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 340 - 340
1 Jul 2014
Vadalà G Musumeci M Giacalone A Russo F Denaro V
Full Access

Summary Statement. Intra-articular injection of humanised monoclonal anti-VEGF antibody (Bevacizumab, Avastin®) in a osteoarthritis rabbit model is related to positive restorative effects in terms of histopathologic evaluation. Introduction. Vascular endothelial growth factor (VEGF) is generally undetectable in adult human articular cartilage under physiological conditions. Upon exposure to pathological stimulation such as inflammation, hypoxia or accumulating mechanical stress, VEGF would be up regulated in hypertrophic chondrocytes of arthritic cartilage leading to osteophyte formation, disregulation of chondrocyte apoptosis and induction of catabolic factors, including matrix metalloproteinases (MMPs). This in vivo study aims to investigate the potential role of VEGF inhibition to treat Osteoarthritis (OA), through intra-articular injection of Bevacizumab, a humanised monoclonal anti-VEGF antibody, in a OA rabbit model. Methods. OA was induced in twelve adult male New Zealand rabbits surgically by monolateral Anterior Cruciate Ligament Transection (ACLT). The rabbits were randomly divided into two equal groups (experimental and control). Intra-articular injections of Bevacizumab or saline (control) were given 4 weeks after ACLT and were administered once a week for 4 time. Animal were sacrificed at 2 and 3 month time point an knee analyzed histologically and grossly. Histopathological variables such as the number of fibroblasts and inflammatory cells, collagenous matrix deposition, synovial hyperplasia, granulation tissue formation, vascular proliferation were evaluated. Results:The macroscopic evaluation of the knee in the experimental group revealed smooth joint surfaces of articular cartilage and no osteophyte formation compared to the control group that showed marked arthritis including synovial hypertrophy and osteophyte formation. Histologic assessment demonstrated, in the experimental group, significantly higher scores concerning number of microvessels, synovial hyperplasia, macrophage infiltration, collagenous matrix deposition, chondrocytes proliferation and apoptosis compared to the control group. Conclusion. In conclusion, VEGF modulation via intra-articular injection of Bevacizumab in a rabbit model of knee OA, resulted in reduction of articular cartilage degeneration through setting up an appropriate environment that prevent chondrocyte hypertrophy, apoptosis and osteophytes formation by blocking the intrinsic VEGF catabolic pathway, endochondral ossification, and the extrinsic VEGF-induced vascular invasion. VEGF-signaling inhibtion through Bevacizumab represent a potential way to treat OA


Bone & Joint Research
Vol. 5, Issue 6 | Pages 247 - 252
1 Jun 2016
Tabuchi K Soejima T Murakami H Noguchi K Shiba N Nagata K

Objectives. The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods. Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results. At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions. Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10.1302/2046-3758.56.2000585


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 111 - 114
1 Jan 2013
Altay MA Ertürk C Altay N Öztürk IA Baykara I Sert C Isikan UE

We compared the intracompartmental pressures (ICPs) of open and closed tibial fractures with the same injury pattern in a rabbit model. In all, 20 six-month-old New Zealand White male rabbits were used. They were randomised into two equal groups of ten rabbits; an open fracture group (group 1) and a closed fracture group (group 2). Each anaesthetised rabbit was subjected to a standardised fracture of the proximal half of the right tibia using a custom-made device. In order to create a grade II open fracture in group 1, a 10 mm segment of fascia and periosteum was excised. The ICP in the anterior compartment was monitored at six-hourly intervals for 48 hours. Although there was a statistically significant difference in ICP values within each group (both p < 0.001), there was no significant difference between the groups for all measurements (all p ≥ 0.089). In addition, in both groups there was a statistically significant increase in ICP within the first 24 hours, whereas there was a statistically significant decrease within the second 24 hours (p < 0.001 for both groups). We conclude that open tibial fractures should be monitored for the development of acute compartment syndrome to the same extent as closed fractures. Cite this paper: Bone Joint J 2013;95-B:111–14


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 32 - 33
1 Mar 2006
Thorey F Witte F Nellesen J Griep-Raming N Menzel H Gross G Hoffmann A Windhagen H
Full Access

Introduction: Despite advances in endoprosthesis fixation by implant surface alteration, the problem of aseptic implant loosening still exists. Especially in patients with revisions osseointegration and filling of gaps at the bone-implant interface is mandatory for implant survival. Simple BMP-2 immersion has been introduced previously to act as an osteoinductive coating for advanced osseointegration. However, because of the uncontrolled release kinetics and subsequent molecular action and activity of BMP-2, purely osteoinductive actions are hard to differentiate from osteoclastic BMP-actions leading to bone remodelling, which could counteract the implant fixation process and might be the reason for failed attempts to use BMP-2 for implant fixation. In this study we investigated the osteoinductive potency of BMP-2 bound to titanium surfaces by a highly controlled molecular coupling with specifically designed polymers, allowing a slow controlles release kinetics. We present the first results of two different polymers that were implanted in the tibia and femora of New Zealand White Rabbits. Methods: In this study we designed cylindrical titanium-implants with an inner thread (Ti6-Alï·& #8220;4V, 3 mm hight x 3 mm diameter) and an electropolished outer surface that were coated with different polymers. The polymers were fixed to the surface using the photochemical method of grafting. The implants were implanted in the proximal tibia and distal femora of New Zealand White Rabbits. The anatomical locations of the implants were alternated to test their osseointegration in different quality of bone (cancellous vs. cortical bone). After 4 weeks the animals were sacrificed and DEXA-scans (Dual-energy X-ray absorptiometry), micro-CT and histological analysis were performed. ANOVA and t-test were used for statistic analysis. Results: In high-resolution DEXA-scans we found a difference in bone mineral density (BMD) between PVBP and a control implant in the distal femora (PVBP 0,720 g/cm², control 0,661 g/cm²) and in the proximal tibia (PVBP 0,633 g/cm², control 0,431 g/cm²) with an increase of bone mineral density. In the histological investigation we found an increase of osteoblasts around the implants coated with PVBP and PVBP-Co-Acryloxysuccimid. Furthermore, the micro-CT scans showed an increase of BV/TV (bone volume/total volume) for both polymers. Discussion: In this study we present the first results of the investigation of polymer-coated titanium-implants implanted in the proximal tibia and distal femora of New Zealand White Rabbits. The results of DEXA-scans, micro-CT and histological analysis showed an increase of osseointegration. We suggest that controlled release kinetics after coupling of these polymers with BMP-2 can additionally increase osseointegration. To get a closer look on the polymers, their characteristics in-vivo, and coupling with BMP-2 further investigations are conducted


Objectives. Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. Methods. The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity. Results. High IL-1Ra and miR-140 expression levels were detected both in vitro and in vivo. In vitro, compared with the pBudCE4.1 group, the transgenic group presented with significantly increased chondrocyte proliferation and glycosaminoglycan (GAG) synthesis, as well as increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and TIMP metallopeptidase inhibitor 1 (TIMP-1) levels. Nitric oxide (NO) synthesis was reduced, as were a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS-5) and matrix metalloproteinase (MMP)-13 levels. In vivo, the exogenous genes reduced the synovial fluid GAG and NO concentrations and the ADAMTS-5 and MMP-13 levels in cartilage. In contrast, COL2A1, ACAN, and TIMP-1 levels were increased, and the cartilage Mankin score was decreased in the transgenic group compared with the pBudCE4.1 group. Double gene combination produced greater efficacies than each single gene, both in vitro and in vivo. Conclusion. This study suggests that pNNS-CS is a good candidate for treating cartilage defects via gene therapy, and that IL-1Ra in combination with miR-140 produces promising biological effects on cartilage defects. Cite this article: R. Zhao, S. Wang, L. Jia, Q. Li, J. Qiao, X. Peng. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019;8:165–178. DOI: 10.1302/2046-3758.83.BJR-2018-0222.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 45 - 45
1 Nov 2018
Sheehy E von Deimling C Moriarty SKF O'Brien F
Full Access

Chronic osteomyelitis (OM) is a progressive, inflammatory infection of bone caused predominantly by S. aureus and requires treatment through surgical debridement and systemic antibiotic administration. We have previously reported the fabrication of an antibiotic-eluting scaffold which is responsive to microbial activity for the treatment of OM. Herein, we ventured to assess the capacity of this antibiotic-eluting scaffold to treat infection in a rabbit model of chronic OM. Infections were established in the radii of New Zealand White rabbits using inoculations of 2×10. 6. CFUs S. aureus JAR 060131 over a period of 4 weeks. Following surgical debridement (6mm), rabbits underwent treatment for a period of 8 weeks until euthanasia. The treatment groups were; 1) empty, 2) antibiotic-eluting scaffold (collagen/hydroxyapatite scaffold loaded with vancomycin) and 3) commercially available antibiotic-eluting fleece (Septocoll E®, collagen fleece loaded with gentamicin). During the treatment period, all groups received systemic antibiotics (Cefazolin 25mg/kg) administered subcutaneously twice daily for 4 weeks. Inoculation of the radius resulted in the development of a sequestrum containing S. aureus, demonstrating the successful establishment of OM. After the 8-week treatment period, 4/5 rabbits in the empty group were still infected, indicating that systemic antibiotic administration following debridement was insufficient to treat the infection. Fewer rabbits in both the antibiotic-eluting scaffold group (2/4) and the antibiotic-eluting fleece group (1/3) were infected. This work demonstrates that the implantation of an antibiotic-eluting biomaterial into a defect following debridement enhances bacterial clearance in conditions of chronic OM


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 368 - 368
1 Oct 2006
Aderinto J Blunn G
Full Access

Introduction: Bone marrow derived stromal stem cells (BMSSC’s) have the ability to differentiate into a variety of mesenchymal tissues including bone. The objective of this study was to evaluate the use a hydroxyapatite – BMSSC (HA-BMSSC) composite graft for posterior spinal fusion in a rabbit model. Method: The HA- BMSSC composite graft was prepared by seeding rabbit marrow derived BMSSC’s onto 5 grams of HA granules which were cultured for a further 7 days prior to implantation. Bilateral posterior L4–L5 interlamina spinal fusion was performed using the HA- BMSSC composite graft (4 Rabbits), hydroxyapatite(HA) granules (6 rabbits) or autologous bone graft obtained from the iliac crest (6 rabbits). Rabbits were sacrificed at 5 weeks. Fusion was assessed by manual palpation. Quantitative histological analysis of cartilage, fibrous tissue and bone in the mid portion of the graft was performed using image analysis software. Results: Three of four of the HA- BMSSC grafts fused successfully compared to 5 of 6 of the autologous bone grafts and 0 of 6 of the HA control grafts. The fusion rate was significantly higher in the iliac crest and HA- BMSSC groups than the HA control group (p< 0.05). In both the HA control and HA stem cell composite grafts there was ingrowth of new bone and encasement of HA granules by new trabecular bone at the graft – host interface. Within the mid region of the grafts there was bone formation in 2 of four fusion masses in the HA- BMSSC group comprising 26% and 45% of tissue in the area examined. In contrast bone formation was seen in the centre of only one of the six 6 HA fusion masses and amounted to only 2% of tissue. There was no significant difference in average percentage area of new bone, cartilage or fibrous tissue within the central region of the HA and HA-BMSSC grafts. There was a higher mean percentage area of new bone formation within the autologous bone graft (27%) than the HA control group (0.3%). p< 0.02. Discussion: The BMSSC –HA composite was as effective as autologous graft and superior to HA in promoting fusion, but HA when used alone was ineffective. A positive finding to support the osteogenic potential of the stem cell loaded HA granules was the presence of moderate amounts of enchondral new bone isolated within the central regions of the graft away from the graft host interface in 2 of 4 fusion masses. In contrast the HA control grafts only supported significant amounts of bone formation in the periphery, adjacent to the host bed


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 79 - 79
1 Dec 2019
Arens D Zeiter S Paulin T Ranjan N Alt V
Full Access

Aim. Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. Methods. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain. Results. X-rays showed normal undisturbed healing of the osteotomy in all animals without any differences between the two groups over the entire X-ray analysis over 10 weeks (Figure 1). Callus formation was observed up to week 4 to 5 followed by callus remodeling after 6 weeks indicating physiological fracture healing pattern in both the silver and in the silver free group. Micro CT analysis revealed overall tissue (callus and cortical bone) volume as well as tissue density to be comparable between the two groups. Mechanical testing showed comparable stiffness with an average stiffness relative to contralateral bones of 75.7 ± 16.1% in the silver free control group compared to 69.7 ± 18.5% (p-value: 0.46). Histology showed no remarkable difference in the analysis of the healed osteotomy gap or in the surrounding soft tissue area. Silver content was found to be close to baseline values without differences between the two groups. Conclusions. This study shows that the presented antimicrobial silver surface modification for locking plates has a good biocompatibility without any negative influence on the fracture healing processes compared to the silver free control group. This allows for further clinical investigation of this silver technology for locking plates in fracture patients with an elevated infection risk, e.g. in patients with open fractures. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 333 - 333
1 Sep 2005
Wang A Chen J Zheng M
Full Access

Introduction and Aims: Large or recurrent rotator cuff tendon tears are difficult to treat effectively. Collagen bio-scaffolds have become available to reinforce a tendon repair or as an interpositional graft. This study compares the suitability of two collagen bio-scaffolds for autologous tenocyte implantation, and assesses the in vivo rotator cuff healing response with these grafts in a rabbit model. Method: Tenocytes were isolated from rabbit tendon, cultured and seeded onto the Restore patch (DePuy), or the Matricel (Verigen) collagen membrane. Serial scanning electron microscopy examined tenocyte integration with the bio-scaffold, and extra-cellular matrix synthesis over time. A rotator cuff tendon defect was created in 50 rabbits and repaired by either: a) direct suture to tuberosity; b) Matricel interposition graft; c) Matricel interposition with autologous tenocytes; d) Restore patch interposition graft; e) Restore patch interposition with autologous tenocytes. Gross and histological evaluation were performed at four weeks and eight weeks post-surgery. Results: Scanning electron microscopy of the Matricel membrane showed a rough surface characterised by a loose arrangement of collagen fibres capable of cell adhesion. SEM at one, three and five days after cell seeding, showed progressive integration of tenocytes into the three-dimensional membrane structure with extra-cellular matrix neosynthesis in the spaces between the native collagen fibres. SEM of the Restore patch showed a relatively smooth surface of highly compacted collagen fibres. Serial SEM after cell seeding showed relatively less tenocyte integration onto the membrane surface though tenocyte replication and matrix neo-synthesis was observed. All 50 rabbits regained normal gait at two weeks post-surgery. At sacrifice, no tendon ruptures had occurred at either time point in any of the five groups. At four weeks, the Matricel and Restore bio-scaffold membranes were partially absorbed, and a florid lymphocytic inflammatory response was evident surrounding the remaining membrane. By eight weeks, graft tissue had been resorbed further, the inflammatory response had decreased, and the regenerating tendon showed progressive remodelling. Autologous tenocyte implantation on both membranes improved the reparative tendon histological grade at eight weeks compared to membranes without cell implantation, and was equivalent to the direct repair group. Conclusion: Autologous tenocytes can be implanted onto both Matricel and Restore collagen bio-scaffolds. Though both Xeno grafts induce an anti-inflammatory response in vivo, membrane resorption subsequently occurs. The healing response of large rotator cuff defects treated with interpositional collagen grafts is improved with autologous tenocyte implantation in a rabbit model


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 984 - 988
1 Jul 2007
Omi H Kusumi T Kijima H Toh S

We investigated the effect of locally administered bisphosphonate on distraction osteogenesis in a rabbit model and evaluated its systemic effect. An osteotomy on the right tibia followed by distraction for four weeks was performed on 47 immature rabbits. They were divided into seven equal groups, with each group receiving a different treatment regime. Saline and three types of dosage of alendronate (low, 0.75 μg/kg; mid, 7.5 μg/kg and high 75 μg/kg) were given by systemic injection in four groups, and saline and two dosages (low and mild) were delivered by local injection to the distraction gap in the remaining three groups. The injections were performed five times weekly during the period of distraction. After nine weeks the animals were killed and image analysis and mechanical testing were performed on the distracted right tibiae and the left tibiae which served as a control group. The local low-dose alendronate group showed a mean increase in bone mineral density of 124.3 mg/cm. 3. over the local saline group (analysis of variance, p < 0.05) without any adverse effect on the left control tibiae. The findings indicate that the administration of local low-dose alendronate could be an effective pharmacological means of improving bone formation in distraction osteogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1033 - 1040
1 Jul 2010
Nishino T Chang F Ishii T Yanai T Mishima H Ochiai N

We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 8 - 8
17 Apr 2023
Buchholz T Zeiter S Moriarty T Awad H Nehrbass D Constant C Elsayed S Yan M Allen M
Full Access

Treatment of bone infection often includes a burdensome two-stage revision. After debridement, contaminated implants are removed and replaced with a non-absorbable cement spacer loaded with antibiotics. Weeks later, the spacer is exchanged with a bone graft aiding bone healing. However, even with this two-stage approach infection persists. In this study, we investigated whether a novel 3D-printed, antibiotic-loaded, osteoinductive calcium phosphate scaffold (CPS) is effective in single-stage revision of an infected non-union with segmental bone loss in rabbits.

A 5 mm defect was created in the radius of female New Zealand White rabbits. The bone fragment was replaced, stabilized with cerclage wire and inoculated with Staphylococcus aureus (MSSA). After 4 weeks, the infected bone fragment was removed, the site debrided and a spacer implanted. Depending on group allocation, rabbits received: 1) PMMA spacer with gentamycin; 2) CPS loaded with rifampin and vancomycin and 3) Non-loaded CPS. These groups received systemic cefazolin for 4 weeks after revision. Group 4 received a loaded CPS without any adjunctive systemic therapy (n=12 group1-3, n=11 group 4). All animals were euthanized 8 weeks after revision and assessed by quantitative bacteriology or histology. Covariance analysis (ANCOVA) and multiple regression were performed.

All animals were culture positive at revision surgery. Half of the animals in all groups had eliminated the infection by end of study. In a historical control group with empty defect and no systemic antibiotic treatment, all animals were infected at euthanasia. There was no significant difference in CFU counts between groups at euthanasia.

Our results show that treating an osteomyelitis with segmental bone loss either with CPS or PMMA has a similar cure rate of infection. However, by not requiring a second surgery, the use of CPS may offer advantages over non-resorbable equivalents such as PMMA.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 432 - 432
1 Apr 2004
Allen M Schoonmaker J Ayers D
Full Access

Introduction: Tumor necrosis factor-alpha (TNF-a) has been shown to be a potent stimulator of bone resorption in vitro and in vivo, and has been identified as an important factor in aseptic loosening of total joint replacements. In order to investigate the effects of TNF-a at the bone-cement interface, we developed a rabbit model in which a slow-release pellet containing a known amount of TNF-a was inserted adjacent to a polymethylmethacryate (PMMA) implant in the distal femur. Methods: 25 male New Zealand white rabbits were used in this IACUC-approved study. After routine exposure of the distal femur, a 3 mm drill bit was used to drill through the intercondylar region into the medullary canal of the distal femur. A resorbable pellet containing 0, 420, 4200, 42 000 or 420 000 pg of TNF-a (n=5 animals per dose level) was inserted into the drill hole, immediately followed by a cylindrical PMMA implant (20 mm long). Animals were euthanized 42 days after surgery. The right femora were excised, radiographed, and processed for histology. Ground sections were prepared at the level of the proximal implant. Semi-automated image analysis was used to quantify cortical bone area, porosity and fractional surfaces (quiescent, osteoid and eroded). Data from control and treatment animals were compared with a one-way analysis of variance (ANOVA) using p< 0.05. Results: All of the animals recovered well after surgery. Radiographically, all of the implants appeared to be stable, with no evidence of linear or cystic osteolysis. Local delivery of TNF-a for 6 weeks had no effect on cortical bone area or porosity. However, TNF-a stimulated bone resorption and decreased new bone formation at the endosteal surface (p< 0.05); these effects were not dose-dependent but were seen in all of the TNF-a groups. Discussion: Our data provide direct evidence that local release of TNF-a is capable of inducing endosteal bone resorption in vivo. Additional studies are now needed to determine the effects of other proinflammatory cytokines in this animal model. However, based on these results, it appears that targeted blockade of TNF-a release or activity may provide a rational therapeutic approach to osteolysis and aseptic loosening


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 17 - 17
1 Feb 2013
Monsell F Bellemore M Bilston L Goodship A Barnes J
Full Access

We investigated the effect of adjuvant and neoadjuvant chemotherapy regimens on the tibial regenerate after removal of the external fixator in a rabbit model of distraction osteogenesis using New Zealand white rabbits. Forty rabbits were randomly distributed into two groups. In the neoadjuvant group, half of the rabbits received 1mg/kg cisplatinum & 2mg/kg adriamycin at eight weeks of age followed by 1mg/kg cisplatinum & 4mg/kg adriamycin at ten weeks of age. The remaining ten received an identical volume of normal saline using the same regimen. The adjuvant group differed only in the timing of the chemotherapy infusion. Half received the initial infusion ten days prior to the osteotomy, with the second infusion four days following the osteotomy. Again, the remaining ten rabbits received an identical volume of normal saline using the same regimen. This produced an identical interval between infusions and identical age at osteotomy in both groups. All rabbits underwent a tibial osteotomy at 12 weeks of age. Distraction started 24hours after osteotomy at a rate of 0.75mm a day for 10 days, followed by 18 days without correction to allow for consolidation of the regenerate. At week 16 there was no difference in Bone Mineral Density (BMD), Bone Mineral Content (BMC) or volumetric Bone Mineral Density (vBMD) in the adjuvant group. Neoadjuvant chemotherapy appears to have a significant detrimental effect on BMD, vBMD and BMC. Despite this there were no significant alterations in the mechanical properties of the regenerate. Histologically there was a trend for increased cortical thickness in the control groups compared to intervention however this did not prove statistically significant. In conclusion, adjuvant chemotherapy may be more beneficial for cases where distraction osteogenesis is being considered to replace segmental bone loss after tumour excision


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1082 - 1087
1 Sep 2004
Becker R Pufe T Kulow S Giessmann N Neumann W Mentlein R Petersen W

Our aim was to investigate vascular endothelial growth factor (VEGF) expression after lacerations of a meniscus in a rabbit model. Specimens of meniscus were examined using immunohistochemistry, enzyme-linked immunoassay and the reverse transcription polymerase chain reaction after one, two, five or ten weeks. In the periphery of the meniscus 90% of the lacerations had healed after five and ten weeks, but no healing was observed in the avascular area. Expression of VEGF protein and VEGF mRNA was found in the meniscus of both the operated and the contralateral sites but both were absent in control rabbits which had not undergone operation. The highest expression of VEGF was found in the avascular area after one week (p < 0.001). It then lessened at both the vascular and avascular areas, but still remained greater in comparison with the control meniscus (p < 0.05). Despite greater expression of VEGF, angiogenesis failed at the inner portion. These findings demonstrated the poor healing response in the avascular area which may not be caused by an intrinsic cellular insufficiency to stimulate angiogenesis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 29 - 29
1 Mar 2012
Ichiseki T Kaneuji A Sugimori T Fukui K Kitamura K Mikami T Nakagawa S Matsumoto T
Full Access

Introduction. Recently, oxidative stress has been implicated in the development of osteonecrosis. Here we focused on vitamins with marked antioxidant potency to see whether their use might prevent the development of osteonecrosis associated with corticosteroid administration. Methods. Fifteen male Japanese white rabbits weighing about 3.5 kg were injected once into the right gluteal muscle with methylprednisolone (MPSL) 40 mg/kg (S Group). Ten other rabbits, in addition, received consecutive daily intravenous injections of vitamin E 50 mg/kg starting from the day of MPSL administration (E Group), and 10 other animals similarly received consecutive daily intravenous injections of vitamin C 30 mg/kg (C Group). All animals were euthanized 2 weeks after MPSL administration, and femurs were extracted, and stained with hematoxylin-eosin. Blood levels of glutathione (GSH) were also measured. Results. In S Group, the osteonecrosis development rate was 93%, in contrast to 60% in C Group, and none in E Group (P<0.05). Also, GSH levels in both S and C Groups abruptly decreased from the 1st day after MPSL administration, whereas, in E Group, the decline in GSH levels was significantly suppressed on days 1 and 3 after MPSL administration (P<0.05). Conclusion. Vitamin E significantly inhibited the decrease in blood GSH levels noted in the groups not receiving it. Since GSH reflects oxidative stress in vivo, vitamin E administration may be preventative in the setting of this kind of corticosteroid-induced osteonecrosis rabbit model


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 248 - 248
1 Jul 2008
SAILHAN F CHOTEL F CHUSTA A SAVET A HUGUET T VIGUIER E BRAILLON P BERARD J
Full Access

Purpose of the study: We conducted an experimental study of the effects of rh-BMP-7 on healing rate in the tibia of the immature rabbit exposed to bone distraction. As seen in previous models using bone stock loss or lumbar fusion, we hypothesized that rh-BMP-7 accelerates osteogenesis of the distracted segment. Material and methods: Twenty-eight immature male New Zealand rabbits weighing 2 to 3 kg were randomly selected from a homogeneous population. Two groups of 14 rabbits were constituted by random selection: the control group (group I) and the BMP group (group II). An Orthofix M-103 external fixator was installed on the left tibia in all rabbits before performing a mid-shaft osteotomy. 70 g rh-BMP-7 was applied to the osteotomy surfaces in group II animals. After a postoperative latency period of 7 days, bone distraction was instituted at the rate of 0.5 mm/12 hr for 21 days in all animals. Radiographic qualitative grading, ultrasonography, and bone mineral density measurements on the callus were performed each week on each animal from the second week to sacrifice. After sacrifice, the distracted callus was removed and embedded in resin for histomorpho-metric analysis without decalcification. Results: Two animals from each group were excluded from the analysis because of a fracture on the pin line of the operated tibia. There were no wound or pin track infections. The radiographic grade noted in group I was constantly greater than in group II. Bone mineral content was significantly higher in group I animals compared with group II. The ultrasound examination of the callus revealed more rapid distraction gap filling in group I than group II. An liquid-filled cyst was noted early in 92% of the rabbits in group II, which retarded osteogenesis. This type of cyst was not observed in any of the group I animals. At the time of sacrifice, the ultrasound and bone density measurements tended toward similar values in the two groups, the results for group II catching up with those for group I. This trend was concomitant with resolution of the cysts within the callus in group II animals. The histological examination demonstrated earlier osteogenesis and remodeling in group I animals. Discussion: Early formation of cysts would be the only factor causing late maturation of the callus in group II. The fact that the results tended toward similar values for the ultrasound and bone density studies late in the study (when the cysts were being resorbed) favors this hypothesis. Interposing rh-BMP-7 in solid form between the osteotomy surfaces may have inhibited the formation of the primary callus and caused an inflammatory reaction with cyst formation. The rh-BMP-7 may have been applied to early or may in itself had a negative effect, which might explain the absence of the expected acceleration of healing. Conclusion: Early local application of 70 g rh-BMP-7 on osteotomy section surfaces in a rabbit model of tibial distraction did not lead to expected accelerated healing rate. The application of this compound after formation of a primary callus or in another formulation (liquid) might avoid the development of cysts within the callus and allow the active substance to play is potential role as an accelerator of bone healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 85 - 85
2 Jan 2024
Frost M Tirta M Rahbek O Rytoft L Ding M Shen M Duch K Kold S
Full Access

Healing after bone fracture is assessed by frequent radiographs, which expose patients to radiation and lacks behind biological healing. This study aimed to investigate whether the electrical impedance using electrical impedance spectroscopy correlated to quantitative scores of bone healing obtained from micro-CT and mechanical bending test.

Eighteen rabbits were subjected to tibial fracture that was stabilized with external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the fracture site. Impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz. The animals were divided into three groups with different follow-up time: 1, 3 and 6 weeks for micro-CT (Bone volume/tissue volume (BV/TV, %)) and mechanical testing (maximum stress (MPa), failure energy (kJ/cm3), young modulus (Mpa)).

There was a statistically significant correlation between last measured impedance at 5 Hz frequency immediately prior to euthanasia and BV/TV of callus (−0.68, 95%CI: (−0.87; −0.31)). Considering the mechanical testing with three-point bending, no significant correlation was found between last measured impedance at 5 Hz frequency immediately prior to euthanasia and maximum stress (−0.35, 95%CI: (−0.70; 0.14)), failure energy (−0.23, 95%CI: (−0.63; 0.26)), or young modulus (−0.28, 95%CI: (−0.66; 0.22)).

The significant negative correlation between impedance and BV/TV might indicate that impedances correlate with the relative bone volume in the callus site. The lack of correlation between impedance and mechanical parameters when at the same time observing a correlation between impedance and days since operation (0-42 days), might indicate that the impedance can measure biological changes at an earlier time point than rough mechanical testing.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 263 - 263
1 Jul 2014
Imai K Ikoma K Gay R Hirano T Ozasa Y Chen Q An K Zhao C
Full Access

Summary Statement. ASTM therapy is commonly used to treat Achilles tendinopaty. However, there was no report to evaluate the biomechanical effects, especially the dynamic viscoelasticity. We have shown that ASTM treatment was biomechanically useful for chronic Achilles tendinopathy in an animal model. Introduction. Achilles tendinopathy is a common chronic overuse injury. Because Achilles tendon overuse injury takes place in sports and there has been a general increase in the popularity of sports activities, the number and incidence of Achilles tendon overuse injury has increased. Augmented Soft Tissue Mobilization (ASTM) therapy is a modification of traditional soft tissue mobilization and has been used to treat a variety of musculoskeletal disorders. ASTM therapy is thought to promote collagen fiber realignment and hasten tendon repair. It might also change the biomechanical behavior of the injured tendon, especially the dynamic viscoelasticity. The purpose of this study is to evaluate the effect of ASTM therapy in a rabbit model of Achilles tendinopathy by quantifying dynamic biomechanical properties and histologic features. Patients & Methods. The hind limbs of 12 rabbits were used, and 24 Achilles tendons were injected with collagenase to produce tendon injury. One hind limb of each animal was then randomly allocated to receive ASTM therapy, while the other received no treatment and served as a control. ASTM was performed on the Achilles tendon for 3 minutes on postoperative days 21, 24, 28, 31, 35, and 38. The Achilles tendons were harvested 10 days after the last treatment. Specimens were examined with dynamic viscoelasticity and light microscopy. Results. The mean±SD cross-sectional area for the treated and untreated tendons was 12.30±5.47 mm. 2. and 9.57±8.36 mm. 2. , respectively. The difference between the treated and untreated tendons was statistically significant (P<.01). At all dynamic loading frequencies, the storage modulus in the untreated tendons tended to be higher than that in the treated tendons. At 0.1 Hz and 10 Hz, in the untreated tendons was significantly higher than that in the treated tendons (P=.05). The loss modulus was significantly lower in the treated tendons than in the untreated tendons (P<.05). There was no significant difference in tan δ between the treated and untreated tendons. HE stain showed that the untreated tendon fiber was wavy and kinking and displayed a disordered collagen arrangement. In contrast, the tendon fiber was well aligned in the treated tendons. In the immunohistochemically stained specimens, the type III collagen showed higher color intensity in the untreated tendons than in the treated tendons. Discussion/Conclusion. We have shown that ASTM was a biomechanically useful treatment for chronic Achilles tendinopathy. Biomechanical and histologic data showed the treated Achilles tendons had better biomechanical function and histologic outcomes than the untreated tendons


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 50 - 50
1 Nov 2021
Rytoft L Frost MW Rahbek O Shen M Duch K Kold S
Full Access

Introduction and Objective

Home-based monitoring of fracture healing has the potential of reducing routine follow-up and improve personalized fracture care. Implantable sensors measuring electrical impedance might detect changes in the electrical current as the fracture heals. The aim was to investigate whether electrical impedance correlated with radiographic fracture healing.

Materials and Methods

Eighteen rabbits were subjected to a tibial osteotomy that was stabilized with an external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the osteotomy site. Transverse electrical impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz using an Analog Discovery 2 Oscilloscope with Impedance Analyzer. Biweekly x-rays were taken and analyzed blinded using a modified anterior-posterior (AP) radiographic union score of the tibia (RUST). Each animal served as its own control by performing repeated measurements from time zero until the end of follow-up.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 65 - 65
11 Apr 2023
Siverino C Arens D Zeiter S Richards G Moriarty F
Full Access

In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents.

A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×106 CFU/animal) and the PMMA spacer was loaded with gentamicin, and systemic therapy was applied for 4 weeks prior to chronOs application.

All the animals from the infected group were culture positive during the first revision surgery (mean 3×105 CFU/animal, n= 12), while at the second revision, after antibiotic therapy, all the animals were culture negative. The differences in bone healing between the non-infected and infected groups were evaluated by radiography and histology. The initially infected animals showed impaired bone healing at euthanasia, and some remnants of bacteria in histology. The non-infected animals reached bone bridging in both empty and chronOs conditions.

We developed a preclinical in vivo model to investigate how bacterial infection influence bone healing in large defects with the future aim to explore new treatment concepts of infected non-union.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 85 - 85
1 Jul 2014
Russell N Oliver R Walsh W
Full Access

Summary Statement. Supercritical fluid (SCF) sterilization produces clean and osteoconductive allograft bone capable of healing a critical-sised bony defect. SCF treated graft induces an increased anabolic response and decreased catabolic reponse compared to gamma irradiated graft. Introduction. Clinically, allogeneic bone graft is used extensively because it avoids the donor site morbidity associated with autograft. However, there are concerns over the optimal sterilization method to eliminate immunological risks whilst maintaining the biological efficacy of the graft. This study compared the effect of Supercritical fluid (SCF) sterilization and gamma irradiation on the osteoconductivity of allograft bone in a bilateral critical-sised defect rabbit model. Methods. Cortical-cancellous allograft bone was milled, defatted and terminally sterilised with either gamma irradiation at 25kGy or SCF treatment. The graft was then implanted bilaterally into a critical-sised metaphyseal defect in 10 New Zealand White rabbits (n=5 sites per time point per group). Osteoconductivity was evaluated at 2 and 4 weeks to measure the early inflammatory response and early new bone formation respectively, using X-ray, CT, and both qualitative and quantitative histology and immunohistochemistry (Alkaline Phosphatase and Cathepsin-K). Results. Both grafts were well tolerated and osteoconductive. At 2 weeks, there were significant reductions in bone volume and density in the gamma irradiated graft compared to the SCF treated graft as measured by CT. Inside the defect this corresponded with a greater inflammatory response in the gamma irradiated graft, with a less organised fibrous tissue infiltration and mild granuloma reaction. Conversely, the SCF group had a highly organised and densely packed fibrous tissue infiltration around the allograft chips. Immunohistochemistry results supported these findings with an up-regulation in the expression and distribution of Cathepsin-K in the gamma irradiation group; while Alkaline Phosphatase expression was higher in the SCF group. At 4 weeks, resorptive behavior predominated in both groups. Radiographic and CT results detected no significant difference between groups. Histology at 4 weeks showed larger bone chips were undergoing substantial remodeling with areas of simultaneous osteoclastic resorption and osteoblastic new bone formation. Smaller allograft chips and areas of new bone formation were infiltrated by fibrous tissue and undergoing osteoclastic resorption. Quantitative immunohistochemistry showed an up-regulation of Cathepsin-K expression in both groups from 2 to 4 weeks. At both time points Cathepsin-K expression was higher in the gamma irradiated graft compared to the SCF group. This was greatest at 2 weeks where there was a substantial 82% increase in expression which was reduced to a 38% discrepancy at 4 weeks. Alkaline Phosphatase expression was greater in the SCF group at both time-points. Discussion/Conclusion. Allograft bone sterilised with either gamma irradiation or SCF treatment was osteoconductive and capable of healing a critical-sised defect in a rabbit. Gamma irradiated allografts elicited an acute inflammatory reaction when implanted which increased the amount graft resorption compared to the SCF treated bone. Increased osteoclastic resorption may be a concern for structural graft applications leaving the graft more susceptible to premature failure. SCF sterilization produced a clean, highly biocompatible graft with increased anabolic activity compared to gamma irradiation which may facilitate earlier healing clinically. These results suggest that SCF sterilization has considerable expediency for allograft processing and may facilitate more optimal extraction of the inherent properties of the graft compared to current practices


Bone & Joint Research
Vol. 7, Issue 5 | Pages 327 - 335
1 May 2018
Sato Y Akagi R Akatsu Y Matsuura Y Takahashi S Yamaguchi S Enomoto T Nakagawa R Hoshi H Sasaki T Kimura S Ogawa Y Sadamasu A Ohtori S Sasho T

Objectives

To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model.

Methods

Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 32 - 32
1 Mar 2006
Tsiridis E Kain M Song M Bancroft J Rene J Kakar S Morgan E Gerstenfeld L Tornetta P Einhorn T
Full Access

Background: Metaphyseal fracture healing presents special biomechanical challenges in orthopaedic surgery. The void typically created by damage to the metaphyseal cancellous bone must usually be filled in order to recover the biomechanical integrity of the bone. While autologous bone grafting is a standard treatment for these fractures, bone graft substitutes delivered with or without pharmacologic agents may augment healing. Hypothesis: Tricalcium phosphate (TCP) is a known osteoconductive bone filler and OP-1 an osteoinductive bone morphogenetic protein; both have been used in the past in diaphyseal fractures with success. PTH (parathyroid hormone) has been recently shown to enhance osteoblastic activity, to have a net anabolic effect on bone mass, and to enhance healing of diaphyseal fractures. Each of these agents may also enhance healing of metaphyseal fractures. Objective: The potential of all above factors to accelerate metaphyseal fracture healing has been evaluated in a new metaphyseal fracture model developed in our laboratory in a rabbit model. Material and Methods: A metaphyseal wedge osteotomy was created in the distal tibia of 16-week-old female New Zealand White rabbits (n=20). The osteotomy was bridged with a custom-made external fixator. The osteotomy gap was filled with TCP containing OP-1 (n=4), TCP alone with daily subcutaneous injections of 10μg/Kgr BW PTH (n=4), or TCP alone with daily subcutaneous administration of 40μg/Krg BW PTH (n=4). Two control groups, TCP alone (n=4) and normal healing (n=4), were also included. Assessment methods included biomechanical testing in both compression and torsion, radiographic examination, and QCT scans. Results: Healing was observed in both PTH treated groups as well as in the OP-1 group at 4 weeks post-surgery. PTH appeared to have a systemic effect on bone formation, whereas the effect of OP-1 was local to the osteotomy site. In comparison, healing was delayed in the normal healing and TCP alone groups. Conclusion: PTH and OP-1 both enhance metaphyseal fracture healing. The different systemic vs. local effects of these two agents, suggest that PTH and OP-1 may have potential synergism in accelerating healing of metaphyseal fractures


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 94 - 94
1 Dec 2020
Ambrosio L Vadalà G Cattani C Bernardini R Giacalone A Papalia R Denaro V
Full Access

Cartilage neoangiogenesis holds a key role in the development of osteoarthritis (OA) by promoting cartilage degradation with proteoglycan loss, subchondral bone sclerosis, osteophyte formation and synovial hyperplasia. This study aimed to assess the in vivo efficacy of bevacizumab, an antibody against vascular endothelial growth factor (VEGF) in an OA animal model.

24 New Zealand white rabbits underwent anterior cruciate ligament transection in order to spontaneously develop knee OA. Animals were divided into four groups: one receiving a sham intraarticular knee injection (saline) and three groups treated with 5, 10, and 20 mg intraarticular bevacizumab injections. The biological effect of the antibody on cartilage and synovium was evaluated through histology and quantified with the Osteoarthritis Research Society International (OARSI) scores. Immunohistochemical analysis was conducted to investigate type 2 collagen, aggrecan, and matrix metalloproteinase 13 (MMP-13) expression in both cartilage and synovium.

Intraarticular bevacizumab led to a significant reduction of cartilage degeneration and synovial OA alterations. Immunohistochemistry showed a significantly reduced MMP-13 expression in all experimental groups, with the one receiving 20 mg bevacizumab showing the lowest. Furthermore, the antibody showed to increment the production of aggrecan and type 2 collagen after administration of 5, 10, and 20 mg. The group treated with 20 mg showed the highest levels of type 2 collagen expression, while aggrecan content was even higher than in the healthy cartilage.

Intraarticular bevacizumab has demonstrated to effectively arrest OA progression in our model, with 20 mg being the most efficacious dose. By inhibiting cartilage and synovial neoangiogenesis, bevacizumab may serve as a possible disease-modifying osteoarthritis drug (DMOAD) in the next future.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 83 - 83
1 Nov 2021
Nativel F Smith A Marquis M Renard D Gauthier O Vinatier C Rieux AD Guicheux J Visage CL
Full Access

Introduction and Objective

Osteoarthritis (OA) is the most common inflammatory and degenerative joint disease. Mesenchymal Stromal Cells (MSCs), with their chondro-protective and immune-regulatory properties, have been considered as a new approach to treat OA. Considering the risk of cell leakage outside the articular space and the poor survival rate after intra-articular (IA) injection, we hypothesized that cell encapsulation in cytoprotective hydrogels could overcome these limitations and provide cells with a suitable 3D microenvironment supporting their biological activity. We previously generated micromolded alginate particles (diameter 150 μm) and demonstrated the long-term viability of microencapsulated MSCs isolated from human adipose tissue (hASCs). Encapsulated cells maintained their in vitro ability to sense and respond to a pro-inflammatory environment (IFN-γ/TNF-α or synovial fluids from OA patients) by secreting PGE2, IDO, HGF and TGF-β. In this study, we evaluated the anti-OA efficacy of these microencapsulated hASCs in a post-traumatic OA model in rabbits.

Materials and Methods

OA was surgically induced by anterior cruciate ligament transection (ACLT)-mediated destabilization of the right knee in rabbits (n=24). Eight weeks after surgery, destabilized joints were injected (IA, 26G needle) with 200 μL of either PBS, blank microparticles, non-encapsulated or microencapsulated cells (5×105 cells). Six weeks after injection, rabbits were euthanized and all destabilized (right) and sham-operated (left contralateral) joints were dissected and analyzed for OA severity. Tibial subchondral bone histomorphometric parameters were measured by quantitative micro-computed tomography (micro-CT). Histological sections of samples were analyzed after Safranin-O staining and quantitatively assessed according to a modified Osteoarthritis Research Society International (OARSI) scoring system. Immunohistochemical detection of NITEGE was performed to assess the extracellular matrix degradation.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 315 - 315
1 Nov 2002
Robinson D Guetsky M Halperin R Schneider D Halperin N Nevo Z
Full Access

Methods of study: Prospective Controlled Animal Study. Objectives: Evaluation of the feasibility of embryonal epiphyses transplantation in a xenogeneic model for reconstruction of adult articular cartilage in a rabbit model. Introduction: Articular cartilage reconstruction has been the goal for many years of orthopaedic research. Current acceptable techniques include the use of allografts, autologous chondrocytes transplantation and osteochondral cylinder grafting. Reconstruction of articular cartilage defects using adult osteochondral allografts is an established clinical procedure, whose principal drawback is lack of lateral integration of the grafts to the surrounding tissue. Autologous chondrocytes transplantation is a sophisticated technique requiring cell culture and a staged operation. Its main draw back is the lack of mechanical strength early on and the prolonged rehabilitation period. This study was conducted in order to evaluate the possibility of using embryonal epiphyses as a cartilage reconstruction tissue. Methods: A xenogeneic human to rabbit sub-acute osteochondral defect model was designed to evaluate the possibility of allogeneic implantation in humans. The following procedures were performed (n=5): transplantation of: 1. live epiphyses, 2. live epiphyses with autogeneic periosteum, 3. devitalized epiphyses, and 4. devitalized epiphyses with autogeneic articular chondrocytes. A fifth control group did not receive any implant. Animals were followed for 3 months after transplantation and than sacrificed. The histological specimens were evaluated by image analysis after immuno-histochemical stains were performed (including the following antigens – collagen type II, collagen type I, collagen type III, collagen type X, S-100, alkaline phosphatase, osteocalcin, osteopontin, nitric oxide synthase). Results: Animals in groups 1 and 2 had a viable reconstruction of the articular surface with little evidence of rejection and without pannus formation. Animals in groups 3 and 4 became severely arthrotic and the graft was resorbed. Nitric oxide synthase accumulation was reduced in group 1 and 2 as compared to groups 3, 4, and 5, indicating a joint preserving function of the epiphyseal grafts. Discussion: Epiphyseal grafts appear to be a feasible procedure for reconstruction of articular cartilage defects even in a xenogeneic model. The restoration of articular cartilage even with a xenogeneic graft appears to prevent nitric oxide synthesis and the resulting destruction of unafflicted articular cartilage. This is a major pathway leading to secondary osteoarthritis after joint injury. Blocking this pathway might prevent degenerative changes


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 9 - 9
11 Apr 2023
Angrisani N Willumeit-Römer R Windhagen H Scheper V Wiese B Mavila B Helmholz H Reifenrath J
Full Access

There is no optimal therapy to stop or cure chondral degeneration in osteoarthritis (OA). Beside cartilage, subchondral bone is involved. The often sclerotic bone is mechanically less solid which in turn influences negatively chondral quality. Microfracturing as therapeutic technique aims to enhance bone quality but is applied only in smaller cartilage lesions. The osteoproliferative properties of Magnesium (Mg) have been shown repeatedly1-3. The present study examined the influence of micro-scaled Mg cylinders compared to sole drilling in an OA model.

Ten New Zealand White rabbits underwent anterior crucial ligament transection. During 12 weeks after surgery, the animals developed OA as previously described4. In a second surgery, half of the animals received 20 drill holes (ø 0.5mm) and the other half received 20 drill holes, which were additionally filled with one Mg cylinder each. Extracapsular plication was performed in all animals. During the follow-up of 8 weeks three µ-computed tomographic (µCT) scans were performed: immediately after surgery and after four and eight weeks. Changes of bone volume, trabecular thickness and bone density were calculated and compared.

µCT evaluation showed an increase in bone volume and trabecular thickness in both groups. This increase was significantly higher in rabbits which received Mg cylinders showing thrice as high values for both parameters (bone volume: Mg group +44.5%, drilling group +15.1%, p≤0.025; trabecular thickness: Mg group +53.2%, drilling group +16.9%, p≤0.025). Also bone density increased in both groups, but on a distinctly lower level and with no significant difference.

Although profound higher bone volume was found after implantation of Mg cylinders, µCT showed similar levels of bone density indicating adequate bone quality in this OA model. Macroscopic and histological evaluation of cartilage condition have to reveal possible impact on OA progression. Additionally, current examination implement different alloys and influence on lameness.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 87 - 87
1 Dec 2020
Frost MW Rytoft LA Shen M LI Y Zhekov SS Ghaffari A Kr⊘yer BK Pedersen GF Rahbek O Kold S
Full Access

In 2019, Lin et al. published a proof-of-concept study of electrical impedance spectroscopy as a simple and low-cost method to characterize progression of fracture repair (Lin et al., Sci Rep 2019). However, the electrical impedance sensors were placed in the fracture site which may impair the transfer to clinical use. To further explore the concept of monitoring fracture healing by electrical impedance spectroscopy, we established a tibial fracture model in the rabbit where sensors are positioned in proximity to the fracture site but without being placed in the fracture site. The aim of this pilot study was to explore whether distinct patterns of electrical impedance would evolve as tibial fractures in rabbits were evaluated until radiographic signs of healing.

Approval was granted from the Inspectorate of the Animal Experimentation under the Danish Ministry of Justice. Four rabbits were anaesthetized, and in each rabbit a tibial osteotomy was made and stabilized by an external fixator. Electrical impedance was measured immediately postoperative and hereafter daily until euthanization after 3 weeks. Recordings were obtained within a wide frequency range (10 Hz to 1 MHz) from an inner electrode placed into the medullary canal and an outer electrode placed extracortical on the lateral with a distance of 3 mm to the defect.

A similar pattern of electrical impedance over time was observed in the four rabbits. During the very early stages of fracture healing, an initial fluctuation in electrical impedance occurred. However, after 10 days the curves revealed a steady daily increase in electrical impedance. The first radiological signs of bone healing were detected after 14 days and progressed in all four rabbits in accordance with increments in the electrical impedance until termination of the pilot study after 21 days.

Consistent electrical impedance patterns were detected during bone healing in a pilot study of four rabbits. Further research is needed to explore whether the presented method of electrical impedance measurements can be used to monitor bone healing over time.


Bone & Joint Research
Vol. 1, Issue 9 | Pages 218 - 224
1 Sep 2012
Tabuchi K Soejima T Kanazawa T Noguchi K Nagata K

Objectives

The purpose of this study was to evaluate chronological changes in the collagen-type composition at tendon–bone interface during tendon–bone healing and to clarify the continuity between Sharpey-like fibres and inner fibres of the tendon.

Methods

Male white rabbits were used to create an extra-articular bone–tendon graft model by grafting the extensor digitorum longus into a bone tunnel. Three rabbits were killed at two, four, eight, 12 and 26 weeks post-operatively. Elastica van Gieson staining was used to colour 5 µm coronal sections, which were examined under optical and polarised light microscopy. Immunostaining for type I, II and III collagen was also performed.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 243 - 243
1 Jul 2011
Monument M Hart DA Befus AD Salo PT Hildebrand K
Full Access

Purpose: To determine if mast cell activity is vital to the induction of joint capsule fibrosis and contracture formation in a rabbit model of posttraumatic joint contracture. Method: To reproducibly induce joint contractures, we used a model of surgical injury and immobilization of the knee in skeletally mature New Zealand white rabbits. Four animals groups were studied: a non-operative control group (CON), an operative contracture group (ORC) and two-operative groups treated with a mast cell stabilizer, Ketotifen fumarate at doses of 0.5mg/kg (KF0.5) and 1.0mg/kg (KF1.0) twice daily subcutaneously, respectively. Animals were sacrificed after 8 weeks of immobilization. Flexion contractures (biomechanics), cellular counts of myofibroblasts and mast cells within the joint capsule (immunohistochemistry) and the joint capsule protein expression of TGF-β1, collagen I and III were quantified (western blots). Biomechanical data was interpreted using a linear regression analysis of repeated measures and an ANOVA analysis of variance was used for molecular data. Significance was defined at p< 0.05 for all statistical tests. Results: Flexion contractures were most severe in the ORC group and treatment with Ketotifen (both KF0.5 and KF1.0) significantly reduced contracture severity by 52% and 42%, respectively (p< 0.03). Joint capsule myofibroblast and mast cell hyperplasia was a prominent feature of the more severely contracted ORC group and myofibroblast and mast cell numbers were dramatically reduced in both Ketotifen groups (p< 0.001). The expression of TGF-β1 and collagen I was also increased in the ORC group and significantly reduced in both Ketotifen groups (p< 0.01). Conclusion: Joint capsule fibrosis, characterized by hyperplasia of myofibroblasts and mast cells and enhanced collagen deposition, is a prominent feature of posttraumatic joint contractures in this animal model. Treatment with a mast cell stabilizer reduced the molecular markers of joint capsule fibrosis and the resultant biomechanical severity of contracture formation. These results suggest mast cell activity may be an important process in the development of posttraumatic contractures and future work is needed to determine if pharmacological inhibition of mast cell activity has a preventative or therapeutic role in humans


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 84 - 84
1 Jul 2020
Chow D Qin L Wang J Yang K Wan P
Full Access

Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced fracture healing. However, Mg-based implants degrade rapidly after implantation and lead to insufficient mechanical strength to support the fracture. Microarc oxidation (MAO) is a metal surface coating that reduces corrosion. We hypothesized that Mg pins, with or without MAO, would enhance fracture healing radiologically, mechanically, and histologically, while MAO would decrease degradation of Mg pins.

Patellar fracture was performed on forty-eight 18-week-old female New Zealand White rabbits according to established protocol. Briefly, the patella is osteotomized transversely and a tunnel (1.1mm) was drilled longitudinally through the two bone fragments. A pin (1 mm, stainless steel, Mg, or MAO-Mg) was inserted into the tunnel. The reduced construct was stabilized with a figure-of-eight band wire (⊘ 0.6 mm stainless steel wire). Cast immobilization was applied for 6 weeks. The rabbits were euthanized at week 8 and 12 post-operation. Microarchitecture and mechanical properties of the repaired patella were analyzed with microCT and tensile testing respectively. Histological sections of the repaired patella were stained. To evaluate the effect of the MAO treatment on degradation rate of Mg pin, the volume of the Mg pins in the patella was measured with microCT.

At week 8, both Mg and Mg-MAO showed higher ratio of bone volume to tissue volume (BV/TV) than the control while there was no significant different between Mg and Mg-MAO. At week 12, Control, Mg, and Mg-MAO groups showed enlarged patella when compared to the normal patella. Tissue volume (TV) and bone volume (BV) of the patella in Mg and Mg-MAO were larger than those in the Control group. However, the Control had higher ratio of bone volume to tissue volume (BV/TV), TV density, and BV density than Mg and Mg-MAO. Tensile testing showed that the mechanical properties of the repaired patella (failure load, stiffness, ultimate strength, and energy-to-failure) of Mg and Mg-MAO were higher than that of the control at both week 8 and week 12. Histological analysis showed that there was significant new bone formation in the Mg and Mg-MAO group compared with the Control group at week 8 and 12. The degradation rate of the MAO-coated Mg pins was significantly slower than those without MAO at week 8 but no significant difference was detected at week 12.

Mechanical, microarchitectural, and histological assessments showed that Mg pins, with or without MAO, enhanced fracture healing of the repaired patella compared to the Control. MAO treatment enhanced the corrosion resistance of the Mg pins at the early time point.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 6 - 6
1 Oct 2020
Maruyama M Moeinzadeh S Guzman RA Takagi M Yang YP Goodman SB
Full Access

Introduction

In early stage osteonecrosis of the femoral head (ONFH), core decompression (CD) is often performed; however, approximately 30% of CD cases progress to femoral head collapse. Bone healing can be augmented by preconditioning MSCs (pMSCs) with inflammatory cytokines. Another immunomodulatory approach is the timely resolution of inflammation using cytokines such as IL-4. We investigated the efficacy of pMSC and genetically modified MSCs that over-express IL-4 (IL4-MSCs) on steroid-associated ONFH in rabbits.

Methods

Thirty-six male skeletally mature NZW rabbits received methylprednisolone acetate (20mg/kg) IM once 4 weeks before surgery. There were 6 groups:

CD alone – a 3 mm drill hole

+ injection into the CD of:

hydrogel (HG) - 200 μl of hydrogel carrier

MSCs–1 million rabbit MSCs

pMSC - LPS (20 μg/ml) + TNFα (20 ng/ml) preconditioned MSCs

IL4-MSCs – rabbit IL-4 over-expressing MSCs

IL4-pMSCs – preconditioned IL-4 over-expressing MSCs

Eight weeks after surgery, femurs were harvested, and evaluated by microCT, biomechanical, and histological analyses.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 793 - 800
1 Jun 2011
Yalçin N Öztürk A Özkan Y Çelimli N Özocak E Erdogan A Sahin N Ilgezdi S

We studied the effects of hyperbaric oxygen (HBO) and zoledronic acid (ZA) on posterior lumbar fusion using a validated animal model. A total of 40 New Zealand white rabbits underwent posterior lumbar fusion at L5–6 with autogenous iliac bone grafting. They were divided randomly into four groups as follows: group 1, control; group 2, HBO (2.4 atm for two hours daily); group 3, local ZA (20 μg of ZA mixed with bone graft); and group 4, combined HBO and local ZA. All the animals were killed six weeks after surgery and the fusion segments were subjected to radiological analysis, manual palpation, biomechanical testing and histological examination.

Five rabbits died within two weeks of operation. Thus, 35 rabbits (eight in group 1 and nine in groups 2, 3 and 4) completed the study. The rates of fusion in groups 3 and 4 (p = 0.015) were higher than in group 1 (p < 0.001) in terms of radiological analysis and in group 4 was higher than in group 1 with regard to manual palpation (p = 0.015). We found a statistically significant difference in the biomechanical analysis between groups 1 and 4 (p = 0.024). Histological examination also showed a statistically significant difference between groups 1 and 4 (p = 0.036).

Our results suggest that local ZA combined with HBO may improve the success rate in posterior lumbar spinal fusion.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 82 - 88
1 Mar 2014
Abdel MP Morrey ME Barlow JD Grill DE Kolbert CP An KN Steinmann SP Morrey BF Sanchez-Sotelo J

Objectives

The goal of this study was to determine whether intra-articular administration of the potentially anti-fibrotic agent decorin influences the expression of genes involved in the fibrotic cascade, and ultimately leads to less contracture, in an animal model.

Methods

A total of 18 rabbits underwent an operation on their right knees to form contractures. Six limbs in group 1 received four intra-articular injections of decorin; six limbs in group 2 received four intra-articular injections of bovine serum albumin (BSA) over eight days; six limbs in group 3 received no injections. The contracted limbs of rabbits in group 1 were biomechanically and genetically compared with the contracted limbs of rabbits in groups 2 and 3, with the use of a calibrated joint measuring device and custom microarray, respectively.


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 64 - 64
1 Jul 2020
Lin K Wong F Wang M Teo KY Chuah SJ Ren X Wu Y Hassan A Lai RC Lim S Hui JHP Toh W Lee E Zhang S
Full Access

Osteochondral (OC) defects of the knee are associated with pain and significant limitation of activity. Studies have demonstrated the therapeutic efficacy of mesenchymal stem cell (MSC) therapies in treating osteochondral defects. There is increasing evidence that the efficacy of MSC therapies may be a result of the paracrine secretion, particularly exosomes. Here, we examine the effects of MSC exosomes in combination with Hyaluronic Acid (HA) as an injectable therapy on functional osteochondral regeneration in a rabbit osteochondral defect model.

Exosomes were purified from human MSC conditioned medium by size fractionation. A circular osteochondral defect of 4.5 mm diameter and 2.5 mm depth was surgically created in the trochlear grooves of 16 rabbit knees. Thereafter, eight knees received three weekly injections of 200 µg of exosomes in one ml of 3% HA, and the remaining eight knees received three weekly injections of one ml of 3% HA only. The rabbits were sacrificed at six weeks. Analyses were performed by macroscopic and histological assessments, and functional competence was analysed via Young Modulus calculation at five different points (central, superior, inferior, medial and lateral) of the repaired osteochondral defect site.

MSC exosomes displayed a modal size of 100 nm and expressed exosome markers (CD81, TSG101 and ALIX). When compared to HA alone, MSC exosomes in combination with HA showed significantly better repair histologically and biomechanically. The Young Modulus was higher in 4 out of the 5 points. In the central region, the Young Modulus of MSC exosome and HA combination therapy was significantly higher: 5.42 MPa [SD=1.19, 95% CI: 3.93–6.90] when compared to HA alone: 2.87 MPa [SD=2.10, 95% CI: 0.26–5.49], p < 0 .05. The overall mean peripheral region was also significantly higher in the MSC exosome and HA combination therapy group: 5.87 MPa [SD=1.19, 95% CI: 4.40–7.35] when compared to HA alone: 2.70 MPa [SD=1.62, 95% CI: 0.79–4.71], p < 0 .05. The inferior region showed a significantly higher Young Modulus in the combination therapy: 7.34 MPa [SD=2.14, 95% CI: 4.68–10] compared to HA alone: 2.92 MPa [SD=0.98, 95% CI: 0.21–5.63], p < 0.05. The superior region showed a significantly higher Young Modulus in the combination therapy: 7.31 MPa [SD=3.29, 95% CI: 3.22–11.39] compared to HA alone: 3.59 MPa [SD=2.55, 95% CI: 0.42–6.76], p < 0.05. The lateral region showed a significantly higher Young Modulus in the combination therapy: 8.05 MPa [SD=2.06, 95% CI: 5.49–10.61] compared to HA alone: 3.56 MPa [SD=2.01, 95% CI: 1.06–6.06], p < 0.05. The medial region showed a higher Young Modulus in the combination therapy: 6.68 MPa [SD=1.48, 95% CI: 4.85–8.51] compared to HA alone: 3.45 MPa [SD=3.01, 95% CI: −0.29–7.19], but was not statistically significant. No adverse tissue reaction was observed in all the immunocompetent animals treated with MSC exosomes.

Three weekly injections of MSC exosomes in combination with HA therapy results in a more functional osteochondral regeneration as compared to HA alone.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 129 - 129
1 Nov 2018
Sá MJC Segundo FAS Freitas VML Azevedo AS Silva ACF de Lima GG Devine DM
Full Access

The aim of this study was to evaluate the trochlear bone and cartilaginous regeneration of rabbits using a composite based on platelet rich plasma (PRP), chitosan and hydroxyapatite. The study was approved by the ethics committee of the Federal University of Campina Grande under number 72/2017. Surgical holes measuring four millimetres in diameter were performed in rabbit trochleae, one surgical hole in each animal remained empty and another one was filled with the composite. Clinical-orthopaedic and radiographic evaluations were carried out for 60 days, after which the animals were euthanized for histomorphometric evaluations. Clinical-evaluations exhibited lameness of two members of the treatment (T) group and one member of control (C) group. The radiographic evaluation of T group exhibited absence of subchondral bone reaction (33%); nonetheless, presence of moderate subchondral bone reaction was more frequently reported in group C with 67%. Microscopic evaluation revealed the presence of tissue neoformation, composed of dense connective tissue. Microscopic findings were similar in both groups, with a difference in the amount of neoformed tissue, which was confirmed after the morphometric analysis, revealing a significant difference in the quantity of newly formed tissue at the bone / cartilage / implant interface in the T group. The results indicate that the composite based on chitosan, hydroxyapatite and PRP enhanced bone and cartilage healing.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 345 - 345
1 Jul 2014
Ikemura S Yamamoto T Motomura G Yamaguchi R Mawatari T Iwamoto Y
Full Access

Summary Statement

The incidence of osteonecrosis was significantly lower in the anti-vasospasm agent group (32%) than that in the control group (75%). Vasospasm is one of the important factors involved in the pathogenesis of steroid-induced osteonecrosis.

Introduction

A number of studies have suggested that ischemia is the principal pathomechanism of osteonecrosis, however, the detailed mechanism responsible for ischemia remains unclear. It has recently been reported that the Rho/Rho-kinase mediated pathway (Rho-kinase pathway) is considered to be involved in the possible pathogenesis of various cardiovascular disorders as well as cerebral vasospasm. We examined the effects of fasudil (Rho-kinase inhibitor), an anti-vasospasm agent, on the development of steroid-induced osteonecrosis in rabbits.


The Journal of Bone & Joint Surgery British Volume
Vol. 36-B, Issue 4 | Pages 543 - 552
1 Nov 1954
Janes JM Higgins GM Herrick JF

The method of producing osteogenic sarcoma in rabbits by the injection of beryllium in the form of "zinc beryllium silicate" is presented. In five of ten animals which had such injections, osteogenic sarcomas developed several months later. There was new bone formation in the medullary cavities of the long bones before malignant changes were apparent. It is of particular interest to note that there was atrophy of the spleen in those animals in which bone tumours developed, whereas the spleen seemed to be quite normal in the rabbits which did not develop bone tumours. The tumours usually developed in the metaphysial regions. More than one tumour often developed in the same animal.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 124 - 124
1 May 2012
Ganeshalingam R Oliver R Musgrove T Yu Y
Full Access

The biological properties of morselised bone allograft treated with either a supercritical fluid process or low-dose (15 kGy) gamma irradiation were compared using radiological, histological and immunohistological techniques. The aims were to investigate any differences in the biological properties of supercritical fluid treated allograft and low-dose gamma irradiated allograft in-vivo.

Rabbit allograft were cleaned of all soft tissue, cartilage and processed into ‘corticancellous crunch’ using a Noviomagus Bone Mill. Pooled samples were either gamma irradiated (15 kGy) or treated by NovaSterilis using super critical carbon dioxide. A well-reported tibial defect model in ten rabbits was used to examine the in vivo response of the different treatments at two and four weeks following surgery (n=5 per time point). Radiographic (x-ray, CT and micro CT), histology and immunohistochemistry was used to assess the in vivo response.

Radiographic results revealed an initial response to the gamma-irradiated samples compared to SCF. Histology confirmed this reaction to be inflammatory in nature at two weeks that continued at four weeks for the gamma irradiated samples. In contrast, the SCF treated sample demonstrated new bone formation while the inflammatory reaction was muted compared to the gamma irradiated samples. Four week x-rays and histology confirmed new bone formation in both groups while the lack of significant inflammatory response in the SCF group was noted.

Allograft sterilisation techniques do not result in the same initial response when evaluated in vivo. Removal of lipids and cellular debris following SCF treatment may influence the in vivo response. While both techniques can provide a sterile product, the in vivo response requires further investigation.


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 2 | Pages 431 - 435
1 May 1962
Hulth A Olerud S


We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft–bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL–bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft.

Cite this article: Bone Joint J 2013;95-B:923–8.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 27 - 27
1 Mar 2012
Ikemura S Yamamoto T Nishida K Motomura G Iwamoto Y
Full Access

Introduction

The objective of this study was to investigate the incidence of steroid-induced osteonecrosis (ON) among male and female rabbits.

Methods

Forty-seven adult rabbits (male, n = 24; female, n = 23) were injected once intramuscularly into the right gluteus medius muscle with 20 mg/kg of methylprednisolone acetate. Hematological examinations were performed just before and at 1 and 2 weeks after the corticosteroid injection. Two weeks after the injection, both femora and humeri were histopathologically examined for the presence of ON, and the bone marrow fat cells were examined morphologically.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 102 - 102
1 Dec 2017
Pützler J Zeiter S Vallejo A Gehweiler D Raschke M Richards G Moriarty F
Full Access

Aim

Treatment regimens for fracture-related infection (FRI) often refer to the classification of Willenegger and Roth, which stratifies FRIs based on time of onset of symptoms. The classification includes early (<2 weeks), delayed (2–10 weeks) and late (>10 weeks) infections. Early infections are generally treated with debridement and systemic antibiotics but may not require implant removal. Delayed and late infections, in contrast, are believed to have a mature biofilm on the implant, and therefore, treatment often involves implant removal. This distinction between early and delayed infections has never been established in a controlled clinical or preclinical study. This study tested the hypothesis that early and delayed FRIs respond differently to treatment comprising implant retention.

Method

A complete humeral osteotomy in 16 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus. The inoculum size (2×106 colony forming units per inoculum) was previously tested without antibiotic intervention to result in infection of all animals persisting for at least 12 weeks.4 The infection was allowed to develop for either 1 (early group) or 4 (delayed group) weeks (n= 8 per group) after bacterial inoculation. At these time points, treatment involved debridement and irrigation of the wound (no implant removal) and quantitative bacteriological evaluation of the removed materials. Systemic antibiotics were administered according to a common clinical regimen (2 weeks: rifampin + nafcillin, followed by 4 weeks: rifampin + levofloxacin). After an additional one-week antibiotic washout period, animals were euthanized and a quantitative bacteriology of soft tissue, implant (after sonication) and bone was performed.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 211 - 211
1 Mar 2003
Papadelis P Christoforidis N Antonis K Mahaira E Hanioti C Lyritis G
Full Access

Achilles tendinitis can result, through inflammatory procedures, to tendon degeneration with microtears and nodules. Current conservative or surgical treatment of this lesion proved to be not effective enough. The reason for this is the absence of sufficient oxygenation in the area. In this study we report the results of a novel technique which tries to improve local vascularity.

We operated on 15 mature rabbits after they were anasthetized. Soleus fibers were trasplanted in the right achilles tendon. A lesion, 10mm long and 2mm wide was created in the inner band of the tendon simulating tendinitis. In the left achilles tendon the same procedure was done without transplantation. The rabbits were divided in three equal groups and were sacrificed in the first week, the 2nd and 3rd month after the operation. Histopathologic examination was done in both achilles tendons. The following parameters were assessed: transplanted muscle viability, inflammation and neoangiogenesis. We also evaluated the contact between muscle and tendon and the quality of tissue that was formed in the tendinitis simulating area.

Inflammatory process was noticed only in the 1st week after surgery. In the other groups viable muscle fibers and tendon tissue was observed. Muscle fibers were in contact with the tendon. The quality of tissue in the tendinitis simulating area was of better quality than in the control group.

We conclude that soleus transplanted muscle fibers in the rabbits achilles tendon seem to be oxygen carriers and improve the healing potential of the area. This fact results in tendon reinforcement.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 110 - 110
1 May 2016
Wada H Mishima H Yoshizawa T Sugaya H Nishino T Yamazaki M
Full Access

Introduction

Hydroxyapatite and poly-L-lactide (HA/PLLA) composites are osteoconductive and biodegradable. They have already been used clinically to treat fractured bones by inducing osteosynthesis and serving as the bone filling material. During revision of total hip arthroplasty, we have grafted bone onto the bone defect and covered it with an HA/PLLA mesh instead of using a metal mesh on the non-load bearing portion of the cup (Figure 1). However, whether the interface between the HA/PLLA and the titanium alloy cup was stable remains unclear.

Objectives

The purpose of this study was to determine and compare the histological osteoconductivity and osteoinductivity of HA/PLLA and titanium alloy.


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 2 | Pages 324 - 337
1 May 1971
Bentley G

1. Degenerative arthritis has been produced consistently in adult rabbits by the injection of the proteolytic plant enzyme papain into the hip joint. Arthritic changes were recognisable radiographically after six weeks.

2. A progression of changes occurred, from loss of acid mucopolysaccharide staining in the matrix, fibrillation, fissuring and erosion of articular cartilage with death of chondrocytes in the weight-bearing areas, to secondary bony changes of subchondral sclerosis, occasional cysts and osteophyte formation.

3. Synovial inflammation occurred with accumulation of cartilage and bone debris in the inferior capsule and later capsular thickening.

4. It is suggested that this arthritis is sufficiently similar to human osteoarthritis to be useful as a model for further studies of the pathogenesis of the disease and the effects of different methods of treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 3 | Pages 551 - 562
1 Aug 1969
Rösingh GE Steendijk R Van den Hooff A Oosterhoff J

1. In two-month-old rabbits the femoral heads were made necrotic by transecting the ligament of the femoral head and applying a ligature around the femoral neck. The animals were killed at different periods, from six hours to twenty-one weeks after the operation. The changes in the femoral heads were studied histologically, microradiographically and radiographically.

2. In the first three weeks the necrotic bone marrow was penetrated by granulation tissue in which cellular differentiation gradually developed. Subsequently large quantities of new bone were deposited on the dead trabeculae. This led to an increase in the bone volume at the expense of the marrow volume; this increase coincided with an increase in the radiographic density (sclerosis) of the femoral head. The new bone tissue was attached to the necrotic trabeculae by a specific cement line and showed the features of woven bone. At a later stage lamellar bone was deposited. From six weeks on a normal bone-marrow ratio was gradually restored with concomitant radiographic loss of sclerosis.

3. It is suggested that mechanical weakening of the femoral head is the consequence of this late post-operative restoration of the normal pre-operative bone-to-marrow ratio, the new bone trabeculae being mechanically inferior because of the presence of woven bone and cement lines. This weakness may initiate collapse and deformation of the revascularised femoral head.


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 1 | Pages 140 - 147
1 Feb 1969
Hodge JA McKibbin B

1. The source of nutrition of articular cartilage still remains a subject of controversy.

2. Experiments are described in which an attempt to demonstrate the direct transfer of fluid from the subchondral bone has been made using 355 and an autoradiographic technique. These experiments were based on ones originally performed by Ekholm (1951), except that two distinct groups of animals were used : immature rabbits and adult rabbits whose skeletons were mature.

3. The transfer of fluid to the cartilage could be demonstrated only in the immature rabbits.

4. It is suggested that some of the conflicting opinions which have been advanced on this subject stem from a failure to distinguish between mature and immature joint cartilage. Subchondral nutrition is a feature only of the immature animal.


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 4 | Pages 866 - 873
1 Nov 1968
Bohr H Ravn HO Werner H

1. Transplantations of autografts and of Kiel bone to the iliac bone and to muscle tissue were performed in rabbits. Through labelling with two tetracycline compounds which have different fluorescent colours in ultraviolet light, bone formation between the labelling periods could be followed.

2. It was shown that bone formation between the fifth and the tenth day after transplantation to bone took place in about 50 per cent of the fresh autografts. Storage of the transplants in saline for one hour before replacement had little adverse effect, whereas exposure to air for one hour seemed to reduce the osteogenic effect of the grafts. Bone formation was not observed in grafts of Kiel bone during this period.

3. The fact that new bone formation in fresh autografts could be demonstrated even during the first four days after transplantation to bone indicates that osteogenic cells from the fresh autografts continue their activity under favourable conditions. This is supported by microradiographic and histological evidence.

4. The amount of callus which developed in close contact with the grafts during the first ten days after transplantation to bone was more pronounced both in fresh autografts and in autografts kept in saline than in autografts exposed to air for one hour. Callus developing at a later stage showed no significant difference between the various grafts, including those of Kiel bone.

5. In fresh autografts transplanted to muscle tissue callus formation could be demonstrated in most cases by the tenth day, indicating either survival of osteoblasts or the transformation of more primitive cells from the graft or from the host bone into osteogenic cells. No bone formation was observed when Kiel bone was embedded in muscle tissue.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 164 - 164
1 May 2012
Pak P Oliver R Bell D Yu Y Bellemore J Walsh W
Full Access

Posterolateral spinal fusion using autograft in adult rabbits has been reported by many groups using the Boden model. Age in general has an adverse effect on skeletal healing; although, its role in posterolateral fusion is not well understood. This study examined the influence of animal age on spinal fusion using a standard model and experimental endpoints. We hypothesised that fusion quality and quantity would be less with increasing age.

A single level posterolateral fusion between the fifth and sixth lumbar segments were performed in six-month and two-year-old New Zealand white rabbits (n=6 per group) using morcelized iliac crest autograft. All animals were sacrificed at 12 weeks following surgery. Posteroanterior Faxitron radiographs and CT scans were taken and DICOM data was analysed (MIMICS Version 12, Materialise, Belgium). Axial, sagittal, coronal and three-dimensional models were created to visualise the fusion masses. Bone mineral density (BMD) of the fusion mass was measured using a Lunar DPXL Dexa machine. An MTS Bionix testing machine was then used to assess peak load and stiffness. Sagittal and coronal plane histology was evaluated in a blinded fashion using H&E, Tetrachrome and Pentachrome stains. Assessment included overall bony response on and between the transverse processes. Radiographs and CT confirmed a more robust healing response in younger animals. Radiographic union rates decreased from 83% to 50% in the aged animals. A neo- cortex surrounding the fusion mass was observed in the younger group but absent in the aged animals. Fusion mass BMD and that of the vertebral body was decreased in the older animals (P<0.05). Tensile mechanical data revealed a 30% reduction in peak load (P=0.024) and 34% reduction in stiffness (P=0.073) in the two-year-old animals compared with the six-month-old animals. Histological evaluation demonstrated a reduction in overall biological activity in the two-year-old animals. This reduction in activity was observed in the more challenging intertransverse space as well as adjacent to the transverse processes and vertebral bodies at the decortication sites. Numerous sites of new bone formation was present in the middle of the fusion mass in the six-month-old animals while the bone graft in the two-year- old animals were less viable.

Skeletal healing is complex and mediated by both local and systemic factors. This study demonstrated that ageing leads to an impaired and delayed skeletal repair.

Where autograft is utilised, diminished graft osteoinductivity and reduced levels of growth factors and nutritional supply in the surrounding milieu explains our observations. The aged rabbit posterolateral spinal fusion model has not been previously described but would be a useful to evaluate new treatment modalities in a more challenging host environment.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 165 - 165
1 May 2012
Alcorace G Oliver R Yu Y Stanford R
Full Access

Single level posterolateral spinal fusion in rabbits is the accepted preclinical model for evaluating bone graft substitutes or treatments to enhance/augment healing. This study aimed to improve preclinical testing by developing a multi-level unilateral fusion model that could be used as a screening tool prior to larger scale preclinical experiments.

A four level unilateral posterolateral fusion was performed in nine animals. The materials were randomly allocated and placed between the decorticated surfaces of the transverse processes and vertebral bodies. Animals were euthanised at three, six and 12 weeks. The materials were (1) 25 kGy y-irradiated rabbit allograft chips (RAC), (2) SCF RAC, (3) 60% tri-calcium phosphate, 40% hydroxyapatite formagraft (BiOstetic) (4) Autograft (1.5 cc morsellised to 1-2.5 mm granules). The autograft was harvested from the iliac crest using the L5-L6 incision. Endpoints included x-ray, CT, micro CT and histology.

The animals tolerated the surgery well. Radiographic data provided a useful method to differentiate between groups. Micro CT however was extremely valuable demonstrating new bone formation as early as three weeks across the groups. Gamma irradiated samples demonstrated an initial inflammatory reaction while the autograft, SCF allograft and synthetic TCP did not show this response. As expected, time was an important factor demonstrating the maturity in the fusions. These materials responded in a similar fashion in this model as observed in a single level fusion.

A unilateral multi-level fusion can be performed in rabbits to provide a useful screening for different materials. Gamma irradiated allograft has an initial inflammatory reaction that may be related to the presence of residual cellular material whereas SCF and synthetic materials do not.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 483 - 486
1 May 1997
Aizawa T Kokubun S Tanaka Y

The growth plates of the femoral head of Japanese white rabbits aged 5, 10, 15 and 20 weeks were stained for apoptotic and proliferating chondrocytes using the TUNEL and PCNA antibody staining techniques. Both TUNEL- and PCNA-positive chondrocytes were detected in all of the specimens. The positive ratios of both stainings were calculated for the whole plate and for the resting, proliferating and hypertrophic zones. The highest ratios in both stainings occurred in the hypertrophic zone in all age groups. With growth, the TUNEL-positive ratio increased whereas the proliferating ratio decreased.

We suggest that the increase in chondrocytic death by apoptosis and the decrease in cell proliferation potential led to closure of the growth plate.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 462 - 463
1 Sep 2009
Rijk PC Tigchelaar W van Noorden CJ
Full Access

Experimental and clinical studies have documented that meniscal allografts show capsular ingrowth in meniscectomized knees. However it remains to be established whether meniscal allograft transplantation can prevent degenerative changes after total meniscectomy. In this study, functional changes in articular cartilage after meniscus transplantation in rabbits were evaluated quantitatively.

Thirty rabbits were divided into five groups. Group A and Group C were subjected to meniscectomy. Group B and Group D underwent meniscal transplantation immediately after meniscectomy. Group E had delayed transplantation 6 weeks after meniscectomy. Six nonoperated knees served as controls. Using image analysis with QwinPro software ffunctional changes of articular cartilage were examined 6 weeks (Groups A, B) and 1 year (Groups C, D, E, controls) after surgery by measuring the lactate dehydrogenase (LDH) activity in chondrocytes as a measure of their vitality and the proteoglycan content of the extracellular matrix as a measure of its quality.

All experimental groups demonstrated a significant decrease in proteoglycan content of the cartilage as compared with the control group. At 6 weeks and 1 year follow-up, no significant differences were found between the postmeniscectomy group and immediate transplant group. The delayed transplant group showed a significantly decreased proteoglycan content as compared with the postmeniscectomy group. Compared to the control group, no significant differences in cellular LDH activity were found in the postmeniscectomy group and immediate transplant group at 6 weeks and 1 year. However, delayed transplantation caused diminished vitality of chondrocytes. No significant differences were found between the postmeniscectomy group and immediate transplant group at 6 weeks and 1 year. The delayed transplant group showed a significant decrease in LDH activity as compared with the postmeniscectomy group.

It can be concluded that immediate meniscal transplantation in rabbits did not significantly reduce degenerative changes of articular cartilage whereas delayed transplantation leads to even more degenerative changes than meniscectomy.


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 1 | Pages 69 - 77
1 Feb 1974
Gershuni-Gordon DH Axer A

1. Synovitis was induced in the hip joints of fifty-six rabbits by the intra-articular injection of surgical talc. The opposite hip joint and eleven suitable"sham" operations served as controls.

2. The results in the hips injected with talc were as follows. Widening of the medial joint space and sometimes acetabular changes were seen; enlargement of the femoral head and neck in two planes was found, with, in most cases, flattening of the superior aspect of the head; there was thickening of the joint cartilage and sometimes deformity of the capital epiphysis; thickening of the cartilage was the main cause of the coxa magna, cervix magna and ischium magnum.

3. The embryology, micro-anatomy and development of the hip joint is reviewed and attention is drawn to the configuration of the layers of germinal cartilage cells. The effect of an induced synovitis in producing hyperplasia of the joint cartilage, incongruity of the articulating surfaces and subsequent subluxation is discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 1 | Pages 165 - 174
1 Feb 1969
Rösingh GE James J

1. An investigation was made of the tolerance of the cells in the femoral head in rabbits for ischaemia brought about by transecting the ligament of the femoral head and applying a ligature around the femoral neck. The animals were killed two, six, twelve, twenty-four and seventy-two hours after operation.

2. In the cells of the bone marrow and in the osteoblasts distinct histological signs of disintegration were present six hours after operation. Pyknosis of the osteocyte nuclei was found after twenty-four hours' ischaemia; sometimes vacuolar clarifications could be observed in these pyknotic nuclei. After three days of ischaemia the staining affinity for Feulgen and haematoxylin of a number of osteocyte nuclei had visibly decreased.

3. The Feulgen-DNA content of the osteocyte nuclei-as measured in individual nuclei by means of an integrated microdensitometer-was significantly reduced as compared with similar nuclei from the control side as early as after six hours of ischaemia. This DNA loss was progressive with the period of ischaemia. From these facts, the conclusion was reached that in the femoral head of the rabbit the period of reversible damage for osteocytes must have ended within six hours.


The Journal of Bone & Joint Surgery British Volume
Vol. 41-B, Issue 2 | Pages 401 - 412
1 May 1959
Jeffree GM

1. A quantitative study of phosphatase distribution in the limb bones of growing rabbits is reported.

2. Alkaline phosphatase is present in high concentrations in areas of deposition of new bone. Both local concentrations and the total alkaline phosphatase content of a bone are found to decrease with age. There is good correlation between total alkaline phosphatase activity and monthly increment of weight.

3. Acid phosphatase is present in these bones in greatly less concentrations than alkaline phosphatase.

4. The acid phosphatase of bone shows nearly full activity in the presence of 0·5 per cent formaldehyde. It can be subdivided into two enzymes with characteristically different distributions by the effect of M/100 tartrate on activity.

5. The formaldehyde-stable and tartrate-stable acid phosphatase of rabbit bone (FTS) has a distribution very similar to that of alkaline phosphatase, though very much less in amount, and, like the latter, declines in activity as the bone matures.

6. Tartrate-inhibited, formaldehyde-stable acid phosphatase (FSTI) is found mainly in red marrow and cancellous bone, and full activity persists in mature bone. This enzyme may be associated with resorption and remodelling of bone, or it may represent residual activity under these conditions of the acid phosphatase of developing erythrocytes in the marrow.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 63 - 63
1 Dec 2017
Pützler J Arens D Metsemakers W Zeiter S Richard K Richards G Raschke M Moriarty F
Full Access

Aim

Open fractures still have a high risk for fracture-related Infection (FRI). The optimal duration of perioperative antibiotic prophylaxis (PAP) for open fractures remains controversial due to heterogeneous guidelines and highly variable prophylactic regimens in clinical practice. In order to provide further evidence with which to support the selection of antibiotic duration for open fracture care, we performed a preclinical evaluation in a contaminated rabbit fracture model.

Method

A complete humeral osteotomy in 18 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus (2×106 colony forming units, CFU per inoculum). This inoculum was previously shown to result in a 100% infection rate in the absence of any antibiotic prophylaxis. Cefuroxime was administered intravenously in a weight adjusted dosage equivalent to human medicine (18.75 mg/kg) as a single shot only, for 24 hours (every 8 hours) and for 72 hours (every 8 hours) in separate groups of rabbits (n=6 per group). Infection rate per group was assessed after two weeks by quantitative bacteriological evaluation of soft tissue, bone and implants. Blood samples were taken from rabbits preoperatively and on days 3, 7 and 14 after surgery to measure white blood cell count (WBC) and C-reactive protein (CRP) levels.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 78 - 78
1 Mar 2008
Haslam S Miller S Doschak M Zernicke R Bray R
Full Access

Ten New Zealand White rabbits underwent anterior cruciate ligament transection (ACLX), then reconstruction using a mersiline tape graft and mitek mini anchors. Animals were divided into two groups and sacrificed at six and fourteen week after surgery. Medial collateral ligament (MCL)-complexes were evaluated for joint laxity, and periarticular tissues evaluated for changes in vascular volume. Both reconstructed groups showed significantly reduced MCL-complex laxity and inflammatory angiogenesis compared to ACLX controls. This reconstructive method (using an artificial graft) provided transient restabilization out to 6 and 14 wk after ACLX in the rabbit, with a high 80% success rate of intact grafts.

To refine a method of ACL reconstruction in the New Zealand White (NZW) rabbit to study angiogenic adaptations in a restabilized knee joint.

The artificial graft approach provided transient restabilization out to six and fourteen week post ACLX with an 80% success rate, and reduced MCL-complex laxity and inflammatory angiogenesis.

Addressing joint instability after ACLX reduces inflammatory angiogenesis and mechanical deterioration in peri-articular tissues, and delays the progression of OA.

Compared to normal control tissues, loss of the ACL resulted in marked joint instability, and significantly increased vascular volumes in all periarticular tissues examined six and fourteen week post-ACLX. However, following transient restabilization using reconstructive surgery, MCL-complex laxity and periarticular tissue vascular volume were significantly reduced at both the six and fourteen week intervals compared to ACLX controls.

ACL reconstructive surgery was performed on the right knee of ten skeletally mature NZW rabbits using a mersiline tape graft and mitek mini anchors, immediately after the ACL had been transected. MCL-complex laxity was measured in all joints using established biomechanical procedures. To assess the effect of joint restabilization six and fourteen week after ACL reconstruction, limbs were infused with a 5% carmine red dye/5% gelatin solution, and the vascular volume of periarticular tissues was detemined.

The artificial graft approach to rabbit ACL reconstruction resulted in a high success rate of intact grafts 6 and 14 wk post-ACLX. The transient restabilization of an ACLX knee joint results in less inflammatory angio-genesis in periarticular tissues.

Funding: CIHR


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 360 - 360
1 Jul 2011
Kazakos K Lyras D Verettas D Polychronidis A Botaitis S Agrogiannis G
Full Access

We investigated the effect of Platelet Rich Plasma (PRP) in tendon healing. The aim was to assess the effect of an application of PRP on angiogenesis and immunohistochemical expression of TGF-b1 and IGF-I during tendon healing. We used a patellar tendon defect model after resecting its central portion. 48 skeletally mature New Zealand White rabbits were divided into the respective group and each group they were randomised into controls and PRP treated cases. The rabbits were sacrificed at weekly intevals and histological and immunohistological assessments were performed. The results showed a faster healing rate, increased vascularity, and higher expression of the growth factors in the PRP group. We conclude that the mixture of growth factors present in PRP gel improved the rate and quality of tendon healing.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 208 - 208
1 Jul 2014
Goel S Sinha S
Full Access

Introduction

Amino acids like arginine and lysine have been suggested to hasten the process of fracture healing by improving the local blood supply, supplementing growth factors, and improving collagen synthesis. We studied the role of lysine and arginine in the fracture repair process with regard to the rate of healing, probable mechanisms involved in the process, and mutual synergism between these agents.

Materials and methods

In an experimental study, 40 rabbits were subjected to ulnar osteotomy. They were distributed in control (14) and test groups (26). Twenty-six animals in the test group were fed with a diet rich in lysine and arginine. Both the groups were followed radiologically and histologically till union.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 348 - 348
1 Jul 2014
Goel S Singh A Mohan K Goel A Gupta K
Full Access

Introduction

Very limited treatment options are available for osteoarthritis and most of them are for symptoms of osteoarthritis not for cause. Adult mesenchymal stem cells (MSCs), which have the ability to differentiate into cells of the chondrogenic lineage, have emerged as a candidate cell type with great potential for cell-based articular cartilage repair technologies. We conducted a study to see the effect of direct injection of stem cells on artificially created osteoarthritis model in rabbits.

Methods

Surgical instability was created in 20 adult white rabbits over 16 weeks old and weighing over 2 kg using a modification of the technique of Hulth et al. Only the right knees were operated (with other side serving as control). 12 weeks after surgery, X-rays were done for all 20 rabbits and confirmed for features of osteoarthritis like joint space narrowing, osteophyte formation etc. Bone marrow was aspirated and stem cells were prepared by method of Pittenger et al. Animals were divided into 2 groups of 10 each: Group I (with stem cell infusion) and Group II (control). The radiological evaluation was done at 12 week, 16 weeks, 20 weeks and histological evaluation at 16 and 20 weeks.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 453 - 453
1 Sep 2009
Fontecha C Aguirre M Soldado F Peiro J Toran N Martinez V
Full Access

The continuous leakage of cerebrospinal fluid in the mielomeningocele (MMC) area produces the Chiari II malformation. The aim of our study was to assess the effect of preterm delivery and prenatal corticosteroids administration in the degree of Chiari malformation.

Seventy-five out of 148 foetuses from 17 pregnant New Zealand White rabbits underwent lumbar three-level laminectomy and wide opening of dura-mater (surgical MMC). Animals were distributed in five groups: group T, foetuses with MMC, delivery at term and no other treatment; group TC, foetuses with MMC, delivery at term and prenatal administration of corticosteroids; group P, foetuses with MMC, delivery preterm and no other treatment; group PC, foetuses with MMC, delivery preterm and prenatal administration of corticosteroids; group C, controls. The degree of herniation was measured in percentage of decrease of the cerebellum between the inferior limit of the skull and the superior limit of the first vertebra, and compared among groups.

We obtained 7T, 5TC, 10P, 6PC, and 28C alive newborns. All groups with prenatal delivery or prenatal corticosteroids showed statistically significant minor degree of herniation than T-group: group TC IC 95% between 25.7 and 47.2% minor (p=0.000), group P IC 95% between 30.4 and 47.7% minor (p=0.000), group PC IC 95% between 32.6 and 55.4 minor (p=0.000). There were no statistically significant differences among groups TC and P (p=0,577), TC and PC (p=0,227) or P and PC (p=0,311).

Preterm delivery and prenatal administration of corticosteroids, together or separately, result in lower degree of Chiari malformation in a model of surgical MMC in rabbit fetuses.


The Journal of Bone & Joint Surgery British Volume
Vol. 34-B, Issue 3 | Pages 472 - 476
1 Aug 1952
Labdoff GA

The experiments showed that the administration of sodium citrate retards fracture healing. This is probably due to a change in the solubility of the calcium or to a relative calcium deficiency on account of the excretion in the urine, or to a combination of both factors. Other reasons cannot, however, be excluded, such as a biochemical effect on the ground substance or an enzyme deficiency.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 563 - 563
1 Nov 2011
Mwale F Epure LM Yoshikawa T Hemmad A Bokar M Masuda K Roughley PJ Antoniou J
Full Access

Purpose: Intervertebral disc (IVD) degeneration is associated with proteolytic degradation of proteoglycan aggregates present within the extracellular matrix of the disc. Link-N peptide is the N-terminal peptide of link protein, which stabilizes the proteoglycan aggregates. It is generated in vivo by proteolytic degradation during tissue turnover. We have previously shown that this peptide can stimulate the synthesis of proteoglycans and collagens by IVD cells in vitro. However, to date, there have been no reports on the effect of Link-N on the IVD in vivo. The purpose of the present study was to determine the effect of intradiscally administration of Link-N peptide on disc cell survival and extracellular matrix synthesis using a rabbit annular needle puncture model of IVD degeneration.

Method: Twelve New Zealand white rabbits (~3.5 kg; 5–6 months old) received an annular puncture with an 18-gauge needle on 2 non-contiguous discs (L2–L3 and L4–L5). The disc (L3–L4) between the punctured discs and that above (L5–L6) was left intact as internal controls. Two weeks after the initial puncture, the anterior surfaces of the previously punctured discs (L2–L3 and L4–L5) were injected with either saline (10 μl/disc) or Link-N (100 μg in 10μl saline/disc) into the center of the NP. Disc height was radiographically monitored biweekly. After 12 weeks post-injection, all the rabbits were euthanized and the IVDs from both experimental groups were removed from each lumbar spine for biochemical analysis. The nucleus pulposus (NP) was separated from the annulus fibrosus (AF), the specimens weighed (wet weight), the content of DNA measured using PicoGreen, and the total contents of sulfated glycosaminoglycans (GAG) measured by the 1,9-dimethylmethylene blue (DMMB) assay.

Results: Following needle puncture that initiates disc degeneration, the disc height index (DHI) decreased by about 25%. By 6 weeks after Link-N injection, the mean percent DHI of injected discs in the Link-N group was higher than in the saline group. This difference in mean percent DHI was maintained during the rest of the follow-up. Puncturing the IVD also led to a decrease in proteoglycan content in both the NP and the AF in saline-treated discs. Treatment with Link-N stimulated proteoglycan synthesis (GAG) in both the NP and AF by about 20%. Link-N did not cause an increase in the DNA content of the discs.

Conclusion: Results of the present study show that Link-N can stimulate proteoglycan production in vivo when administered to degenerate disc. This stimulation occurs in both the NP and AF of the disc and in the absence of any effect on cell division. The changes observed with Link-N on proteoglycan synthesis are similar to those reported after injection of osteogenic protein-1 (OP-1) Thus, Link-N appears to be equally effective at stimulating repair of the IVD in vivo. One major advantage of Link-N over OP-1 for therapeutic use is the large saving in cost, Link-N being about 400 times cheaper than OP-1.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 276 - 277
1 May 2010
Dähn S Abel R
Full Access

Introduction: In orthopaedic surgery, tendon transfers are used routinely. Examples are the correction of deformities due to spasticity in infantile cerebral palsy or clump foot surgery. Aftertreatment is not evidence based but depends mostly on the surgeons personal preferences. This is especially true for the duration of postoperative immobilization. Adhesions between tendon and surrounding tissue are supposedly a key factor for reduced functionality after immobilisation and it appears to be common sense that the amount of scarring depends on the duration of immobilisation.

The purpose of this study was to determine the optimal (im)mobilisation schema, protecting the suture as well as avoiding impairment of the capability of the transferred tendon to slide properly.

Methods: A tendon transfer of the m. flexor digitorum longus to the dorsal talus was performed in 32 New-Zealand rabbits. The tendon was passed through a drill hole and sutured to itself. Animals were randomised into 6 groups. Groups 1 to 3 experienced mobilisation of varying duration (none, 2 and 4 weeks) after two weeks of immobilisation. Groups 4 to 6 received the same time of mobilisation (4 weeks) but after different periods of immobilisation (4, 6, 8 weeks).

Histomorphological examinations including synovial cell coating, appearance of tendon and tissue interface, inflammation and scarring of the site of surgery were done. The results were analyzed statistically (Kruskal-Wallis-test; Jonckheere Terpstra-test).

Results: Except a difference in development of a synovial cell coating of questionable clinical significance there were no significant findings regarding the histomorphology between the different groups.

Conclusion: In opposition to traditional believes, our results suggest that the influence of postoperative mobilisation or immobilisation towards the formation of scarring and adhesions in tendon transfers may by widely overestimated. This implies that the decision for the duration of postoperative immobilisation should be mainly based on safe ingrowths, without the imminent risk of loss of function.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 816 - 819
1 Sep 1997
An YH Bradley J Powers DL Friedman RJ

We evaluated the effects of a serum protein coating on prosthetic infection in 29 adult male rabbits divided into three groups: control, albumin-coated and uncoated. We used 34 grit-blasted, commercially pure titanium implants. Eleven were coated with cross-linked albumin. All the implants were exposed to a suspension of Staphylococcus epidermidis before implantation.

Our findings showed that albumin-coated implants had a much lower infection rate (27%) than the uncoated implants (62%). This may be a useful method of reducing the infection of prostheses.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 82 - 83
1 Mar 2009
Garrido CP Makino A Bosio S Astoul-Bonorino J Aponte-Tinao L Isola M Ielpi M Ayerza M Muscolo L
Full Access

Introduction: Autologous chondrocyte implantation (ACI) has been developed in order to repair cartilage successfully. Experimental models are based on osteochondral defects with potentially triphasic chondrogenic system: periosteal flaps, bone marrow cells and transplanted chondrogenic cells. All these three have chondrogenic activity so it is difficult to determinate the role of the implanted cells unless appropriate control is set up.

The purpose of this study is to determinate if the inoculation of chondrocytes under periosteal flaps does improve the chondrogenic potential of periosteal flaps.

MATERIALS AND Methods: 10 New Zealand rabbits, 8 months old were used. Right knees served as study group (ACI Group; N5: Chondrocytes + Periosteal Flap) – (Fibroblast Group: N5 Fibroblast + Periosteal Flap) and left knees as control group (N: 10: osteochondral defect alone). During the first procedure dermal fibroblast cells were isolated from skin biopsy and chondrocytes were isolated from the medial femoral condyle as a full thickness of the right and left knee were done. Chondrocytes and dermal fibroblasts cells were incubated for 4 weeks. Then they were implanted under periostel flap according to study group.

Chondrocyte and Fibroblast Implantation:

A parapatellar incision was performed on both knees. Defect was cleaned and on study group the periosteum taken from the tibia was sutured leaving one edge free to inoculate the chondrocytes or fibroblast according to group using a needle Then the defect was closed using fibrin glue. The animals were euthanatized 8 months postoperative.

Analysis: Specimens were evaluated using Hematoxylin and Eosin. Safranine and inmunohistochemistry for Collagen Type 2 using the ICRS score system.

Statistical Analysis: T student, Fisher and confidence interval were used. A p value < 0,05 was considered significant.

Results: Control non treated group presented a histological score grade mean IV (95% CI: 44–97)

The ACI group showed a tissue type means II (ICRS) (95% CI: 28–99%) Collagen type 2 was evident only in the deep layers. The fibroblast group did show a reparative tissue, tissue type mean II (95% CI: 28–99%) Collagen type 2 was evident in deep layers

DISCUSSION: According to this study the inoculation of chondrocytes under periosteal flaps does not improve significally the chondrogenic potential of periosteal flaps.(p: 0,77). Comparing the same procedure with chondrogenic and non chondrogenic cell lines could determinate the role of different chondrogenic components (periosteum and chondrocytes). Probably the chondrogenic capacity of the periosteum is sufficient to stimulate a reparative tissue. However none of these procedures could establish an adult normal cartilage hyaline tissue.


The Journal of Bone & Joint Surgery British Volume
Vol. 38-B, Issue 4 | Pages 914 - 921
1 Nov 1956
Harris WR Hobson KW

An experimental method is described which permits observations on the early stages of repair after acute displacement of the upper femoral epiphysis. Because the epiphysis is intra-articular, displacement brings about avascular necrosis which is slowly repaired by ingrowth of callus and blood vessels from the stump of the neck. As the bulk of the epiphysial plate remainsattached to the epiphysis, it acts as a barrier to successful revascularisation. Deliberate removal of the epiphysial cartilage allows earlier revascularisation. It is suggested that in clinical cases reduction be done through the epiphysial plate rather than through the neck, and that it be accompanied by curettage of the remaining part of the epiphysial plate from the under surface of the head.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 144 - 144
1 Feb 2004
Motomura G Yamamoto T Miyanishi K Jingushi S Iwamoto Y
Full Access

Introduction: The purpose of this study was to investigate the effects of combination treatments with anticoagulant (warfarin) and a lipid-lowering agent (probucol) on the prevention of steroid-associated osteonecrosis (ON) in rabbits.

Materials and Methods: Male adult Japanese white rabbits were intramuscularly injected once with 20mg/kg body weight of methylprednisolone acetate into the right gluteus medius muscle. These rabbits were divided into three groups: a warfarin plus probucol treatment group (WP Group, n=25), a probucol treatment group (PR Group, n=30), and a non-prophylactic treatment group (NP Group, n=20). Two weeks after the cortico-steroid injection, both femora and humeri were histopathologically examined for the presence of ON, and the sizes of bone marrow fat cells were morphologically examined.

Results: The incidence of ON in the WP Group (5%) was significantly lower than that in the NP Group (70%) (p < 0.0001). The incidence of ON in the PR Group (37%) was significantly lower than that in the NP Group (p < 0.05), but it was significantly higher than that in the WP Group (p < 0.01). The mean size of the bone marrow fat cells was significantly smaller in the WP Group (53.5 ± 4.1μm) than that in the NP Group (60.0 ± 4.0μm) (p < 0.0001). There were no significant differences in the size of bone marrow fat cells between the WP and the PR Groups (52.0 ± 5.0μm).

Discussion: This study experimentally confirmed that anticoagulant plus lipid-lowering agent treatment has a preventative effect on steroid-associated ON in rabbits.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 460 - 460
1 Sep 2009
Díaz Heredia J Ruiz Ibán MA García I Correa C Gonzalez F Cebreiro I
Full Access

Various studies have demonstrated that menisci heal in the vascular region but do not heal in the avascular area. Experimental studies of the promotion of meniscal healing in the avascular area have involved the application of fibrin clot, fibrin glue to the injured area, as well as the construction of an access chanel to the vascular regiòn, all of them with poor results. The multilineage potential of adult stem cells has been characterized extensively. The adipose tissue has been described as a useful source of adult stem cells. We try to show that the use of stem cells from the adipose tissue may promete meniscal healing in the avascular area.

Twelve New Zealand white rabbits with a mean weight of 3 kg were used. The medial meniscus of both knees was aproached, and was performed a longitudinal tear in the avascular area in the anterior horn with a mean length of 0.5 cm. All the tears were sutured with one vertical stitch of nonabsorbable suture. In each rabbit a solution with 1 00 000–1 000 000 stem cells from the fat was introduced in one of the knees, and the other one was used as a control. The rabbits were killed at 12 weeks, and a macro-microscopic study of the meniscus was done, and also a inmunohistochemistry study for the stem cells.

The incidence of healing was better in those menisci with the stem cells solution. Three total and three partial healing was obtained in the stem cells group and none in the control group. The inmunohistochemistry showed that the stem cells were in the repair zone.

We think that stem cells will be very useful in the treatment of the lesion in the avascular area of the meniscus.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 176 - 177
1 Mar 2009
Alt V Bitschnau A Sewing A Meissner S Wenisch S Domann E Schnettler R
Full Access

Introduction: Similar local infection prophylaxis as in cemented total joint by antibiotic-loaded bone cement has not been possible yet for cementless prostheses. In this study, a gentamicin-coating which can be brought additionally onto standard hydroxyapatite (HA) coatings of cementless prostheses is presented. It was tested whether this gentamicin-coating can reduce infection rates in a rabbit infection model with Staphylococcus aureus compared to compared to standard-HA coating. Furthermore, the biocompatibility of this gentamicin coating was investigated.

Materials and Methods: Staphylococcus aureus with a dose of 10(7) CFUs was inoculated into the intramedullary canal of the tibia of 30 rabbits followed by the implantation of standard hydroxyapatite (HA) K-wires, K-wires coated with a HA--gentamicin combination, and K-wires coated with a HA-RGD-gentamicin combination, respectively. The animals were sacrificed after 28 days and clinical, histological and microbiological assessment on the bone and on the removed K-wire itself by agar plating and DNA-pulse field gel electrophoresis were carried out to detect infection. Infection was defined as positive culture growth from the bone and/or cement samples. In another study with 40 rabbits biocompatibility of the two gentamicin-coating types was assessed after an implantation time of 12 weeks and compared to pure HA-coating and uncoated implants.

Results: Infection rates were 88% (7 of 8 animals) for the standard HA, 0% (0 of 9 animals) for the HA-gentamicin and 0% (0 of 10 animals) for the HA-RGD-gentamicin group. There was a statistically highly significant reduction of infection rates by both gentamicin-coating types compared to standard HA-coating (p < 0.001). The animals that were identified to have positive culture growth corresponded to the animals that showed clinical signs of infection. An excellent correlation between agar plating testing results of the K-wires and of the bone samples was found. Detailed histology showed cortical lysis, abcess and sequester formation in the infected animals. There were no major differences in the biocompatibility between the different groups. There were only a few giant cells and regions of bone marrow necrosis in the gentamicin-groups which was comparable to the control implants. There was a very similar histologic appearance of the gentamicin coatings and the standard HA coating.

Conclusion: Both gentamicin-coating types showed significant improvement of infection prophylaxis compared to standard HA coating. Furthermore, both gentamicin coating types revealed good biocompatibility after 12 weeks. Therefore, HA-gentamicin and HA-RGD-gentamicin coatings could help to reduce infection rates in cementless arthroplasty in all day clinical use


The Journal of Bone & Joint Surgery British Volume
Vol. 57-B, Issue 4 | Pages 454 - 462
1 Nov 1975
Bentley G Kreutner A Ferguson AB

Little is known of the effects of synovectomy on articular cartilage. In order to investigate this matter, anterior synovectomy of the knee was performed in thirty-five normal adult rabbits and in thirty-five which were given 25 milligrams of hydrocortisone intramuscularly each week afterwards. The animals were killed at intervals from four to 110 days after synovectomy. Histological examination of the regenerating synovium in both groups showed complete structural and functional regeneration by eighty days in the first group and a delay in regeneration in the steroid group. 35Sulphur autoradiographs of the articular cartilage of femoral and tibial condyles revealed surface fibrillation and chondrocyte death in 23 per cent of normal knees after eighty days but only 1·8 per cent of knees of animals receiving hydrocortisone. Thus synovectomy in a healthy joint may have an unfavourable effect on the physiology of cartilage by alteration of synovial composition and hyaluronate content in normal joints. Systemically-administered hydrocortisone may reduce this harmful effect in normal cartilage.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 1 | Pages 182 - 195
1 Feb 1963
Cordrey LJ McCorkle H Hilton E

Comparison was made between the behaviour of fresh autogenous grafts of rabbit tendon and that of homogenous grafts inserted after the graft had been preserved for approximately one week, either in ethanol or merthiolate or by lyophilisation.

Regardless of the method of transplantation or preservation, a viable tendon-like structure of compact connective tissue bundles longitudinally oriented was eventually present at the sites of the grafts, with ingrowth of fibroblasts and capillaries from host to graft. The period between transplantation and recognisable viability of the grafts varied from less than one week for the autogenous transplants, to from three to five weeks for the preserved grafts.

Either autogenous or homogenous grafts will take in rabbits.


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 3 | Pages 563 - 571
1 Aug 1957
Brookes M

1. The principal nutrient canal of the femur in day-old rabbits was occluded and subsequent femoral growth observed.

2. An initial shortening is followed by equalisation and a final absolute shortening of the order of 3 per cent in occluded femora as compared with controls.

3. It is emphasised that the medullary arterial system, fed by principal nutrient, metaphysial and epiphysial arteries, is the mechanism for the delivery of arterial blood to long bones, and that the arteries of bone extremities are of overwhelming importance in the nutrition of the long bone as a whole.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 112 - 113
1 Mar 2006
Morris S Cottell D McCormack D
Full Access

Introduction: The meniscus plays an important role in protecting the articular surfaces of the tibia and femur from excessive wear due to aberrant forces across the knee joint. While the biochemical changes associated with cartilage and meniscal wear have been well documented, little data exists in the literature describing the ultrastructural events associated with such a degenerative process.

Aim: To develop an in vivo model to evaluate the effects of joint incongruity on meniscal wear.

Materials and Methods: Six New Zealand White rabbits underwent an arthrotomy of the right knee joint. A sagittal osteotomy of the medial femoral condyle was then performed on four of these animals while the remaining two served as controls. Post operatively all animals were allowed to mobilise ad librium and were sacrificed after 20 weeks. The medial meniscus was harvested and processed for electron microscopy by routine methods. Survey light microscopy sections (1um) were examined and adjacent ultra-thin sections (50nm) were assessed in an electron microscope at magnifications from 1,500 to 30,000.

Results: On gross examination of the menisci there was no evidence of any significant wear. Neither was there noticeable damage on light microscopy. There was no significant difference in the numbers of chondrocytes and fibroblasts in the superior and inferior surfaces of both control and test samples, indicating a lack of cellular response in the test specimens. On electron microscopy, the superficial electron dense layer was markedly attenuated in test subjects (control 246 – 305 nm, test 109 – 167nm). The superior surfaces of two test samples were markedly roughened, while chondral fragments were noted in craters on the surface. Numerous cystic lesions were present within the superficial collagen stroma of test subjects. Interestingly cleavage planes were noted in the superior and inferior aspects of one of the four test subjects. No difference in collagen fibril diameter was observed between control and test subjects.

Discussion: These results represent the early stages of meniscal degeneration. The process appears to one of microfibrillation, with degeneration occurring within the bundles of collagen fibrils rather than within the substance of the fibrils themselves. The absence of a healing response suggests that this is an intractable process, a finding which accords well with findings in the clinical setting.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 42 - 42
1 Sep 2012
Douglas Price A Cuestas N Cambiaggi G Vazquez M Caviglia H
Full Access

Objective

To assess the beneficial use of polypropylene mesh impregnated with vancomycin in an experimental model open fractures Gustilo IIIa in rabbits.

Material and Method

We worked with 15 New Zeland White rabbits. All of them were carried out under general anaesthetic, a 5-cm incision longitudinal was made at the back of the right thigh. The femur was aproached and a fracture was performed with a shear, giving rise to a multifragment fracture. The wound remained open for 6 hours with the bone exposed, in a non-surgical ambient. Subsequently underwent surgical cleaning of the open fractures in two stages. The fracture was stabilized with an intramedular pin. The animals were sorted in 3 different therapeutic groups:

Group 1: (5 rabbits) without other treatment.

Group 2: (5 rabbits) a polypropylene mesh was placed around the fracture.

Group 3: (5 rabbits) a polypropylene mesh with vancomycin was placed around the fracture.

The wound was closed with nylon stiches.

Three weeks postoperative, the animals were intervened surgically under general anesthesia, after aseptic cure and placement of surgical fields, femoral bone biopsies, soft tissue and mesh were taken. The rabbits were sacrified. The samples were sent to pathology and bacteriology labs.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 153 - 153
1 Mar 2009
Tischer T Vogt S Milz S Maier M
Full Access

Shock wave treatment has been shown to induce new bone formation both under physiologic conditions and during fracture repair. Whereas various underlying molecular working mechanisms have been shown in recent studies, no study has assessed the influence of varying energy flux densities (EFD) on the amount of new bone formation in vivo. Therefore, the aim of this study was to investigate whether the effect of shock waves on bone is dependent on the applied EFD and if so, to identify the minimal dose necessary to induce new bone formation in vivo to avoid unwanted side effects of high-energy shock waves.

To this end, 30 New Zealand white rabbits were randomly divided in 5 groups and treated with extracorporeal shock waves at the distal femoral region (1,500 pulses at 1 Hz frequency each):

(a) control (sham treatment),

(b) EFD 0.35 mJ/mm2,

(c) EFD 0.5 mJ/mm2,

(d) EFD 0.9 mJ/mm2 and

(e) EFD 1.2 mJ/mm2.

To investigate new bone formation, animals were injected with oxytetracycline at the days 5 to 9 after shock wave application and sacrificed on day 10. Histological sections of treated and untreated femora of all animals were examined using broad-band epifluorescent illumination and contact microradiography. The amount of new periosteal and endosteal bone was measured and signs of periosteal detachment, cortical fractures, and fragmented trabecular bone with callus were recorded.

Application of shock waves showed new bone formation beginning with 0.5 mJ/mm2 EFD and increasing with 0.9 mJ/mm2 and 1.2 mJ/mm2. The latter EFD resulted in new bone formation also on the opposite cortical bone and cortical fractures and periosteal detachment occurred. EFD of 0.35 mJ/mm2 did not lead to any new bone formation. Here for the first time a threshold level is presented for new bone formation after applying shock waves to intact bone in vivo.

We conclude that the results presented here have significant impact on further clinical applications of shock waves on bone tissue. In the present study, it is clearly demonstrated that the amount of new bone formation is directly dependent on the applied EFD. If the applied EFD is to low, no significant new bone formation will occur. If it is too high, unwanted side effects, like the formation of bone spurs in the shoulder or nerve entrapment syndromes in the elbow or feet by bony overgrowth may result.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 157 - 158
1 Mar 2009
Koulalis D Efstathopoulos N Papaparaskeva K Pyrovolou N Lenti A Konstantinou V Papachristou G
Full Access

Purpose of study: To investigate and compare the characteristics of the reconstructed articular surface microscopically and histologically after a time period of 6 weeks following the treatment of a focal defect of the right femoral head with subchondral drilling and autologous osteochondral transplantation in rabbits

Material and method: A 2,5 mm diameter and 3 mm depth iatrogenic osteochondral defect in the anterolateral weight bearing area of the right femoral head was created in 12 rabbits. In a group of 6 rabbits the lesion was treated with autologous osteochondral transplantation. The donor site for the transplant was the lateral condyle of the ipsilateral knee joint. The other group of 6 rabbits was treated with subchondral drilling. Both groups were sacrificed after a time period of 6 weeks and specimens were evaluated histologically under the classification system of the ICRS. For statistical analysis we used the Mann – Wittney test

Results: According to the ICRS score statistical significance was found for all variables between the 2 groups (subchondral drilling 6 weeks vs autologous osteochondral transplantation 6 weeks).: articular surface (p=0,049), matrix (p=0,003), cell distribution (p< 0,0005), subchondral bone (p=0,010), cartilage mineralization (p=0,0) except cell population viability.

Discussion: In comparison to subchondral drilling, autologous osteochondral transplantation provided better results concerning the smoothness and continuity of the articular surface, the consistency of the matrix with dominance of the hyaline and mixed hyaline – fibrocartilage type of tissue, the normality of subchondral bone and the columna r distribution of cells. The viability of the cell populations was the same for both methods. The incorporation of the osseous part of the graft was successful in all cases and the surgical procedure did not produce any necrosis of the femoral head.

Conclusion: In cases of focal osteochondral defect of the femoral head in rabbits, reconstruction of the articular surface through autologous osteochondral graft transplantation gives superior macroscopical and histological results in comparison to subchondral drilling


The Journal of Bone & Joint Surgery British Volume
Vol. 57-B, Issue 4 | Pages 500 - 505
1 Nov 1975
Ritsilä V Alhopuro S

The effect of early fusion on growth of the spine has been studied in rabbits. Free periosteal grafts from the tibia were transplanted either posteriorly between the spinous and articular processes or postero-laterally between the articular and transverse processes. Sound bony fusion was achieved in both the thoracic and the lumbar spine. Spinal fusion caused local narrowing and wedging of the intervertebral spaces, followed by retardation of growth and wedging of the vertebrae. A progressive structural scoliosis developed after unilateral postero-lateral fusion and a lordosis developed after posterior fusion.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 62 - 62
1 Jul 2014
Abdel M Morrey M Barlowv J Grill D Kolbert C An K Steinmann S Morrey B Sanchez-Sotelo J
Full Access

Summary

Based upon genetic analysis, decorin is an exciting pharmacologic agent of potential anti-fibrogenic effect on arthrofibrosis in our animal model.

Introduction

While the pathophysiology of arthrofibrosis is not fully understood, some anti-fibrotic molecules such as decorin could potentially be used for the prevention or treatment of joint stiffness. The goal of this study was to determine whether intra-articular administration of decorin influences the expression of genes involved in the fibrotic cascade ultimately leading to less contracture in an animal model.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 125 - 125
1 Sep 2012
Gerber C Meyer D Nuss K Farshad M
Full Access

Introduction

Following tear of its tendon, the muscle undergoes retraction, atrophy and fatty infiltration. These changes are inevitable and considered irreversible and limit the potential of successful repair of musculotendinous units. It was the purpose of this study to test the hypothesis that administration of anabolic steroids can prevent these muscular changes following experimental supraspinatus tendon release in the rabbit.

Methods

The supraspinatus tendon was experimentally released in 20 New Zealand rabbits. Musculotendinous retraction was monitored over a period of 6 weeks. The seven animals in group I had no additional intervention, six animals in group II had local and seven animals in group III had systemic administration of nandrolone deconate during six weeks of retraction. At the time of sacrifice, in-vivo muscle performance as well as radiologic and histologic muscle changes were investigated.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 267 - 267
1 Mar 2003
Uglo M Hile M Briody J Bilston L Little D
Full Access

Low intensity pulsed ultrasound (SAFHS, Exogen Inc.) was used to treat 15 immature New Zealand white rabbits following a mid diaphyseal tibial osteotomy and 1cm bone lengthening using an Orthofix M-100 device. Fifteen matched controls underwent an identical procedure but the ultrasound transducer was not switched on. At 4 and 6 weeks postoperatively the tibiae were analysed using DXA, QCT and 4 point bend mechanical testing. There were no differences identified between the active and control groups at 4 or 6 weeks with respect to bone mineral content or cross-sectional area of the regenerate, nor the bone proximal and distal to it. No improvement in strength of the regenerate was identified in either group. We cannot, therefore, support the use of the SAFHS to accelerate bone healing in patients undergoing limb lengthening.

Low intensity pulsed ultrasound has been shown to accelerate fracture healing in animals and humans. The mechanisms of action are discussed and we propose that the intensity of the ultrasound may need to be increased mechanically to stimulate a bone that is rigidly fixed using the M-100 fixator.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 276 - 276
1 Nov 2002
Little D Hile M Uglow M Briody J Bilston L
Full Access

Aim: To examine the effect of the low intensity ultrasound stimulation (SAFHS, Exogen) on new bone formation and stress shielding in a distraction osteogenesis model in New Zealand white rabbits.

Methods: Thirty male rabbits underwent a right tibial osteotomy at eight weeks of age. Distraction of the osteotomy by 0.75mm/day was performed for two weeks. Ultrasound stimulation commenced on the seventh day after wound healing. The ‘active’ group was stimulated for 20 minutes daily. The controls had identical dummy stimulators applied. Half of the animals were culled at four weeks and half at six weeks. Dual-energy x-ray absorptiometry scans evaluated BMC and BMD. Quantitative computerised tomography measured the cross-sectional areas. Four-point bend testing of distracted and non-operated tibiae was performed in a standardised fashion.

Results: No differences were identified between the active and control groups at four or six weeks with respect to BMD, BMC or cross-sectional area of the regenerated bone. Stress shielding osteopaenia was unaffected by ultrasound stimulation. No significant improvement in strength of the regenerate was identified in either group – there was a trend towards improved strength at four weeks.

Discussion: Low intensity pulsed ultrasound accelerates fracture healing in humans when immobilised by plaster of Paris. One published study purporting to show improvement in distraction osteogenesis is fatally flawed. We believe the intensity of the ultrasound may need to be increased to stimulate mechanically a bone rigidly fixed by an external fixator. Other interventions such as the use of growth factors or bisphosphonates provide much greater improvements in experimental animals and are much more convenient to apply.