Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

TUMOR NECROSIS FACTOR-ALPHA INDUCES ENDOSTEAL BONE RESORPTION IN RABBITS.



Abstract

Introduction: Tumor necrosis factor-alpha (TNF-a) has been shown to be a potent stimulator of bone resorption in vitro and in vivo, and has been identified as an important factor in aseptic loosening of total joint replacements. In order to investigate the effects of TNF-a at the bone-cement interface, we developed a rabbit model in which a slow-release pellet containing a known amount of TNF-a was inserted adjacent to a polymethylmethacryate (PMMA) implant in the distal femur.

Methods: 25 male New Zealand white rabbits were used in this IACUC-approved study. After routine exposure of the distal femur, a 3 mm drill bit was used to drill through the intercondylar region into the medullary canal of the distal femur. A resorbable pellet containing 0, 420, 4200, 42 000 or 420 000 pg of TNF-a (n=5 animals per dose level) was inserted into the drill hole, immediately followed by a cylindrical PMMA implant (20 mm long). Animals were euthanized 42 days after surgery. The right femora were excised, radiographed, and processed for histology. Ground sections were prepared at the level of the proximal implant. Semi-automated image analysis was used to quantify cortical bone area, porosity and fractional surfaces (quiescent, osteoid and eroded). Data from control and treatment animals were compared with a one-way analysis of variance (ANOVA) using p< 0.05.

Results: All of the animals recovered well after surgery. Radiographically, all of the implants appeared to be stable, with no evidence of linear or cystic osteolysis. Local delivery of TNF-a for 6 weeks had no effect on cortical bone area or porosity. However, TNF-a stimulated bone resorption and decreased new bone formation at the endosteal surface (p< 0.05); these effects were not dose-dependent but were seen in all of the TNF-a groups.

Discussion: Our data provide direct evidence that local release of TNF-a is capable of inducing endosteal bone resorption in vivo. Additional studies are now needed to determine the effects of other proinflammatory cytokines in this animal model. However, based on these results, it appears that targeted blockade of TNF-a release or activity may provide a rational therapeutic approach to osteolysis and aseptic loosening.

The abstracts were prepared by Nico Verdonschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.