header advert
Results 301 - 400 of 4366
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 8 - 8
17 Nov 2023
Alieldin E Samir M
Full Access

Abstract

Introduction

The medial meniscus is crescent shaped and it is wider posteriorly than anteriorly. It covers up to 60 % of the articular surface of medial tibial condyle and helps with the loading distribution in the medial compartment. Meniscal lesions occur in association with ACL tears in 60 % of the time. The posterior aspect of the menisco-capsular junction is known as the meniscal rampzone. If not addressed during surgery, it could lead to unfavourable results.

Objective

Incidence of ramp lesion following ACL injuries.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 11 - 11
17 Nov 2023
Wahdan Q Solanke F Komperla S Edmonds C Amos L Yap RY Neal A Mallinder N Tomlinson JE Jayasuriya R
Full Access

Abstract

INTRODUCTION

In the NHS the structure of a “regular healthcare team” is no longer the case. The NHS is facing a workforce crisis where cross-covering of ward-based health professionals is at an all-time high, this includes nurses, doctors, therapists, pharmacists and clerks. Comprehensive post-operative care documentation is essential to maintain patient safety, reduce information clarification requests, delays in rehabilitation, treatment, and investigations. The value of complete surgical registry data is emerging, and in the UK this has recently become mandated, but the completeness of post-operative care documentation is not held to the same importance, and at present there is no published standard. This project summarises a 4-stage approach, including 6 audit cycles, >400 reviewed operation notes, over a 5 year period.

OBJECTIVE

To deliver a sustainable change in post operative care documentation practices through quality improvement frameworks.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 13 - 13
17 Nov 2023
Armstrong R McKeever T McLelland C Hamilton D
Full Access

Abstract

Objective

There is no specific framework for the clinical management of sports related brachial plexus injuries. Necessarily, rehabilitation is based on injury presentation and clinical diagnostics but it is unclear what the underlying evidence base to inform rehabilitative management.

Methods

A systematic review of the literature was undertaken in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We applied the PEO criteria to inform our search strategy to find articles that reported the rehabilitative management of brachial plexus injuries sustained while playing contact sports. An electronic search of Medline, CINAHL, SPORTDiscus and Web of Science from inception to 3rd November 2022 was conducted. MESH terms and Boolean operators were employed. We applied an English language restriction but no other filters. Manual searches of Google Scholar and citation searching of included manuscripts were also completed. All study types were considered for inclusion provided they were published as peer-reviewed primary research articles and contained relevant information. Two investigators independently carried out the searches, screened by title, abstract and full text. Two researchers independently extracted the data from included articles. Data was cross-checked by a third researcher to ensure consistency. To assess internal validity and risk of bias, the Joanna Briggs Institute (JBI) critical appraisal tools were utilised.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 1 - 1
17 Nov 2023
Mehta S Goel A Mahajan U Reddy R Bhaskar D
Full Access

Abstract

Introduction

Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty.

Aims

Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 3 - 3
17 Nov 2023
Mahajan U Mehta S Chan S
Full Access

Abstract

Introduction

Intra-articular distal humerus OTA type C fractures are challenging to treat. When osteosynthesis is not feasible one can choose to do a primary arthroplasty of elbow or manage non-operatively. The indications for treatment of this fracture pattern are evolving.

Objectives

We present our outcomes and complications when this cohort of patients was managed with either open reduction internal fixator (ORIF), elbow arthroplasty or non-operatively.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 5 - 5
17 Nov 2023
Mahajan U Mehta S Kotecha A
Full Access

Abstract

Introduction

In general the life expectancy of population is improving. This is causing to increase case load of peri-prosthesis fractures after joint replacements. We present our results of peri-prosthesis fracture around hip managed by revision arthroplasty.

Methods

A retrospective analysis of 24 consecutive patients of periprosthetic hip fracture treated with a revision arthroplasty at Major Trauma Centre between February 2021 and January 2022.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 25 - 25
17 Nov 2023
Mok S Almaghtuf N Paxton J
Full Access

Abstract

The lateral ligaments of the ankle composed of the anterior talofibular (ATFL), calcaneofibular (CFL) and posterior talofibular ligaments (PTFL), are amongst the most commonly injured ligaments of the human body. Although treatment methods have been explored exhaustively, healing outcomes remain poor with high rates of re-injury, chronic ankle instability and pain persisting. The introduction and application of tissue engineering methods may target poor healing outcomes and eliminate long-term complications, improving the overall quality of life of affected individuals. For any surgical procedure or tissue-engineered replacement to be successful, a comprehensive understanding of the complete anatomy of the native structure is essential. Knowledge of the dimensions of ligament footprints is vitally important for surgeons as it guides the placement of bone tunnels during repair. It is also imperative in tissue-engineered design as the creation of a successful replacement relies on a thorough understanding of the native anatomy and microanatomical structure. Several studies explore techniques to describe ligament footprints around the body, with limited studies describing in-depth footprint dimensions of the ATFL, CFL and PTFL. Techniques currently used to measure ligament footprints are complex and require resources which may not be readily available, therefore a new methodology may prove beneficial.

Objectives

This study explores the application of a novel technique to assess the footprint of ankle ligaments through a straightforward inking method. This method aims to enhance surgical technique and contribute to the development of a tissue-engineered analogue based on real anatomical morphometric data.

Methods

Cadaveric dissection of the ATFL, CFL and PTFL was performed on 12 unpaired fresh frozen ankles adhering to regulations of the Human Tissue (Scotland) Act. The ankle complex with attaching ligaments was immersed in methylene blue. Dissection of the proximal and distal entheses of each ligament was carried out to reveal the unstained ligament footprint. Images of each ligament footprint were taken, and the area, length and width of each footprint were assessed digitally.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 34 - 34
17 Nov 2023
Elliott M Rodrigues R Hamilton R Postans N Metcalfe A Jones R McGregor A Arvanitis T Holt C
Full Access

Abstract

Objectives

Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in biomechanical studies are often small and there is limited ways to share or combine data from across institutions or studies. This is essential for applying modern machine learning methods, where large, complex datasets can be used to identify patterns in the data. Using these data-driven approaches, it could be possible to better predict the optimal interventions for patients at an early stage, potentially avoiding pain and inappropriate surgery or rehabilitation. In this project we developed a prototype database platform for combining and sharing biomechanics datasets. The database includes methods for importing and standardising data and associated variables, to create a seamless, searchable combined dataset of both healthy and knee OA biomechanics.

Methods

Data was curated through calls to members of the OATech Network+ (https://www.oatechnetwork.org/). The requirements were 3D motion capture data from previous studies that related to analysing the biomechanics of knee OA, including participants with OA at any stage of progression plus healthy controls. As a minimum we required kinematic data of the lower limbs, plus associated kinetic data (i.e. ground reaction forces). Any additional, complementary data such as EMG could also be provided. Relevant ethical approvals had to be in place that allowed re-use of the data for other research purposes. The datasets were uploaded to a University hosted cloud platform. The database platform was developed using Javascript and hosted on a Windows server, located and managed within the department.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 19 - 19
17 Nov 2023
Lee K van Duren B Berber R Matar H Bloch B
Full Access

Abstract

Objectives

Stiffness is reported in 4%–16% of patients after having undergone total knee replacement (TKR). Limitation to range of motion (ROM) can limit a patient's ability to undertake activities of daily living with a knee flexion of 83o, 93o, and 106o required to walk up stairs, sit on a chair, and tie one's shoelaces respectively. The treatment of stiffness after TKR remains a challenge. Many treatment options are described for treating the stiff TKR. In addition to physiotherapy the most employed of these is manipulation under anaesthesia (MUA). MUA accounts for up to 36% of readmissions following TKR. Though frequently undertaken the outcomes of MUA remain variable and unpredictable. CPM as an adjuvant therapy to MUA remains the subject of debate. Combining the use of CPM after MUA in theory adds the potential benefits of CPM to those of MUA potentially offering greater improvements in ROM. This paper reports a retrospective study comparing patients who underwent MUA with and without post-operative CPM.

Methods

Standard practice in our institution is for patients undergoing MUA for stiff TKR to receive CPM for between 12–24hours post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period several MUA procedures were undertaken without subsequent inpatient CPM. We retrospectively identified two cohorts of patients treated for stiff TKR: group 1) MUA + post-operative CPM 2) Daycase MUA. All patients had undergone initial physiotherapy to try and improve their ROM prior to proceeding to MUA. In addition to patients’ demographics pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded for each patient.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 22 - 22
17 Nov 2023
van Duren B Firth A Berber R Matar H Bloch B
Full Access

Abstract

Objectives

Obesity is prevalent with nearly one third of the world's population being classified as obese. Total knee arthroplasty (TKA) is an effective treatment option for high BMI patients achieving similar outcomes to non-obese patients. However, increased rates of aseptic loosening in patients with a high BMI have been reported. In patients with high BMI/body mass there is an increase in strain placed on the implant fixation interfaces. As such component fixation is a potential concern when performing TKA in the obese patient. To address this concern the use of extended tibial stems in cemented implants or cementless fixation have been advocated. Extend tibial stems are thought to improve implant stability reducing the micromotion between interfaces and consequently the risk of aseptic loosening. Cementless implants, once biologic fixation is achieved, effectively integrate into bone eliminating an interface. This retrospective study compared the use of extended tibial stems and cementless implants to conventional cemented implants in high BMI patients.

Methods

From a prospectively maintained database of 3239 primary Attune TKA (Depuy, Warsaw, Indiana), obese patients (body mass index (BMI) >30 kg/m²) were retrospectively reviewed. Two groups of patients 1) using a tibial stem extension [n=162] and 2) cementless fixation [n=163] were compared to 3) a control group (n=1426) with a standard tibial stem cemented implant. All operations were performed by or under the direct supervision of specialist arthroplasty surgeons. Analysis compared the groups with respect to class I, II, and III (BMI >30kg/m², >35 kg/m², >40 kg/m²) obesity. The primary outcome measures were all-cause revision, revision for aseptic loosening, and revision for tibial loosening. Kaplan-Meier survival analysis and Cox regression models were used to compare the primary outcomes between groups. Where radiographic images at greater than 3 months post-operatively were available, radiographs were examined to compare the presence of peri-implant radiolucent lines.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 53 - 53
17 Nov 2023
Wright K McDonald J Mennan C Perry J Peffers M Hulme C
Full Access

Abstract

Objectives

A promising therapy for early osteoarthritis (OA) is the transplantation of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). The synovial fluid (SF) from a pre-clinical ovine model treated with hUC-MSCs has been profiled using proteomics and bioinformatics to elucidate potential mechanisms of therapeutic effect.

Methods

Four weeks after a medial meniscus transection surgery, sheep were injected with 107 hUC-MSCs in Phosphate Buffered Saline (PBS) or PBS only (n=7) and sacrificed at 12 weeks. SF was normalised for protein abundance (ProteoMinerTM) and analysed using label-free quantitation proteomics. Bioinformatics analyses (Ingenuity Pathway Analysis (IPA) and STRING) were used to assess differentially regulated functions from the proteomic data. Human orthologues were identified for the ovine proteins using UniProt and DAVID resources and proteins that were ≥±1.3 fold differentially abundant between treatment groups, were included in the bioinformatics analyses.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 55 - 55
17 Nov 2023
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Abstract

Objectives

Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive.

Methods

Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 57 - 57
17 Nov 2023
Strangmark E Wang JH Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Abstract

BACKGROUND

Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay.

OBJECTIVE

Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 62 - 62
17 Nov 2023
Lan T Wright K Makwana N Bing A McCarthy H Hulme C
Full Access

Abstract

Objectives

Bone marrow aspirate concentrate (BMAC), together with fibrin glue (Tisseel, Baxter, UK) and Hyaluronic acid (HA) were used as a one-step cell therapy treating patients with ankle cartilage defects in our hospital. This therapy was proven to be safe, with patients demonstrating a significant improvement 12 months post-treatment. Enriched mesenchymal stem cells (MSCs) in BMAC are suggested inducers of cartilage regeneration, however, currently there is no point-of-care assessment for BMAC quality; especially regarding the proportion of MSCs within. This study aims to characterise the cellular component of CCR-generated BMAC using a point-of-care device, and to investigate if the total nucleated cell (TNC) count and patient age are predictive of MSC concentration.

Methods

During surgery, 35ml of bone marrow aspirate (BMA) was collected from each patients’ iliac crest under anaesthesia, and BMAC was obtained via a commercial kit (Cartilage Regeneration kit, CCR, Innotec®, UK). BMAC was then mixed with thrombin (B+T) for injection with HA and fibrinogen. In our study, donor-matched BMA, BMAC and B+T were obtained from consented patients (n=12, age 41 ± 16years) undergoing surgery with BMAC therapy. TNC, red blood cell (RBC) and platelet (PLT) counts were measured via a haematology analyser (ABX Micros ES 60, Horiba, UK), and the proportion of MSCs in BMA, BMAC and B+T were assessed via colony forming unit-fibroblast (CFU-F) assays. Significant differences data in matched donors were tested using Friedman test. All data were shown as mean ± SD.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 40 - 40
17 Nov 2023
Kuder I Jones G Rock M van Arkel R
Full Access

Abstract

Objectives

Ultrasound speckle tracking is a safe and non-invasive diagnostic tool to measure soft tissue deformation and strain. In orthopaedics, it could have broad application to measure how injury or surgery affects muscle, tendon or ligament biomechanics. However, its application requires custom tuning of the speckle-tracking algorithm then validation against gold-standard reference data. Implementing an experiment to acquire these data takes months and is expensive, and therefore prohibits use for new applications. Here, we present an alternative optimisation approach that automatically finds suitable machine and algorithmic settings without requiring gold-standard reference data.

Methods

The optimisation routine consisted of two steps. First, convergence of the displacement field was tested to exclude the settings that would not track the underlying tissue motion (e.g. frame rates that were too low). Second, repeatability was maximised through a surrogate optimisation scheme. All settings that could influence the strain calculation were included, ranging from acquisition settings to post-processing smoothing and filtering settings, totalling >1,000,000 combinations of settings. The optimisation criterion minimised the normalised standard deviation between strain maps of repeat measures. The optimisation approach was validated for the medial collateral ligament (MCL) with quasi-static testing on porcine joints (n=3), and dynamic testing on a cadaveric human knee (n=1, female, aged 49). Porcine joints were fully dissected except for the MCL and loaded in a material-testing machine (0 to 3% strain at 0.2 Hz), which was captured using both ultrasound (>14 repeats per specimen) and optical digital image correlation (DIC). For the human cadaveric knee (undissected), 3 repeat ultrasound acquisitions were taken at 18 different anterior/posterior positions over the MCL while the knee was extended/flexed between 0° and 90° in a knee extension rig. Simultaneous optical tracking recorded the position of the ultrasound transducer, knee kinematics and the MCL attachments (which were digitised under direct visualisation post testing). Half of the data collected was used for optimisation of the speckle tracking algorithms for the porcine and human MCLs separately, with the remaining unseen data used as a validation test set.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 47 - 47
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract

Objectives

Osteoarthritis (OA) is a painful and debilitating disorder of diarthroidal joints. Progressive degeneration of the cartilage extracellular matrix (ECM) together with abnormal chondrocyte characteristics occur leading to a switch to a fibroblast-like phenotype and production of mechanically-weak cartilage. Early changes to chondrocytes within human cartilage have been observed including chondrocyte swelling[1] together with the development of thin cytoplasmic processes which increase in number and length with degeneration[2]. Changes to chondrocyte phenotype in degenerate cartilage are associated with F-actin redistribution and stress fibres (SF) formation, leading to morphologically-dedifferentiated (fibroblast-like) chondrocytes[3,4]. It is unclear if these processes are a consequence of ‘passive’ cell swelling into a defective ECM or an ‘active’ event driven by changes in cell metabolism resulting in alterations to cell shape. To address this, we have quantified and compared the distribution and levels of F-actin, a key cytoskeletal protein involved in the formation of cytoplasmic processes, within in situ chondrocytes in non-degenerate and mildly degenerate human cartilage.

Methods

Human femoral head cartilage was obtained from 21 patients [15 females, 6 males, average age 69.6yrs, (range 47–90yrs)] following femoral neck fracture, with Ethical Approval and patient's permission. Cartilage explants were removed from areas graded non-degenerate grade 0 (G0) or mildly degenerate grade 1 (G1) and cultured for up to 3wks in Dulbecco's Modified Eagle's Medium (DMEM) +/− 25% human serum (HS). In situ chondrocytes were stained with CMFDA (5-chloromethylfluoresceindiacetate, Cell-Tracker Green®) and phalloidin (F-actin labelling) and imaged by confocal microscopy and analysed quantitatively using ImageJ and Imaris® software.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 50 - 50
17 Nov 2023
Williams D Ward M Kelly E Shillabeer D Williams J Javadi A Holsgrove T Meakin J Holt C
Full Access

Abstract

Objectives

Spinal disorders such as back pain incur a substantial societal and economic burden. Unfortunately, there is lack of understanding and treatment of these disorders are further impeded by the inability to assess spinal forces in vivo. The aim of this project is to address this challenge by developing and testing a novel image-driven approach that will assess the forces in an individual's spine in vivo by incorporating information acquired from multimodal imaging (magnetic resonance imaging (MRI) and biplane X-rays) in a subject-specific model.

Methods

Magnetic resonance and biplane X-ray imaging are used to capture information about the anatomy, tissues, and motion of an individual's spine as they perform a range of everyday activities. This information is then utilised in a subject-specific computational model based on the finite element method to predict the forces in their spine. The project is also utilising novel machine learning algorithms and in vitro, six-axis mechanical testing on human, porcine and bovine samples to develop and test the modelling methods rigorously.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 63 - 63
17 Nov 2023
Bicer M Phillips AT Melis A McGregor A Modenese L
Full Access

Abstract

OBJECTIVES

Application of deep learning approaches to marker trajectories and ground reaction forces (mocap data), is often hampered by small datasets. Enlarging dataset size is possible using some simple numerical approaches, although these may not be suited to preserving the physiological relevance of mocap data. We propose augmenting mocap data using a deep learning architecture called “generative adversarial networks” (GANs). We demonstrate appropriate use of GANs can capture variations of walking patterns due to subject- and task-specific conditions (mass, leg length, age, gender and walking speed), which significantly affect walking kinematics and kinetics, resulting in augmented datasets amenable to deep learning analysis approaches.

METHODS

A publicly available (https://www.nature.com/articles/s41597-019-0124-4) gait dataset (733 trials, 21 women and 25 men, 37.2 ± 13.0 years, 1.74 ± 0.09 m, 72.0 ± 11.4 kg, walking speeds ranging from 0.18 m/s to 2.04 m/s) was used as the experimental dataset. The GAN comprised three neural networks: an encoder, a decoder, and a discriminator. The encoder compressed experimental data into a fixed-length vector, while the decoder transformed the encoder's output vector and a condition vector (containing information about the subject and trial) into mocap data. The discriminator distinguished between the encoded experimental data from randomly sampled vectors of the same size. By training these networks jointly using the experimental dataset, the generator (decoder) could generate synthetic data respecting specified conditions from randomly sampled vectors. Synthetic mocap data and lower limb joint angles were generated and compared to the experimental data, by identifying the statistically significant differences across the gait cycle for a randomly selected subset of the experimental data from 5 female subjects (73 trials, aged 26–40, weighing 57–74 kg, with leg lengths between 868–931 mm, and walking speeds ranging from 0.81–1.68 m/s). By conducting these comparisons for this subset, we aimed to assess the synthetic data generated using multiple conditions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 7 - 7
17 Nov 2023
Hayward S Gheduzzi S Keogh P Miles T
Full Access

Abstract

Objectives

Spinal stiffness and flexibility terms are typically evaluated from linear regression of experimental data and are then assembled into 36-element matrices. Summarising in vitro test results in this manner is quick, computationally cheap and has the distinct advantage of outputting simple characteristic values which make it easy to compare results. However, this method disregards many important experimental features such as stiffening effects, neutral and elastic zones magnitudes, extent of asymmetry and energy dissipation (hysteresis). Alternatives to the linear least squares method include polynomials, separation of the load-displacement behaviour into the neutral and elastic zones using various deterministic methods and variations on the double sigmoid and Boltzmann curve fits. While all these methods have their advantages, none provide a comprehensive and complete characterisation of the load-displacement behaviour of spine specimens. In 1991, Panjabi demonstrated that the flexion-extension and mediolateral bending behaviour of functional spinal units could be approximated using the viscoelastic model consisting of a nonlinear spring in series with a linear Kelvin element. Nowadays viscoelastic models are mainly used to describe creep and stress relaxation, rather than for cyclic loading. The aim of this study was to conclusively prove the viscoelastic nature of spinal behaviour subject to cyclic loading. Being able to describe the behaviour of spine specimens using springs and dampers would yield characterising coefficients with recognisable physical meaning, thus providing an advantage over existing techniques.

Methods

Six porcine isolated spinal disc specimens (ISDs) were tested under position and load control. Visual inspection of the load-displacement graphs from which the principal terms of the stiffness and flexibility matrices are derived suggest that the load-displacement behaviour could be idealised by a nonlinear spring system with damping. It was hypothesised that the contributions arising from non-linear spring-like behaviour and damping could be separated for each of the principal load-displacement graphs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 14 - 14
17 Nov 2023
Raghu A Kapilan M Sahae I Tai S
Full Access

Abstract

Background

1. 63,284 patients presented with neck of femur fractures in England in 2020 (NHFD report 2021)2. To maximise theatre efficiency during the first wave of COVID-19, NHSE guidance recommended the use of HA for most patients requiring arthroplasty.3. The literature reports an incidence of Hemiarthroplasty dislocations of 1–15%.

Aims

1. To study the number and possible causes of dislocations in patients with Primary hemiarthroplasty for fracture neck of femur2. To compare our data with national and international data in terms of dislocation and revision rates for Hemiarthroplasty.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 20 - 20
17 Nov 2023
van Duren B France J Berber R Matar H James P Bloch B
Full Access

Abstract

Objective

Up to 20% of patients can remain dissatisfied following TKR. A proportion of TKRs will need early revision with aseptic loosening the most common. The ATTUNE TKR was introduced in 2011 as successor to its predicate design The PFC Sigma (DePuy Synthes, Warsaw, In). However, following reports of early failures of the tibial component there have been ongoing concerns of increased loosening rates with the ATTUNE TKR. In 2017 a redesigned tibial baseplate (S+) was introduced, which included cement pockets and an increased surface roughness to improve cement bonding. Given the concerns of early tibial loosening with the ATTUNE knee system, this study aimed to compare revision rates and those specific to aseptic loosening of the ATTUNE implant in comparison to an established predicate as well as other implant designs used in a high-volume arthroplasty centre.

Methods

The Attune TKR was introduced to our unit in December 2011. Prior to this we routinely used a predicate design with an excellent long-term track record (PFC Sigma) which remains in use. In addition, other designs were available and used as per surgeon preference. Using a prospectively maintained database, we identified 10,202 patients who underwent primary cemented TKR at our institution between 01/04/2003–31/03/2022 with a minimum of 1 year follow-up (Mean 8.4years, range 1–20years): 1) 2406 with ATTUNE TKR (of which 557 were S+) 2) 4652 with PFC TKR 3) 3154 with other cemented designs. All implants were cemented using high viscosity cement. The primary outcome measures were all-cause revision, revision for aseptic loosening, and revision for tibial loosening. Kaplan-Meier survival analysis and Cox regression models were used to compare the primary outcomes between groups. Matched cohorts were selected from the ATTUNE subsets (original and S+) and PFC groups using the nearest neighbor method for radiographic analysis. Radiographs were assessed to compare the presence of radiolucent lines in the Attune S+, standard Attune, and PFC implants.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 21 - 21
17 Nov 2023
Matar H van Duren B Berber R Bloch B James P Manktelow A
Full Access

Abstract

Objectives

Total hip replacement (THR) is one of the most successful and cost-effective interventions in orthopaedic surgery. Dislocation is a debilitating complication of THR and managing an unstable THR constitutes a significant clinical challenge. Stability in THR is multifactorial and is influenced by surgical, patient and implant related factors. It is established that larger diameter femoral heads have a wider impingement-free range of movement and an increase in jump distance, both of which are relevant in reducing the risk of dislocation. However, they can generate higher frictional torque which has led to concerns related to increased wear and loosening. Furthermore, the potential for taper corrosion or trunnionosis is also a potential concern with larger femoral heads, particularly those made from cobalt-chrome. These concerns have meant there is hesitancy among surgeons to use larger sized heads. This study presents the comparison of clinical outcomes for different head sizes (28mm, 32mm and 36mm) in primary THR for 10,104 hips in a single centre.

Methods

A retrospective study of all consecutive patients who underwent primary THR at our institution between 1st April 2003 and 31st Dec 2019 was undertaken. Institutional approval for this study was obtained. Demographic and surgical data were collected. The primary outcome measures were all-cause revision, revision for dislocation, and all-cause revision excluding dislocation. Continuous descriptive statistics used means, median values, ranges, and 95% confidence intervals where appropriate. Kaplan-Meier survival curves were used to estimate time to revision. Cox proportional hazard regression analysis was used to compare revision rates between the femoral head size groups. Adjustments were made for age at surgery, gender, primary diagnosis, ASA score, articulation type, and fixation method.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 23 - 23
17 Nov 2023
Castagno S Birch M van der Schaar M McCaskie A
Full Access

Abstract

Introduction

Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA), a degenerative joint disease affecting over 300 million people worldwide. Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development.

Objectives

This study aims to create a trustworthy and interpretable precision health tool that predicts rapid knee OA progression based on baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 24 - 24
17 Nov 2023
Alturkistani Z Amin A Hall A
Full Access

Abstract

Objective

The preparation of host degenerate cartilage for repair typically requires cutting and/or scraping to remove the damaged tissue. This can lead to mechanical injury and cartilage cell (chondrocytes) death, potentially limiting the integration of repair material. This study evaluated cell death at the site of cutting injury and determined whether raising the osmotic pressure (hyper-osmolarity) prior to injury could be chondroprotective.

Methods

Ex vivo human femoral head cartilage was obtained from 13 patients (5 males and 8 females: 71.8 years old) with Ethical Permission and Patient consent. Cartilage wells were created using 3 or 5mm biopsy punches. Cell death at the wounded edge of the host cartilage and the edge of the extracted explants were assessed by quantifying the percentage of cell death (PCD) and measuring the width of the cell death zone at identified regions of interest (ROI) using the confocal laser scanning microscopy and image analysis software. To assess the chondroprotective effect of hyper-osmolarity, cartilage specimens were incubated in 340 or 600mOsm media, five minutes prior to injury to allow the chondrocytes to respond to the altered osmolarity. Wounded cartilage explants and cartilage wells were then cultured for a further 150 minutes following injury.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 26 - 26
17 Nov 2023
Zou Z Cheong VS Fromme P
Full Access

Abstract

Objectives

Young patients receiving metallic bone implants after surgical resection of bone cancer require implants that last into adulthood, and ideally life-long. Porous implants with similar stiffness to bone can promote bone ingrowth and thus beneficial clinical outcomes. A mechanical remodelling stimulus, strain energy density (SED), is thought to be the primary control variable of the process of bone growth into porous implants. The sequential process of bone growth needs to be taken into account to develop an accurate and validated bone remodelling algorithm, which can be employed to improve porous implant design and achieve better clinical outcomes.

Methods

A bone remodelling algorithm was developed, incorporating the concept of bone connectivity (sequential growth of bone from existing bone) to make the algorithm more physiologically relevant. The algorithm includes adaptive elastic modulus based on apparent bone density, using a node-based model to simulate local remodelling variations while alleviating numerical checkerboard problems. Strain energy density (SED) incorporating stress and strain effects in all directions was used as the primary stimulus for bone remodelling. The simulations were developed to run in MATLAB interfacing with the commercial FEA software ABAQUS and Python. The algorithm was applied to predict bone ingrowth into a porous implant for comparison against data from a sheep model.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 27 - 27
17 Nov 2023
Arafa M Kalairajah Y Zaki E Habib M
Full Access

Abstract

Objective

Short-stem total hip arthroplasty (THA) aims to preserve the proximal bone stock for future revisions, so that the first revision should resemble a primary intervention rather than a revision. This study aimed to compare the clinical and radiological outcomes in revision THA after failed short stem versus after failed conventional stem THA.

Methods

This study included forty-five patients with revision THA divided into three groups (15 each); group A: revision after short stem, group B: revision after conventional cementless stem and group C revision after conventional cemented stem. The studied groups were compared regarding 31 variables including demographic data, details of the primary and revision procedures, postoperative radiological subsidence, hospital stay, time for full weight bearing (FWB), preoperative and postoperative clinical scores.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 29 - 29
17 Nov 2023
Morris T Dixon J Baldock T Eardley W
Full Access

Abstract

Objectives

The outcomes from patella fracture have remained dissatisfactory despite advances in treatment, especially from operative fixation1. Frequently, reoperation is required following open reduction and internal fixation (ORIF) of the patella due to prominent hardware since the standard technique for patella ORIF is tension band wiring (TBW) which inevitably leaves a bulky knot and irritates soft tissue given the patella's superficial position2. We performed a systematic review to determine the optimal treatment of patella fractures in the poor host.

Methods

Three databases (EMBASE/Medline, ProQuest and PubMed) and one register (Cochrane CENTRAL) were searched. 476 records were identified and duplicates removed. 88 records progressed to abstract screening and 73 were excluded. Following review of complete references, 8 studies were deemed eligible


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 32 - 32
17 Nov 2023
Warren J Canden A Farndon M Brockett C
Full Access

Abstract

Objectives

The aim of this work was to compare the different techniques and the different fluid permeability of the tissue following each technique through assessing the flow of radiopaque contrast agent using μCT image analysis and 3D modelling.

Methods

Donated human tali specimens (n=12) were prepared through creating a 10mm diameter chondral defect in three different regions of each talus. Each region then underwent one of three surgical techniques: 1) Fine wire drilling, 2) Nanofracture or 3) Microfracture, equidistant sites in each defect to ensure even distribution. Each region then had an addition of 0.1 ml radiopaque contrast agent (Omnipaque™ 300), imaged using a clinical μCT scanner (SCANCO Medical AG, 73.6 μm resolution). Each μCT scan was segmented using Slicer 3D software (The Slicer Community, 2023 3D Slicer (5.2.2)). The segmentation package was used to segment the bone and contrast agent regions in each different surgical site of each sample. Each defect site was created into a cylinder and the ratio of segmented pixels of contrast agent against bone.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 56 - 56
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract

Objectives

Osteoarthritis (OA) is a complex joint disorder characterised by the loss of extracellular matrix (ECM) leading to cartilage degeneration. Changes to cartilage cell (chondrocyte) behaviour occur including cell swelling, the development of fine cytoplasmic processes and cell clustering leading to changes in cell phenotype and development of focal areas of mechanically-weak fibrocartilaginous matrix[1]. To study the sequence of events in more detail, we have investigated the changes to in situ chondrocytes within human cartilage which has been lightly scraped and then cultured with serum.

Methods

Human femoral heads were obtained with Ethical permission and consent from four female patients (mean age 74 yrs) undergoing hip arthroplasty following femoral neck fracture. Osteochondral explants of macroscopically-normal cartilage were cultured as a non-scraped control, or scraped gently six times with a scalpel blade and both maintained in culture for up to 2wks in Dulbecco's Modified Eagle's Medium (DMEM) with 25% human serum (HS). Explants were then labelled with CMFDA (5-chloromethylfluorescein-diacetate) and PI (propidium iodide) (10μM each) to identify the morphology of living or dead chondrocytes respectively. Explants were imaged using confocal microscopy and in situ chondrocyte morphology, volume and clustering assessed quantitatively within standardised regions of interest (ROI) using Imaris® imaging software.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 59 - 59
17 Nov 2023
Yang I Buchanan R Al-Namnam N Li X Lucas M Simpson AH
Full Access

Abstract

Background

Ultrasonic cutting of bone boasts many advantages over alternatively powered surgical instruments, including but not limited to: elimination of swarf, reduced reaction forces, increased precision in cutting and reduced adjacent soft tissue damage, reduced post-operative complications such as bleeding and bone fracture, reduced healing time, reduced intra-operative noise and ease of handling. Despite ultrasonic cutting devices being well established in oral and maxillofacial surgery, applications in orthopaedic surgery are more niche and are not as well understood. The aim of this study was to investigate the cutting speed (mm/s) and cutting forces (N) of orthopaedic surgeons using a custom-designed state of the art ultrasonic cutting tool to cut fresh human bone samples.

Methods

A setup based on the Robot Operating System (ROS) and AprilTag was designed to track and to record the real time position of the ultrasonic cutting tool in space. Synchronised load cell axial force readings of three separate orthopaedic surgeons during ultrasonic cutting were recorded. Each surgeon was asked to find a comfortable position that reflects as close as possible their clinical handling of a cutting instrument used in surgery, and to perform two cuts in each of three samples of human cortical bone. Bone samples were obtained following ethical approval from an institutional review board (ethics approval number: SR1342) and prior informed consent was obtained from all patients. Bone samples were extracted from the femoral neck region of three hip osteoarthritis patients. During cutting, surgeons were allowed a total cutting time of one minute and cutting was conducted using an ultrasonic tool with frequency of a 35kHz (35.7 µm peak to peak displacement amplitude) under constant irrigation using a MINIPULS® 3 Peristaltic pump (38 revolutions per minute) using Phosphate-Buffered Saline (PBS) at 25°C. From the recorded data, the average instantaneous cutting velocity was calculated and the maximum cutting force was identified.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 44 - 44
17 Nov 2023
Radukic B Phillips A
Full Access

Abstract

1.0 Objectives

Predictive structural models resulting in a trabecular bone topology closely resembling real bone would be a step toward 3D printing of sympathetic prosthetics. This study modifies an established trabecular bone structural adaptation approach, with the objective of achieving an improved adapted topology, specifically connectivity, compared to CT imaging studies; whilst retaining continuum level mechanical properties consistent with those reported in experimental studies. Strain driven structural adaptation models successfully identify trabecular trajectories, although tend to overpredict connectivity and skew trabecular radii distribution towards the smallest radius included in the adaptation. Radius adaptation of each trabecula is driven by a mechanostat approach with a target strain (1250 µɛ) below which radius is decreased (resorption), and above which radius is increased (apposition). Simulations include a lazy zone, in which neither resorption nor apposition takes place (1000 to 1500 µɛ); and a dead zone (<250 µɛ) in which complete resorption of trabeculae with the smallest included radius takes place. This study assesses the impact of increasing the dead zone threshold from <250 µɛ to <1000 µɛ, the lower limit of the lazy zone.

2.0 Methods

In-silico structural models with an initial connectivity (number of trabeculae connecting at each joint) of 14 were generated using a nearest neighbour approach applied to a random cloud of points. Trabeculae were modelled using circular beams whose radii were adapted in response to normal strains caused by the axial force and bending moments due to a vertical pressure of 1 MPa applied to the top of the lattice, with the bottom of the lattice fixed in the vertical direction. Lattices in which nodes are either able (rigid jointed) or unable (pin jointed) to transmit bending moments were considered. Five virtual samples of each lattice type were used, and each simulation repeated twice: with a dead zone of either <250 µɛ or <1000 µɛ.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract

OBJECTIVE

Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively3 and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion4. Sema3A is also differentially expressed in human OA bone5.HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain.

METHODS

Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model6 of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 58 - 58
17 Nov 2023
Huang D Buchanan F Clarke S
Full Access

Abstract

Objectives

Osteoporotic fractures tend to be more challenging than fractures in healthy bone and the efficacy of metal screw fixation decreases with decreasing bone mineral density making it more difficult for such screws to gain purchase. This leads to increased complication rates such as malunion, non-union and implant failure (1). Bioresorbable polymer devices have seen clinical success in fracture fixation and are a promising alternative for metallic devices but are rarely used in the osteoporotic population. To address this, we are developing a system that may allow osteoporotic patients to avail of bioresorbable devices (2) but it is important to establish if patients have any reservations about having a plastic resorbable device instead of a metal one. Therefore the aim of this study was to explore the acceptability of bioresorbable fracture fixation devices to people with osteoporosis.

Methods

A cross sectional descriptive study was conducted in a UK wide population using convenience sampling. An online survey comprising nine survey questions and nine demographic questions was developed in Microsoft Teams and tested for face validity in a small pilot study (n=6). Following amendments and ethical approval, the survey was distributed by the Royal Osteoporosis Society on their website and social media platforms. People were invited to take part if they lived in the UK, were over 18 years old and had been diagnosed with osteoporosis. The survey was open for three weeks in May 2023. Responses were analysed using descriptive statistics.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 16 - 16
17 Nov 2023
Youssef A Pegg E Gulati A Mangwani J Brockett C Mondal S
Full Access

Abstract

Objectives

The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented bone geometry is independent of the particular bone being measured.

Methods

Computed tomography (CT) scan data (slice thickness 1 mm, pixel size 808±7 µm) from three anonymous patients was used for the development of the ankle geometries (consisting of the tibia, fibula, talus, calcaneus, and navicular bones) using Simpleware Scan IP software (Synopsys, Exeter, UK). Each CT scan was segmented 4 times by an inexperienced undergraduate, resulting in a total of 12 geometry assemblies. An experienced researcher segmented each scan once, and this was used as the ‘gold standard’ to quantify the accuracy. The solid bone geometries were imported into CAD software (Inventor 2023, Autodesk, CA, USA) for measurement of the surface area and volume of each bone, and the distances between bones (tibia to talus, talus to navicular, talus to calcaneus, and tibia to fibula) were carried out. The intra-class coefficient (ICC) was used to assess intra-observer reliability. Bland Altman plots were employed as a statistical measure for criteria validity (accuracy) [1].


Abstract

Cranial cruciate ligament (CrCL) disease/rupture is a highly prevalent orthopaedic disease in dogs and common cause of pain, lameness, and secondary joint osteoarthritis (OA). Previous experiments investigating the role of glutamate receptors (GluR) in arthritic degeneration and pain revealed that OA biomarkers assessing early bone turnover and inflammation, including osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) are more likely to be influenced by glutamate signalling. Moreover, interleukin-6 (IL-6) has a complex and potentially bi directional (beneficial and detrimental) effect, and it is a critical mediator of arthritic pain, OA progression and joint destruction.

Objectives

1) to recruit dogs undergoing CrCL disease/rupture surgery and obtain discarded synovial fluid (SF) and serum/plasma (ethics approval, RCVS:2017/14/Alves); 2) to quantify the biomarkers listed above in the SF and serum/plasma by enzyme linked immunosorbent assay (ELISA); 3) to assess radiographic OA at the time of surgery and correlate it with the biomarkers and clinical findings.

Methods

Abnova, Abcam and AMSBIO ELISA kits were tested using a validation protocol relating the standard curve to a dilution series of SF and serum/plasma (1× to 1/50×), with and without SF hyaluronidase treatment to evaluate linearity, specificity and optimal dilutions. Validated ELISA kits were used to measure [IL-6], glutamate [glu], [RANKL] and [OPG] in SF and serum/plasma. For each dog, CrCL disease pre-operative lameness scores were graded as: (1) mild, (2) moderate (easily visible), (3) marked (encumbered), (4) non-weightbearing lameness. Blinded OA scoring was performed on radiographs [15–60, normal-severe OA].


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 67 - 67
17 Nov 2023
Maksoud A Shrestha S Fewings P Shareah EA Ahmed A
Full Access

Abstract

Objectives

There is still controversy in the literature over whether Cervical Foraminotomy or Anterior Cervical discectomy and fusion (ACDF) is best for treating cervical Radiculopathy. Numerous studies have focused on the respective complication rates of these procedures and outcome measures with a lack of due consideration to preoperative MRI findings. Proximal foraminal stenosis can theoretically be accessed via either approach. We aimed to investigate whether patient reported outcome measures (PROMs) favoured one approach over the other in patients with proximal foraminal stenosis.

Methods

A single centre retrospective review of patients undergoing either ACDF or Cervical foraminotomy over the period 2012 to 2022. VAS, Neck disability index (NDI), EQ5DL and Patient Satisfaction on a Five Point Likert scale were obtained. Patients who had both an ACDF and a Foraminotomy were excluded. Axial MRI images were analysed and the location of the worst clinically relevant disc herniation stratified as follows: Central (1), Paracentral (2) and Foraminal (3). Correlations and average PROMs were analysed in SPSS.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 9 - 9
17 Nov 2023
Lim JW Ball D Johnstone A
Full Access

Abstract

Objectives

Acute compartment syndrome (ACS) is a progressive form of muscle ischaemia that is a surgical emergency and can have detrimental outcomes for patients if not treated optimally. The current problem is that there is no clear diagnostic threshold for ACS or guidance as to when fasciotomies should be performed. A new diagnostic method(s) is necessary to provide real-time information about the extent of muscle ischaemia in ACS. Given that lactic acid is produced by cells through anaerobic respiration, it may be possible to measure H+ ion concentration and to use this as a measure of ischaemia within muscle. Although we are familiar with the key biochemical metabolites involved in ischaemia; and the use of viability dyes in cell culture to distinguish between living or dead cells is well recognised; research has not been undertaken to correlate the biochemical and histological findings of ischaemia in skeletal muscle biopsies. Our primary aim was to investigate the potential for viability dyes to be used on live skeletal muscle biopsies (explants). Our secondary aim was to correlate the intramuscular pH readings with muscle biopsy viability.

Methods

Nine euthanised Wistar rats were used. A pH catheter was inserted into one exposed gluteus medius muscles to record real-time pH levels and muscle biopsies were taken from the contralateral gluteus medius at the start of experiment and subsequently at every 0.1 of pH unit drop. Prior to muscle biopsy, the surface of the gluteus medius was painted with a layer of 50µmol/l Brilliant blue FCF solution to facilitate biopsy orientation. A 4mm punch biopsy tool was used to take biopsies. Each muscle biopsy was placed in a base mould filled with 4% ultra-low melting point agarose. The agarose embedded tissue block was sectioned to generate 400 micron thick tissue slices with a vibratome. The tissue slices were then placed in the staining solution with Hoechst 33342, Ethidium homodimer-1 and Calcein am. The tissue slices were imaged with Zeiss LSM880 confocal microscope's Z stack function. A dead muscle control was created by adding TritonX-100 to other tissue slices. For quantitative analyses, the images were analysed in Image J using the selection tool. This permitted individual cells to be identified and the mean grey value of each channel to be defined. Using the dead control, we were able to identify the threshold value for living cells using the Calcein AM channel.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 12 - 12
17 Nov 2023
Cowan G Hamilton D
Full Access

Abstract

Objective

Meta-analysis of clinical trials highlights that non-operative management of degenerative knee meniscal tears is as effective as surgical management. Surgical guidelines though support arthroscopic partial meniscectomy which remains common in NHS practice. Physiotherapists are playing an increasing role in triage of such patients though it is unclear how this influences clinical management and patient outcomes.

Methods

A 1-year cohort (July 2019–June 2020) of patients presenting with MRI confirmed degenerative meniscal tears to a regional orthopaedic referral centre (3× ESP physiotherapists) was identified. Initial clinical management was obtained from medical records alongside subsequent secondary care management and routinely collected outcome scores in the following 2-years. Management options included referral for surgery, conservative (steroid injection and rehabilitation), and no active treatment. Outcome scores collected at 1- and 2-years included the Forgotten Joint Score-12 (FJS-12) questionnaire and 0–10 numerical rating scales for worst and average pain. Treatment allocation is presented as absolute and proportional figures. Change in outcomes across the cohort was evaluated with repeated measures ANOVA, with Bonferroni correction for multiple testing, and post-hoc Tukey pair-wise comparisons. As treatment decision is discrete, no direct contrast is made between outcomes of differing interventions but additional explorative outcome change over time evaluated by group. Significance was accepted at p=0.05 and effect size as per Cohen's values.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 4 - 4
17 Nov 2023
Mahajan U Mehta S Sathyamoorthy P
Full Access

Abstract

There are numerous advantages of discharging patients early after any surgery. Day case arthroplasty in hip and knee is already brought into practice at many centres. We present our journey towards discharging elective shoulder arthroplasty patient on same after their surgery. An initial retrospective study of patients who underwent elective shoulder replacement between 2017 and 2020 were studied. It was identified that a selected group of patients could be discharged on the same of their surgery. The criteria to select a patient for this service was laid down that include ASA 1 or 2, good family support on discharge, personal wishes of patients and early identification of potential patients in the clinic and planning for day case shoulder arthroplasty56 consecutive patients underwent elective arthroplasty of shoulder. Among them 22 patients were discharges on the next day of surgery. The potential patients those could discharged on same were identified to be 11 out of 22 were under ASA 2 and had good family support at home on discharge. Average length of stay after surgery was 2.17 days. We have prospectively discharged 2 patients following the new criteria. This study demonstrates how outpatient elective shoulder could be implemented at other centres. Patient participation and selection with proper planning is key for success here.

Declaration of Interest

(a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 42 - 42
17 Nov 2023
Prabhakaran V Sobrattee A Melchels FP Paxton JZ
Full Access

Abstract

Objectives

The enthesis is a specialised structure at the interface between bone and tendon with gradual integration to maintain functionality and integrity. In the process of fabricating an in-vitro model of this complex structure, this study aims to investigate growth and maturation of bone, tendon and BMSC spheroids followed by 3D mini-tissue production.

Methods

Cell spheroids Spheroids of differentiated rat osteoblasts (dRObs), rat tendon fibroblasts (RTFs) and bone marrow stem cells (BMSC) were generated by culturing in 96 well U bottom cell repellent plates. With dROb spheroids previously analysed [1], RTF spheroids were examined over a duration of up to 28 days at different seeding densities 1×104, 5×104, 1×105, 2×105 in different media conditions with and without FBS (N=3). Spheroid diameter was analysed by imageJ/Fiji; Cell proliferation and viability was assessed by trypan blue staining after dissociating with accutase + type II collagenase mix; necrotic core by H&E staining; and extracellular matrix by picro-sirius red (RTFs) staining to visualise collagen fibres under bright-field and polarised light microscope.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 48 - 48
17 Nov 2023
Williams D Swain L Brockett C
Full Access

Abstract

Objectives

The syndesmosis joint, located between the tibia and fibula, is critical to maintaining the stability and function of the ankle joint. Damage to the ligaments that support this joint can lead to ankle instability, chronic pain, and a range of other debilitating conditions. Understanding the kinematics of a healthy joint is critical to better quantify the effects of instability and pathology. However, measuring this movement is challenging due to the anatomical structure of the syndesmosis joint. Biplane Video Xray (BVX) combined with Magnetic Resonance Imaging (MRI) allows direct measurement of the bones but the accuracy of this technique is unknown. The primary objective is to quantify this accuracy for measuring tibia and fibula bone poses by comparing with a gold standard implanted bead method.

Methods

Written informed consent was given by one participant who had five tantalum beads implanted into their distal tibia and three into their distal fibula from a previous study. Three-dimensional (3D) models of the tibia and fibula were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (125 FPS, 1.25ms pulse width) was recorded whilst the participant performed level gait across a raised platform. The beads were tracked, and the bone position of the tibia and fibula were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 51 - 51
17 Nov 2023
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract

Objectives

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age and gender is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age and gender on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties.

Methods and Results

We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age and gender on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory-based experiments to assess these properties. Compare the extent of the effect of age on MSC cell marker expression, proliferation and pathways. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the synovium, fat pad and bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for antibody cocktail (eg included CD34, CD45). The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. At P2 after extracting RNA, we investigate the gene analysis using Bulk seq. Clear differences between the younger and older patients and gender were indicated.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 17 - 17
17 Nov 2023
Naeem H Maroy R Lineham B Stewart T Harwood P Howard A
Full Access

Abstract

OBJECTIVES

To determine if force measured using a strain gauge in circular external fixation frames is different for 1) different simulated stages of bone healing, and for 2) fractures clinically deemed either united or un-united.

METHODS

In a laboratory study, 3 similar Ilizarov frame constructs were assembled using a Perspex bone analogue. Constructs were tested in 10 different clinical situations simulating different stages of bone healing including with the bone analogue intact, with 1,3 and 50mm gaps, and with 6 materials of varying stiffness's within the 50mm gap. A Bluetooth strain gauge was inserted across the simulated fracture focus, replacing one of the 4 threaded rods used to construct the frame. Constructs were loaded to 700N using an Instron testing machine and maximum force during loading was measured by the strain gauge. Testing was repeated with the strain gauge replacing each of the 4 threaded rods in turn, with measurements being repeated 3 times, across all 3 frame constructs for all 10 simulated clinical situations (n=360). Force measurements between the situations were compared using a Kruskal-Wallis test (KW) and a post-hoc Steel test was used for multiple comparison against control (intact bone model). Additionally, a pilot study has been initiated to assess clinical efficacy of the strain gauge measurement in patients with circular frames. The strain gauge replaced the anterior rod across the fracture focus for each patient. Patients were asked to step on a weighing scale with their affected limb, and maximum weight transfer through the limb and maximal force measured in the frame were recorded. This was repeated 3 times and a mean ratio of force to weight through affected limb was calculated for each patient. The clinical situation at each measurement was designated as united or un-united by one of the senior authors for analysis. Force measurements between the situations were compared using a Wilcoxon-Mann-Whitney test.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 30 - 30
17 Nov 2023
Swain L Holt C Williams D
Full Access

Abstract

Objectives

Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method.

Methods

Written informed consent was given by one participant who had four tantalum beads implanted into their distal femur and proximal tibia from a previous study. Three-dimensional (3D) models of the femur and tibia were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). Anatomical Coordinate Systems (ACS) were applied to the bone models using automated algorithms1. The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (60 FPS, 1.25 ms pulse width) was recorded whilst the participant performed a lunge. The beads were tracked, and the ACS position of the femur and tibia were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones. Using the principles defined by Grood and Suntay2, 6 DOF kinematics of the tibiofemoral joint were calculated (MATLAB, MathWorks). The mean difference and STD between these two sets of kinematics were calculated.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 2 - 2
17 Nov 2023
Mehta S Williams L Mahajan U Bhaskar D Rathore S Barlow V Leggetter P
Full Access

Abstract

Introduction

Several studies have shown that patients over 65 years have a higher mortality with covid. Combine with inherently increased morbidity and mortality in neck of femur (NoFF) fractures, it is logical to think that this subset would be most at risk.

Aims

Investigate whether there is actual increase in direct mortality from Covid infection in NoFF patients, also investigate other contributing factors to mortality with covid positivity and compare the findings with current available literature.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 6 - 6
17 Nov 2023
Luo J Lee R
Full Access

Abstract

Objectives

The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults.

Methods

This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 54 - 54
17 Nov 2023
Bishop M Zaffagnini S Grassi A Fabbro GD Smyrl G Roberts S MacLeod A
Full Access

Abstract

Background

Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels1 in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure.

Presenting problem

Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the distal femur, rather than intraarticular. Using conventional techniques and instrumentation, distal femoral knee osteotomy cases typically require 1.5–2 hours surgery time. The use of bi-planar osteotomy cuts have been shown to improve intraoperative stability as well as bone healing times2. This normally also increases surgical complexity; however, multiple cutting slots can be easily incorporated into patient specific instrumentation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 10 - 10
17 Nov 2023
Lim JW Ball D Johnstone A
Full Access

Abstract

Background

Progressive muscle ischaemia results in reduced aerobic respiration and increased anaerobic respiration, as cells attempt to survive in a hypoxic environment. Acute compartment syndrome (ACS) is a progressive form of muscle ischaemia that is a surgical emergency resulting in the production of Lactic acid by cells through anaerobic respiration. Our previous research has shown that it is possible to measure H+ ions concentration (pH) as a measure of progressive muscle ischaemia (in vivo) and hypoxia (in vitro). Our aim was to correlate intramuscular pH readings and cell viability techniques with the intramuscular concentration of key metabolic biomarkers [adenosine triphosphate (ATP), Phosphocreatine (PCr), lactate and pyruvate], to assess overall cell health in a hypoxic tissue model.

Methods

Nine euthanised Wistar rats were used in a non-circulatory model. A pH catheter was used to measure real-time pH levels from one of the exposed gluteus medius muscles, while muscle biopsies were taken from the contralateral gluteus medius at the start of the experiment and subsequently at every 0.1 of a pH unit decline. The metabolic biomarkers were extracted from the snap frozen muscle biopsies and analyzed with standard fluorimetric method. Another set of biopsies were stained with Hoechst 33342, Ethidium homodimer-1 and Calcein am and imaged with a Zeiss LSM880 confocal microscope.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 15 - 15
17 Nov 2023
Mondal S Mangwani J Brockett C Gulati A Pegg E
Full Access

Abstract

Objectives

This abstract provides an update on the Open Ankle Models being developed at the University of Bath. The goal of this project is to create three fully open-source finite element (FE) ankle models, including bones, ligaments, and cartilages, appropriate musculoskeletal loading and boundary conditions, and heterogeneous material property distribution for a standardised representation of ankle biomechanics and pre-clinical ankle joint analysis.

Methods

A computed tomography (CT) scan data (pixel size of 0.815 mm, and slice thickness of 1 mm) was used to develop the 3D geometry of the bones (tibia, talus, calcaneus, fibula, and navicular). Each bone was given the properties of a heterogeneous elastic material based on the CT greyscale. The density values for each bone element were calculated using a linear empirical relation, ρ= 0.0405 + (0.000918) HU and then power law equations were utilised to get the Young's Modulus value for each bone element [1]. At the bone junction, a thickness of cartilage ranging from 0.5–1 mm, and was modelled as a linear material (E=10 MPa, ν=0.4 [2]). All ligament insertions and positions were represented by four parallel spring elements, and the ligament stiffness and material attributes were applied in accordance with the published literature [2]. The ankle model was subjected to static loading (balance standing position). Four noded tetrahedral elements were used for the discretization of bones and cartilages. All degrees of freedom were restricted at the proximal ends of the tibia and fibula. The ground reaction forces were applied at the underneath of the calcaneus bone. The interaction between the cartilages and bones was modelled using an augmented contact algorithm with a sliding elastic contact between each cartilage. A tied elastic contact was used between the cartilages and the bone. FEbio 2.1.0 (University of Utah, USA) was used to construct the open-source ankle model.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 28 - 28
17 Nov 2023
Morris T Fouweather M Walshaw T Wei N Baldock T Eardley W
Full Access

Abstract

Objectives

The need to accurately forecast the injury burden has never been higher. With an aging, ever expanding trauma population and less than half of the beds available compared to 1990, the National Health Service (NHS) is stretched to breaking point1,2. Resultantly, we aimed to determine whether it is possible to predict the proportionality of injuries treated operatively within orthopaedic departments based on their number of Neck of Femur fracture (NOF) patients reported both in our study and the National Hip Fracture Database (NHFD).

Methods

We utilised the ORthopaedic trauma hospital outcomes - Patient operative delays (ORTHOPOD) dataset of 22,585 trauma patients across the four countries of the United Kingdom (UK) admitted to 83 hospitals between 22/08/22 – 16/10/22. This dataset had two arms: arm one was assessing the caseload and theatre capacity, arm two assessed the patient, injury and management demographics.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 31 - 31
17 Nov 2023
Warren J Cowie R Jennings L Wilcox R Fermor H
Full Access

Abstract

Objectives

The aim of this study was to develop an in vitro GAG-depleted patella model and assess the biomechanical effects following treatment with a SAP:CS self-assembling hydrogel.

Methods

Porcine patellae (4–6 month old) were harvested and subject to 0.1% (w/v) sodium dodecyl sulfate (SDS) washes to remove GAGs from the cartilage. Patellae were GAG depleted and then treated by injection with SAP (∼ 6 mM) and CS (10 mg) in Ringer's solution through a 30G needle. Native, GAG depleted and SAP:CS treated patellae were tested through static indentation testing, using 15g load, 5mm indenter over 1hr period. The degree of deformation of each group was assessed and compared (Mann-Whitney, p<0.05). Native, GAG depleted, sham (saline only) and SAP:CS treated paired patellae and femurs were additionally characterized tribologically through sequential wear testing when undergoing a walking gait profile (n=6 per group). The cartilage surfaces were assessed and compared (Mann-Whitney, p<0.05) using the ICRS scoring system, surface damage was illustrated through the application of Indian ink.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract

Objectives

While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis.

Methods

Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 39 - 39
17 Nov 2023
FARHAN-ALANIE M Gallacher D Kozdryk J Craig P Griffin J Mason J Wall P Wilkinson M Metcalfe A Foguet P
Full Access

Abstract

Introduction

Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and robotic systems. However, it is not known whether application of these technologies has improved prosthesis survival in the real-world. This study aimed to compare risk of revision for all-causes following primary THR and TKR, and revision for dislocation following primary THR performed using computer assisted technologies compared to conventional technique.

Methods

We performed an observational study using National Joint Registry data. All adult patients undergoing primary THR and TKR for osteoarthritis between 01/04/2003 to 31/12/2020 were eligible. Patients who received metal-on-metal bearing THR were excluded. We generated propensity score weights, using Sturmer weight trimming, based on: age, gender, ASA grade, side, operation funding, year of surgery, approach, and fixation. Specific additional variables included position and bearing for THR and patellar resurfacing for TKR. For THR, effective sample sizes and duration of follow up for conventional versus computer-guided and robotic-assisted analyses were 9,379 and 10,600 procedures, and approximately 18 and 4 years, respectively. For TKR, effective sample sizes and durations of follow up for conventional versus computer-guided, patient-specific jigs, and robotic-assisted groups were 92,579 procedures over 18 years, 11,665 procedures over 8 years, and 644 procedures over 3 years, respectively. Outcomes were assessed using Kaplan-Meier analysis and expressed using hazard ratios (HR) and 95% confidence intervals (CI).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 43 - 43
17 Nov 2023
Wilkinson H Cool P
Full Access

Abstract

Objectives

The objective of this study is to investigate if genomic sequencing is a useful method to diagnose orthopaedic infections. Current methods used to identify the species of bacteria causing orthopaedic infections take considerable time and the results are frequently insufficient for guiding antibiotic treatment. The aim here is to investigate if genomic sequencing is a faster and more reliable method to identify the species of bacteria causing infections. Current methods include a combination of biochemical markers and microbiological cultures which frequently produce false positive results and false negative results.

Methods

Samples of prosthetic fluid were obtained from surgical interventions to treat orthopaedic infections. DNA is extracted from these samples lab and nanopore genomic sequencing is performed. Initial investigations informed that a sequencing time of 15 minutes was sufficient. The resulting genomic sequence data was classified using Basic Local Alignment Tool (BLAST) against the NCBI bacterial database and filtered by only including reads with an identity score of 90 and E-value of 1e-50. An E-value of 1e-50 suggests a high-quality result and is commonly used when analysing genomic data. This data was then filtered in R Studio to identify if any species were associated with orthopaedic infections. The results from genomic sequencing were compared to microbiology results from the hospital to see if the same species had been identified. The whole process from DNA extraction to output took approximately 2 hours, which was faster than parallel microbiological cultures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 45 - 45
17 Nov 2023
Rix L Tushingham S Wright K Snow M
Full Access

Abstract

Objective

A common orthopaedic pain found in a wide spectrum of individuals, from young and active to the elderly is anterior knee pain (AKP). It is a multifactorial disorder which is thought to occur through muscular imbalance, overuse, trauma, and structural malalignment. Over time, this can result in cartilage damage and subsequent chondral lesions. Whilst the current gold standard for chondral lesion detection is MRI, it is not a highly sensitive tool, with around 20% of lesions thought to be mis-diagnosed by MRI. Single-photon emission computerised tomography with conventional computer tomography (SPECT/CT) is an emerging technology, which may hold clinical value for the detection of chondral lesions. SPECT/CT may provide valuable diagnostic information for AKP patients who demonstrate absence of structural change on other imaging modalities. This review systematically assessed the value of SPECT/CT as an imaging modality for knee pain, and its ability to diagnose chondral lesions for patients who present with knee pain.

Methods

Using PRISMA guidelines, a systematic search was carried out in PubMed, Science Direct, and Web of Knowledge, CINAHL, AMED, Ovid Emcare and Embase. Inclusion criteria consisted of any English language article focusing on the diagnostic value of SPECT/CT for knee chondral lesions and knee pain. Furthermore, animal or cadaver studies, comparator technique other than SPECT/CT or patients with a pathology other than knee chondral lesions were excluded from the study. Relevant articles underwent QUADAS-2 bias assessment.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 46 - 46
17 Nov 2023
Young M Birch N
Full Access

Abstract

Objective

This study assesses the prevalence of major and minor discordance between hip and spine T scores using Radiofrequency Echographic Multi-spectrometry (REMS). REMS is a novel technology that uses ultrasound and radiofrequency analysis to measure bone density and bone fragility at the hip and lumbar spine. The objective was to compare the results with the existing literature on Dual-Energy X-ray Absorptiometry (DEXA) the current “gold standard” for bone densitometry. REMS and DEXA have been shown to have similar diagnostic accuracy, however, REMS has less human input when carrying out the scan, therefore the rates of discordance might be expected to be lower than for DEXA. Discordance poses a risk of misclassification of patients’ bone health status, causing diagnostic ambiguity and potentially sub-optimal management decisions. Reduction of discordance rates therefore has the potential to significantly improve treatment and patient outcomes.

Methods

Results from 1,855 patients who underwent REMS investigations between 2018 and 2022 were available. Minor discordance is defined as a difference of one World Health Organisation (WHO) diagnostic classification (Normal / Osteopenia or Osteopenia / Osteoporosis). Major discordance is defined as a difference of two WHO diagnostic classifications (Normal / Osteoporosis). The results were compared with reported DEXA discordance rates.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 49 - 49
17 Nov 2023
Jones R Gilbert S Mason D
Full Access

Abstract

OBJECTIVE

Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues3, expressed in osteocytes4 and known to be downregulated in bone OA mechanical loading5. Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients6.HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain.

METHODS

Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous variances was analysed by two-tailed t test.


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


Bone & Joint 360
Vol. 12, Issue 4 | Pages 44 - 46
1 Aug 2023
Burden EG Whitehouse MR Evans JT


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 89 - 89
17 Apr 2023
Alzahrani S Aljuaid M Bazaid Z Shurbaji S
Full Access

A Morel-Lavallee lesion (MLL) is a benign cystic lesion that occurs due to injury to the soft-tissue envelope's perforating vascular and lymphatic systems, resulting in a distinctive hemolymphatic fluid accumulation between the tissue layers. The MLL has the potential to make a significant impact on the treatment of orthopaedic injuries.

A 79-year-old male patient community ambulatory with assisting aid (cane) known case of Diabetes mellitus, hypertension, bronchial asthma and ischemic heart disease. He was brought to the Emergency, complaining of right hip discomfort and burning sensation for the last 5 days with no history of recent trauma at all. Patient had history of right trochanteric femur fracture 3 years ago, treated with DHS in a privet service. Clinical and Radiological assessment showed that the patient mostly has acute MLL due to lag screw cut out. We offered the patient the surgical intervention, but he refused despite explaining the risks of complications if not treated and preferred to receive the conservative treatment. Compression therapy management explained to him including biker's shorts (instructed to be worn full-time a day) and regular follow up in clinic. Symptom's improvement was reported by the patient in the subsequent visits.

In the polytrauma patient, a delayed diagnosis of these lesions is conceivable due to the presence of more visible injuries. It's located over the greater trochanter more commonly, but sometimes in other areas such as the lower lumbar region, the thigh, or the calf. Incorrect or delayed diagnosis and care can have unfavorable outcomes such as infection, pseudocyst development, and cosmetologically deformity. Magnetic resonance imaging (MRI) and ultrasound will aid in MLL diagnosis. However, the effectiveness of MLL therapy remains debatable.

We strongly believe that the MLL caused due to tangential shear forces applied to the soft tissue leads to accumulation of the blood and/or lymph between the subcutaneous and overlying fascia and it often misdiagnosed due to other distracting injuries. Nontheless, in our case we reported MLL occur due to internal pressure on the fascia caused by cut out of DHS lag screw.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 70 - 70
17 Apr 2023
Flood M Gette P Cabri J Grimm B
Full Access

For clinical movement analysis, optical marker-based motion capture is the gold standard.

With the advancement of AI-driven computer vision, markerless motion capture (MMC) has emerged. Validity against the marker-based standard has only been examined for lightly-dressed subjects as required for marker placement. This pilot study investigates how different clothing affects the measurement of typical gait metrics.

Gait tests at self-selected speed (4 km/h) were performed on a treadmill (Motek Grail), captured by 9 cameras (Qualisys Miqus, 720p, f=100Hz) and analyzed by a leading MMC application (Theia, Canada). A healthy subject (female, h=164cm, m=54kg) donned clothes between trials starting from lightly dressed (LD: bicycle tight, short-sleeved shirt), adding a short skirt (SS: hip occlusion) or a midi-skirt (MS: partial knee occlusion) or street wear (SW: jeans covering ankle, long-sleeved blouse), the lattern combined with a short jacket (SWJ) or a long coat (SWC). Gait parameters (mean±SD, t=10s) calculated (left leg, mid-stance) were ankle pronation (AP-M), knee flexion (KF-M), pelvic obliquity (PO-M) and trunk lateral lean (TL-M) representing clinically common metrics, different joints and anatomic planes. Four repetitions of the base style (LD) were compared to states of increased garment coverage using the t-test (Bonferroni correction).

For most gait metrics, differences between the light dress (LD) and various clothing styles were absent (p>0.0175), small (< 2SD) or below the minimal clinically important differences (MCID). For instance, KF-M was for LD=10.5°±1.7 versus MD=12.0°±0.5 (p=0.07) despite partial knee cover. AP-M measured for LD=5.2°±0.6 versus SW=4.1°±0.7 (p<0.01) despite ankle cover-up. The difference for KF-M between LD=10.5°±1.7 versus SWL=6.0°±0.9, SW and SWJ (7.6°±1.5, p<0.01) indicates more intra-subject gait variability than clothing effect.

This study suggests that typical clothings styles only have a small clinically possibly negligible effect on common gait parameters measured with MMC. Thus, patients may not need to change clothes or be instructed to wear specific garments. In addition to avoiding marker placement, this further increases speed, ease and economy of clinical gait analysis with MMC facilitating high volume or routine application.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 76 - 76
17 Apr 2023
Hulme C Roberts S Gallagher P Jermin P Wright K
Full Access

Stratification is required to ensure that only those patients likely to benefit, receive Autologous Chondrocyte Implantation (ACI); ideally by assessing a biomarker in the blood. This study aimed to assess differences in the plasma proteome of individuals who respond well or poorly to ACI.

Isobaric tag for relative and absolute quantitation (ITRAQ) mass spectrometry and label-free proteomics analyses were performed in tandem as described previously by our group (Hulme et al., 2017; 2018; 2021) using plasma collected from ACI responders (n=10) compared with non-responders (n=10) at each stage of surgery (Stage I, cartilage harvest and Stage II, cell implantation).

iTRAQ using pooled plasma detected 16 proteins that were differentially abundant at baseline in ACI responders compared with non-responders (n=10) (≥±2.0 fold; p<0.05). Responders demonstrated a mean Lysholm (patient reported functional score from 0–100) improvement of 33±13 and non-responders a mean worsening of −13±13 points. The most pronounced plasma proteome shift was seen in response to Stage I surgery in ACI non-responders, with 48 proteins being differentially abundant between the two surgical procedures. We have previously noted this marked shift in response to initial surgery in the SF of ACI non-responders, several of these proteins were associated with the Acute Phase Response. One of these proteins, clusterin, could be confirmed in patients’ plasma using an independent immunoassay using individual samples. Label-free proteomic data from individual samples identified only cartilage acidic protein-1 (known to associate with osteoarthritis progression) to be significantly more abundant at Stage I in the plasma of non-responders.

This study indicates that proteins can be identified within the plasma that have potential use in ACI patient stratification. Further work is required to validate the findings of this discovery-phase work in larger ACI cohorts.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 81 - 81
17 Apr 2023
Rambacher K Gennrich J Schewior R Lang S Pattappa G Zihlmann C Stiefel N Zellner J Docheva D Angele P
Full Access

Meniscus tears have been treated using partial meniscectomy to relieve pain in patients, although this leads to the onset of early osteoarthritis (OA). Cell-based therapies can help preserve the meniscus, although the presence of inflammatory cytokines compromises clinical outcomes. Anti-inflammatory drugs (e.g. celecoxib), can help to reduce pain in patients and in vitro studies suggest a beneficial effect on cytokine inhibited matrix content. Previously, we have demonstrated that the inhibitory effects of IL-1β can be countered by culture under low oxygen tension or physioxia. The present study sought to understand whether physioxia, celecoxib or combined application can counter the inhibitory effects IL-1β inhibited meniscus cells.

Human avascular and vascular meniscus cells (n =3) were isolated and expanded under 20% (hyperoxia) or 2% (physioxia) oxygen. Cells were seeded into collagen scaffolds (Geistlich, Wolhusen) and cultured for 28 days either in the presence of 0.1ng/mL IL-1β, 5µg/mL celecoxib or both under their expansion oxygen conditions. Histological (DMMB, collagen I and collagen II immunostaining), GAG content and gene expression analysis was evaluated for the scaffolds.

Under hyperoxia, meniscus cells showed a significant reduction in GAG content in the presence of IL-1β (*p < 0.05). Celecoxib alone did not significantly increase GAG content in IL-1β treated cultures. In contrast, physioxic culture showed a donor dependent increase in GAG content in control, IL-1β and celecoxib treated cultures with corresponding histological staining correlating with these results. Additionally, gene expression showed an upregulation in COL1A1, COL2A1 and ACAN and a downregulation in MMP13 and ADAMTS5 under physioxia for all experimental groups.

Physioxia alone had a stronger effect in countering the inhibitory effects of IL-1β treated meniscus cells than celecoxib under hyperoxia. Preconditioning meniscus cells under physioxia prior to implantation has the potential to improve clinical outcomes for cell-based therapies of the meniscus.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 82 - 82
17 Apr 2023
Kale S Deore S Singh S Gunjotikar A Agrawal P Ghodke R
Full Access

This study was proposed to evaluate the efficacy of fibrin clot augmentation in meniscal tear using inside-out meniscal repair.

A total of 35 patients with meniscus tears were operated on with inside-out meniscus repair and fibrin clot augmentation. Patients were evaluated preoperatively and postoperatively with clinical criteria, Lysholm knee scoring system, and MRI.

Out of the total 35 cases, 5 cases were lost to follow up. Clinical improvement was observed in 29 out of 30 patients (96.6%). The mean Lysholm score improved significantly from 67.63 ± 6.55 points preoperatively to 92.0 ± 2.9 points postoperatively (P < 0.05) in 2 years follow-up. Follow-up MRI in all patients revealed complete healing except in 1 case where the patient presented with recurrence of symptoms such as pain and locking which resolved with partial meniscectomy. Paraesthesia in the anterior part of the knee was observed in 2 cases. (6.6%).

We conclude that fibrin clot augmentation is a good cost-effective modality of treatment for repairable meniscus tears to preserve the meniscus and decrease the point contact pressure on the condyles which may prevent the early occurrence of osteoarthritis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer.

We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body.

The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone.

In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed.

In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation.

The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 2 - 2
17 Apr 2023
Miller B Hornestam J Carsen S Benoit D
Full Access

To investigate changes in quadriceps and hamstrings muscle groups during sustained isokinetic knee flexion and extension.

125 paediatric participants (45 males and 80 females, mean age 14.2 years) were divided into two groups: participants with a confirmed ACL tear (ACLi, n = 64), and puberty- and activity-level matched control participants with no prior history of knee injuries (CON, n = 61). Participants completed a series of 44 repetitions of isokinetic knee flexion and extension at 90 deg/ sec using a Biodex dynamometer (Biodex Medical Systems Inc, Shirley, New York). Surface EMG sensors (Delsys Incorporated, Natick, MA) simultaneously recorded the quadriceps and hamstring activations. Muscle function was assessed as the change in quadriceps activation and extension torque were calculated using the percent difference between the mean of the first five trials, and the mean of the last five trials.

ACLi participants had significantly higher percent change in quadriceps activation for both healthy and injured legs, in comparison to CON dominant leg. As such, the healthy leg of the ACLi participants is activating significantly more than their health matched controls, while also demonstrating reduced muscular endurance (less torque in later repetitions). Therefore, we conclude that the non-injured limb of the ACLi participant is not performing as a healthy limb. Since return to activity clearance following ACLi implies return to sport against age- and activity matched opponents, clearing young athletes based on the non-injured contralateral limb may put them at greater risk of reinjury.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 22 - 22
17 Apr 2023
Murugesu K Decruz J Jayakumar R
Full Access

Standard fixation for intra-articular distal humerus fracture is open reduction and internal fixation (ORIF). However, high energy fractures of the distal humerus are often accompanied with soft tissue injuries and or vascular injuries which limits the use of internal fixation. In our report, we describe a highly complex distal humerus fracture that showed promising healing via a ring external fixator.

A 26-year-old man sustained a Gustillo Anderson Grade IIIB intra-articular distal humerus fracture of the non-dominant limb with bone loss at the lateral column. The injury was managed with aggressive wound debridement and cross elbow stabilization via a hinged ring external fixator. Post operative wound managed with foam dressing. Post-operatively, early controlled mobilization of elbow commenced. Fracture union achieved by 9 weeks and frame removed once fracture united. No surgical site infection or non-union observed throughout follow up. At 2 years follow up, flexion - extension of elbow is 20°- 100°, forearm supination 65°, forearm pronation 60° with no significant valgus or varus deformity.

The extent of normal anatomic restoration in elbow fracture fixation determines the quality of elbow function with most common complication being elbow stiffness. Ring fixator is a non-invasive external device which provides firm stabilization of fracture while allowing for adequate soft tissue management. It provides continuous axial micro-movements in the frame which promotes callus formation while avoiding translation or angulation between the fragments. In appropriate frame design, they allow for early rehabilitation of joint where normal range of motion can be allowed in controlled manner immediately post-fixation.

Functional outcome of elbow fracture from ring external fixation is comparable to ORIF due to better rehabilitation and lower complications. Ring external fixator in our patient achieved acceptable functional outcome and fracture alignment meanwhile the fracture was not complicated with common complications seen in ORIF.

In conclusion, ring external fixator is as effective as ORIF in treating complex distal humeral fractures and should be considered for definitive fixation in such fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 26 - 26
17 Apr 2023
Bhattacharya S
Full Access

Radioprotective gowns are an essential part of operating in orthopaedicse. As we are aware from the evidence, surgeons, and in particular orthopaedic surgeons, are at risk of developing chronic neck and back pain. This is likely a result of the combination of of long operations, heavy equipment, radioprotective gowns and poor ergonomic set up.

Women are a minority in orthopaedics. Amongst trainees there has been an improvement with 20–25% of current trainees are women, however at consultant level this percentage is a lot lower at 5–7%.

Radioprotective gowns worn by trainees are frequently not well fitted and few surgeons have access to bespoke fitted gowns. A questionnaire given to 32 trainees in the region found a significant burden of back pain in trainees and 57% of surgeons felt their gowns were not appropriately fitted. In this study every woman questioned reported back pain as a result of operating and 87% felt the gowns used exacerbated back pain, this figure was 56% in men.

80% of surgeons felt that surgeons would benefit from bespoke fitted gowns, even those that did not themselves have severe back pain. 45% of trainees felt their pain was moderate to severe. In surgery we have the responsibility to protect ourselves and our colleagues from work based injury and illness. Back pain should not be ignored as a symptom and radioprotective gowns is a good place to start.

Overall the majority the gowns exacerbated their back pain during or after procedures, worse in women as described above. We can use this data and do what we can to provide trainees with a range of sizes whilst working in hospitals during their training. Anectodally women sizes were less available in the departments and we can work to improve this and reduce the burden of pain amongst surgeons.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 11 - 11
17 Apr 2023
Inacio J Schwarzenberg P Yoon R Kantzos A Malige A Nwachuku C Dailey H
Full Access

The objective of this study was to use patient-specific finite element modeling to measure the 3D interfragmentary strain environment in clinically realistic fractures. The hypothesis was that in the early post-operative period, the tissues in and around the fracture gap can tolerate a state of strain in excess of 10%, the classical limit proposed in the Perren strain theory.

Eight patients (6 males, 2 females; ages 22–95 years) with distal femur fractures (OTA/AO 33-A/B/C) treated in a Level I trauma center were retrospectively identified. All were treated with lateral bridge plating. Preoperative computed tomography scans and post-operative X-rays were used to create the reduced fracture models. Patient-specific materials properties and loading conditions (20%, 60%, and 100% body weight (BW)) were applied following our published method.[1]

Elements with von Mises strains >10% are shown in the 100% BW loading condition. For all three loading scenarios, as the bridge span increased, so did the maximum von Mises strain within the strain visualization region. The average gap closing (Perren) strain (mean ± SD) for all patient-specific models at each body weight (20%, 60%, and 100%) was 8.6% ± 3.9%, 25.8% ± 33.9%, and 39.3% ± 33.9%, while the corresponding max von Mises strains were 42.0% ± 29%, 110.7% ± 32.7%, and 168.4% ± 31.9%. Strains in and around the fracture gap stayed in the 2–10% range only for the lowest load application level (20% BW).

Moderate loading of 60% BW and above caused gap strains that far exceeded the upper limit of the classical strain rule (<10% strain for bone healing). Since all of the included patients achieved successful unions, these findings suggest that healing of distal femur fractures may be robust to localized strains greater than 10%.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 12 - 12
17 Apr 2023
Van Oevelen A Burssens A Krähenbühl N Barg A Audenaert E Hintermann B Victor J
Full Access

Several emerging reports suggest an important involvement of the hindfoot alignment in the outcome of knee osteotomy. At present, studies lack a comprehensive overview. Therefore, we aimed to systematically review all biomechanical and clinical studies investigating the role of the hindfoot alignment in the setting of osteotomies around the knee.

A systematic literature search was conducted on multiple databases combining “knee osteotomy” and “hindfoot/ankle alignment” search terms. Articles were screened and included according to the PRISMA guidelines. A quality assessment was conducted using the Quality Appraisal for Cadaveric Studies (QUACS) - and modified methodologic index for non-randomized studies (MINORS) scales.

Three cadaveric, fourteen retrospective cohort and two case-control studies were eligible for review. Biomechanical hindfoot characteristics were positively affected (n=4), except in rigid subtalar joint (n=1) or talar tilt (n=1) deformity. Patient symptoms and/or radiographic alignment at the level of the hindfoot did also improve after knee osteotomy (n=13), except in case of a small pre-operative lateral distal tibia- and hip knee ankle (HKA) angulation or in case of a large HKA correction (>14.5°). Additionally, a pre-existent hindfoot deformity (>15.9°) was associated with undercorrection of lower limb alignment following knee osteotomy. The mean QUACS score was 61.3% (range: 46–69%) and mean MINORS score was 9.2 out of 16 (range 6–12) for non-comparative and 16.5 out of 24 (range 15–18) for comparative studies.

Osteotomies performed to correct knee deformity have also an impact on biomechanical and clinical outcomes of the hindfoot. In general, these are reported to be beneficial, but several parameters were identified that are associated with newly onset – or deterioration of hindfoot symptoms following knee osteotomy. Further prospective studies are warranted to assess how diagnostic and therapeutic algorithms based on the identified criteria could be implemented to optimize the overall outcome of knee osteotomy.

Remark: Aline Van Oevelen and Arne Burssens contributed equally to this work


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 13 - 13
17 Apr 2023
Andreani L Vozzi G Petrini M Di Stefano R Trincavelli M Mani O Olivieri M Bizzocchi F Creati G Capanna R
Full Access

Traumatic acute or chronic tendon injuries are a wide clinical problem in modern society, resulting in important economic burden to the health system and poor quality of life in patients. Due to the low cellularity and vascularity of tendon tissue the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue.

Tissue engineering and regenerative medicine are promising alternatives to the natural healing process for tendon repair, especially in the reconstruction of large damaged tissues. The aim of TRITONE project is to develop a smart, bioactive implantable 3D printed scaffold, able to reproduce the structural and functional properties of human tendon, using FDA approved materials and starting from MSC and their precursor, MPC cell mixtures from human donors.

Total cohort selected in the last 12 months was divided in group 1 (N=20) of subjects with tendon injury and group 2 (N=20) of healthy subject. Groups were profiled and age and gender matched. Inclusion criteria were age>18 years and presence of informed consent. Ongoing pregnancy, antihypertensive treatment, cardiovascular diseases, ongoing treatment with anti-aggregants, acetylsalicylic-acid or lithium and age<18 years were exclusion criteria.

Firstly, we defined clinical, biological, nutritional life style and genetic profile of the cohort. The deficiency of certain nutrients and sex hormonal differences were correlated with tendon-injured patients. It was established the optimal amount of MPC/MSC human cell (collected from different patients during femoral neck osteotomy). Finally, most suitable biomaterials for tendon regeneration and polymer tendon-like structure were identified. Hyaluronic acid, chemical surface and soft-molecular imprinting (SOFT-MI) was used to functionalize the scaffold.

These preliminary results are promising. It will be necessary to enroll many more patients to identify genetic status connected with the onset of tendinopathy. The functional and structural characterization of smart bioactive tendon in dynamic environment will represent the next project step.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 14 - 14
17 Apr 2023
Bartolo M Newman S Dandridge O Provaggi E Accardi M Dini D Amis A
Full Access

No proven long-term joint-preserving treatment options exist for patients with irreparable meniscal damage. This study aimed to assess gait kinematics and contact pressures of novel fibre-matrix reinforced polyvinyl alcohol-polyethylene glycol (PVA-PEG) hydrogel meniscus implanted ovine stifle joints against intact stifles in a gait simulator.

The gait simulator controlled femoral flexion-extension and applied a 980N axial contact force to the distal end of the tibia, whose movement was guided by the joint natural ligaments (Bartolo; ORS 2021;p1657- LB). Five right stifle joints from sheep aged >2 years were implanted with a PVA-PEG total medial meniscus replacement, fixed to the tibia via transosseous tunnels and interference screws. Implanted stifle joint contact pressures and kinematics in the simulator were recorded and compared to the intact group. Contact pressures on the medial and lateral condyles were measured at 55° flexion using Fujifilm Prescale Low Pressure film inserted under the menisci. 3D kinematics were measured across two 30 second captures using the Optotrak Certus motion-tracking system (Northern Digital Inc.).

Medial peak pressures were not significantly different between the implanted and intact groups (p>0.4), while lateral peak pressures were significantly higher in the implanted group (p<0.01). Implanted stifle joint kinematics in the simulator did not differ significantly from the intact baseline (p>0.01), except for in distraction-compression (p<0.01).

Our findings show that the fibre-matrix reinforced PVA-PEG hydrogel meniscal replacement restored the medial peak contact pressures. Similar to published literature (Fischenich; ABE 2018;46(11):1–12), the lateral peak pressures in the implanted group were higher than the intact. Joint kinematics were similar across groups, with slightly increased internal-external rotation in the implanted group. These findings highlight the effectiveness of the proposed approach and motivate future work on the development of a total meniscal replacement.


To analyse the efficacy and safety of cellular therapy utilizing Mesenchymal Stromal Cells (MSCs) in the management of rotator cuff(RC) tears from clinical studies available in the literature.

We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library on August 2021 for studies analyzing the efficacy and safety of cellular therapy (CT) utilizing MSCs in the management of RC tears. VAS for pain, ASES Score, DASH Score, Constant Score, radiological assessment of healing and complications and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software.

RESULTS:

6 studies involving 238 patients were included for analysis. We noted a significant reduction in VAS score for pain at 3 months (WMD=-2.234,p<0.001) and 6 months (WMD=-3.078,p<0.001) with the use of CT. Concerning functional outcomes, utilization of CT produced a significant short-term improvement in the ASES score (WMD=17.090,p<0.001) and significant benefit in functional scores such as Constant score (WMD=0.833,p=0.760) at long-term. Moreover, we also observed a significantly improved radiological tendon healing during the long-term follow-up (OR=3.252,p=0.059). We also noted a significant reduction in the retear rate upon utilization of CT in RC tears both at short- (OR=0.079,p=0.032) and long-term (OR=0.434,p=0.027). We did not observe any significant increase in the adverse events as compared with the control group (OR=0.876,p=0.869).

Utilization of CT in RC tear is safe and it significantly reduced pain severity, improved functional outcome, enhanced radiological tendon healing, and mitigated retear rates at short- and long-term follow-up.


Prosthetic joint infection (PJI) is a serious complication following joint replacement. Antiseptic solutions are often used for intraoperative wound irrigation particularly in cases of revision for PJI. Antiseptic irrigation is intended to eradicate residual bacteria which may be either free floating or in residual biofilm although there is no clear clinical efficacy for its use. Also, reviewing the scientific literature there is discordance in in vitro results where some studies questions antiseptic efficacy whilst others suggest that even at low concentration antiseptic agents are effective at eradicating bacterial biofilms.

The aim of this in vitro study was to establish the efficacy of undiluted antiseptic agents at eradication of a typical PJI forming biofilm and determine the importance of an antiseptic neutralisation step in this assessment.

Mature Staphylococcus epidermidis biofilms grown on TiAl6V4 discs were submerged in chlorohexidine (CHL) gluconate 4%, povidone-iodine (PI) 10% or phosphate-buffered saline (PBS) control solution. The discs were then rinsed, the biofilm bacteria suspended in solution using sonication and vortexing, and the viable count (CFU/ml) of the bacterial suspensions determined. The rinse/suspension solution was either (a) PBS or (b) Dey-Engley neutralization broth (NB).

When PBS was used to rinse/suspend the biofilm a highly significant, 7.5 and 4.1, mean log reduction in biofilm vitality was observed from the control, for CHL 4% and PI 10%, respectively. However, when NB was the rinse/suspension solution the apparent antiseptic biofilm eradication efficacy was replaced with a statistically significant but clinically irrelevant less the one log-reduction in biofilm vitality.

Clinical antiseptic agents are ineffective at eradicating S. epidermidis biofilm in an in vitro PJI model and absence of a neutralisation step gives the false impression of efficacy. Antiseptics alone are an ineffective treatment for biofilm related PJI and no substitute for meticulous debridement.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 40 - 40
17 Apr 2023
Saiz A Kong S Bautista B Kelley J Haffner M Lee M
Full Access

With an aging population and increase in total knee arthroplasty, periprosthetic distal femur fractures (PDFFs) have increased. The differences between these fractures and native distal femur fractures (NDFF) have not been comprehensively investigated. The purpose of this study was to compare the demographic, fracture, and treatment details of PDFFs compared to NDFFs.

A retrospective study of patients ≥ 18 years old who underwent surgical treatment for either a NDFF or a PDFF from 2010 to 2020 at a level 1 trauma center was performed. Demographics, AO/OTA fracture classification, quality of reduction, fixation constructs, and unplanned revision reoperation were compared between PDFF patients and NDFF patients using t-test and Fisher's exact test. 209 patients were identified with 70 patients having a PDFF and 139 patients having a NDFF. Of note, 48% of NDFF had a concomitant fracture of the ipsilateral knee (14%) or tibial plateau (15%). The most common AO/OTA classification for PDFFs was 33A3.3 (71%). NDFFs had two main AO/OTA classifications of 33C2.2 (28%) or 33A3.2. (25%). When controlling for patient age, bone quality, fracture classification, and fixation, the PDFF group had increased revision reoperation rate compared to NDFF (P < 0.05).

PDFFs tend to occur in elderly patients with low bone quality, have complete metaphyseal comminution, and be isolated; whereas, NDFF tend to occur in younger patients, have less metaphyseal comminution, and be associated with other fractures. When controlling for variables, PDFF are at increased risk of unplanned revision reoperation. Surgeons should be aware of these increased risks in PDFFs and future research should focus on these unique fracture characteristics to improve outcomes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 45 - 45
17 Apr 2023
Cao M Zhu X Ong M Yung P Jiang Y
Full Access

To investigate temporal changes in synovial lymphatic system (SLS) drainage function after Anterior cruciate ligament (ACL) injury, a non-invasive ACL rupture model was used to induce the PTOA phenotype without altering the SLS structure.

We have created a non-invasive ACL rupture model in the right knee (single overload impact) of 12- week-old C57bl/6 male mice to mimic the ACL rupture-induced PTOA development. 70 kDa-TxRedDextran were injected into the right knee of the mice at 0, 1, 2, and 4 wks post modeling (n=5/group), and the fluorescence signal distribution and intensity were measured by the IVIS system at 1 and 6 hrs post-injection. After 24 hrs, the drainage lymph nodes and whole knee joint were harvested and subjected to ex vivo IVIS imaging and immunofluorescence detection respectively.

Manual ACL rupture was induced by 12N overloaded force and validated by a front drawer test. Intraarticular clearance of TxRed-Dextran detected by the IVIS was significantly reduced at 1, and 2 wks at a level of 43% and 55% respectively but was not significantly different from baseline levels at 4 wks (89%). TxRed-Dextran signal in draining lymph nodes was significantly reduced at 1 week at the level of but not for 2 and 4 wks compared to baseline levels (week 1–29%, week 2–50%, week 4–94%). TxRed-Dextran particle was significantly enriched in the synovium at 1, 2 wks but was not significantly different from baseline levels at 4 wks rupture-post ACL rupture (Particle numbers: Sham Ctrl-34 ±14, week 1, 113 ± 17; week 2, 89 ± 13; week 4, 46 ± 18; mean ± SD).

We observed the drainage function of SLS significantly decreased at 1 and 2 wks after the ACL rupture, and was slowly restored at 4 wks post-injury in a non-invasive ACL rupture model. Early impairment of SLS drainage function may lead to accumulation of inflammatory factors and promote PTOA progression.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 48 - 48
17 Apr 2023
Akhtar R
Full Access

To determine risk factors of infection in total knee arthroplasty

This descriptive study was conducted in the Department of Orthopedics for a duration of three years from January 2016 to January 2019. All patients undergoing primary total knee replacement were included in the study. Exclusion criteria were all patients operated in another hospital and revision total knee replacement. All patients were followed up at 2, 4, 8, 12 and 24 weeks post-operatively. Signs of inflammation and inflammatory markers such as total leukocyte count (TLC), C-reactive protein (CRP) and ESR were measured. Risk factors like age, body mass index (BMI), ASA, co-morbid conditions were also noted.

A total of 78 patients underwent primary unilateral Total Knee Replacement (TKR) during the study period. Of these, 30 (34.09%) were male and 48 (61.54%) female patients. Mean age of patients was 68.32 ± 8.54 years. Average BMI 25.89 Kg/m2 .Osteoarthritis was the pre-dominant cause of total knee replacement (94.87%). Among co-morbid factors 33.33% were diabetic, 28.20% having ischemic heart disease and 12.82% with chronic lung disease. Upon anaesthesia fitness pre-operatively, 91.02% patients had an American society of anaesthesiologist score (ASA) between 0–2 while 07 (8.97%) between 3- 5. Average duration of surgery was 85.62± 4.11 minutes. 6.41% cases got infected. In majority of the infected cases (60%), Staphylococcus aureus was the infective organism. Diabetes Mellitus (p=0.01) and Obesity (p=0.02) had a significant relation to post-operative infection.

Pre-operative risk evaluation and prevention strategies along with early recognition of infection and control can greatly reduce the risk of joint infection post-TKR which will not only improve the mobility of patient but also its morbidity and mortality as well.

Key Words:

C-reactive protein (CRP), Erythrocyte Sedimentation Rate (ESR), Staphylococcus aureus, Total Knee Arthroplasty (TKA)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 57 - 57
17 Apr 2023
Bae T Baek H Kwak D
Full Access

It is still difficult to determine an appropriate hinge position to prevent fracture in the lateral cortex of tibia in the process of making an open wedge during biplane open wedge high tibial osteotomy. The objective of this study was to present a biomechanical basis for determining the hinge position as varus deformity.

T Three-dimensional lower extremity models were constructed using Mimics. The tibial wedge started at 40 mm distal to the medial tibial plateau, and osteotomy for three hinge positions was performed toward the head of the fibula, 5 mm proximal from the head of the fibula, and 5 mm distal from the head of the fibula. The three tibial models were made with varus deformity of 5, 10, 15 degrees with heterogeneous material properties. These properties were set to heterogeneous material properties which converted from Hounsfield's unit to Young's modulus by applying empirical equation in existing studies. For a loading condition, displacement at the posterior cut plane was applied referring to Hernigou's table considering varus deformity angle. All computational analyses were performed to calculate von-mises stresses on the tibial wedges.

The maximum stress increased to an average of 213±9% when the varus angle was 10 degrees compared to 5 degrees and increased to an average of 154±8.9% when the varus angle was 15 degrees compared to 10 degrees. In addition, the maximum stress of the distal position was 19 times higher than that of the mid position and 5 times higher than that of the proximal position on average.

Conclusion:

For varus deformity angles, the maximum stress of the tibial wedge tended to increase as the varus deformity angle increased. For hinge position of tibial wedge, maximum stress was the lowest in the mid position, while the highest in the distal position.

*This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2022R1A2C1009995)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 62 - 62
17 Apr 2023
Herren A Luczak A Amin A Hall A
Full Access

Early changes within articular cartilage during human idiopathic osteoarthritis are poorly understood. However alterations to chondrocyte morphology occur with the development of fine cytoplasmic processes and cell clusters, potentially playing a role in cartilage degeneration. The aggrecanase ADAMTS-4 (A disintegrin and metalloproteinase with thrombospondin motifs-4) has been implicated as an important factor in cartilage degradation, so we investigated the relationship between chondrocyte morphology and levels of ADAMTS-4 in both non-degenerate and mildly osteoarthritic human cartilage.

Human femoral heads were obtained following consent from patients undergoing hip arthroplasty following femoral neck fracture. Cartilage explants of normal (grade 0; G0) and mildly osteoarthritic (grade 1; G1) cartilage were labelled with the cytoplasmic dye CMFDA (5-chloromethylfluorescein-diacetate). Explants were cryosectioned (30μm sections), and labelled for ADAMTS-4 by fluorescence immunohistochemistry. Sections were imaged with confocal microscopy, allowing the semi-quantitative analysis of ADAMTS-4 and 3D visualisation of in situ cell morphology.

With cartilage degeneration from G0 to G1, there was a decrease in the proportion of chondrocytes with normal rounded morphology (P<0.001) but an increase in the proportion of cells with processes (P<0.01) and those in clusters (P<0.001;[4(1653)]; femoral heads:cells). Although average levels of ADAMTS-4 for all cells was the same between G0 and G1 (P>0.05), a change was evident in the distribution curves for cell-specific ADAMTS-4 labelling. Cell-by-cell analysis showed that ADAMTS-4 levels were higher in chondrocytes with cytoplasmic processes compared to normal cells (P=0.044) however cells in clusters had lower levels than normal cells (P=0.003;[3(436)]). Preliminary data suggested that ADAMTS-4 levels increased with larger chondrocyte clusters.

These results suggest complex heterogeneous changes to levels of cell-associated ADAMTS-4 with early cartilage degeneration – increasing in cells with processes and initially decreasing in clusters. Increased levels of ADAMTS-4 are likely to produce focal areas of matrix weakness potentially leading to early cartilage degeneration.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS.

Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle.

To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm.

Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured.

Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is.

In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques.

Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 60 - 60
17 Apr 2023
Schiltenwolf M Neubauer E Videva M
Full Access

Chronic pain is recognised as a problem worldwide. Interdisciplinary multimodal pain therapy (MMPT) is currently the gold standard of treatment.

The aim of the present prospective observational study is to research whether chronic pain patients form an intention for lifestyle change during a 4-week-long treatment at the Outpatient Clinic for Pain Therapy and Conservative Orthopedics in Heidelberg, Germany, and how sustainable this change is after 3 months. In addition, we theorized a connection between standardised survey endpoints and the number of therapy units perceived as helpful (TPAH). Finally, the effect of socio-demographic factors on patient perceptions were put into perspective.

Clinical data was collected via 3-part-questionnaires from 95 German-speaking patients at 4 checkpoints between 05/2020 and 11/2021 at admission (T1), after 2 weeks (T2), at discharge (T3) and 3 months post-treatment (T4). The questionnaires consisted of already established scores for surveying chronic pain patients, such as the von Korff Chronification Scale, ODI, HADS, PSEQ/FESS, and FABQ, a grading scale for each therapy unit, and free answers.

Patients were most likely to implement Group Walking in their everyday lives. A higher number of TPAH neither lowered nor improved significantly the change in lifestyle, but both a higher number and bigger lifestyle changes improved significantly the scores across the standardised surveys. Furthermore, no significant change in intention happened between the second and the fourth week. Physical components were perceived throughout as more helpful.

The results of this research support the efficacy of MMPT in multi-faceted improving of the patient's well-being and lowering the possibility for pain chronification. A higher number of TPAH could be translated as having more available techniques to combat chronic pain in everyday life. The number of TPAH and the amount of lifestyle change both influence positively the survey scores, yet no connection between them was found. A third factor could be the reason for this constellation. The possibility that the more mental therapies are offered, the more likely it is for those to be perceived as helpful, cannot be excluded either. Further research is required on both topics.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 41 - 41
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Lower back pain (LBP) is a global problem. Countless in vitro studies have attempted to understand LBP and inform treatment protocols such as disc replacement devices (DRDs). A common method of reporting results is applying a linear fit to load-displacement behaviour, reporting the gradient as the specimen stiffness in that axis. This is favoured for speed, simplicity and repeatability but neglects key aspects including stiffening and hysteresis. Other fits such as polynomials and double sigmoids better address these characteristics, but solution parameters lack physical representation. The aim of this study was to implement an automated method to fit spinal load-displacement behaviour using viscoelastic models.

Six porcine lumbar spinal motion segments were dissected to produce isolated disc specimens. These were potted in Wood's metal, ensuring the disc midplane remained horizontal, sprayed with 0.9% saline and wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. Specimens were tested using the University of Bath spine simulator operating under position control with a 400N axial preload.

Specimens were approximated using representative viscoelastic elements. These models were constructed in MATLAB Simulink R2020b using the SimScape library. Solution coefficients were determined by minimizing the sum of squared errors cost function using a non-linear least squares optimization method.

The models matched experimental data well with a mean % difference in model and specimen enclosed area below 6% across all axes. This indicates the ability of the model to accurately represent energy dissipated. The final models demonstrated reduced RMSEs factors of 3.6, 1.1 and 9.5 smaller than the linear fits for anterior-posterior shear, mediolateral shear and axial rotation respectively.

These nonlinear viscoelastic models exhibit significantly increased qualities of fit to spinal load-displacement behaviour when compared to linear approximations. Furthermore, they have the advantage of solution parameters which are directly linked to physical elements: springs and dampers. The results from this study could be instrumental in improving the design of DRDs as a mechanism for treating LBP.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 42 - 42
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Lower back pain (LBP) is a worldwide clinical problem and a prominent area for research. Numerous in vitro biomechanical studies on spine specimens have been undertaken, attempting to understand spinal response to loading and possible factors contributing to LBP. However, despite employing similar testing protocols, there are challenges in replicating in vivo conditions and significant variations in published results. The aim of this study was to use the University of Bath (UoB) spine simulator to perform tests to highlight the major limitations associated with six degree of freedom (DOF) dynamic spine testing.

A steel helical spring was used as a validation model and was potted in Wood's metal. Six porcine lumbar spinal motion segments were harvested and dissected to produce isolated spinal disc specimens. These were potted in Wood's metal, ensuring the midplane of the disc remained horizontal and then sprayed with 0.9% saline and wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was used for spinal specimens. Specimens were tested under the stiffness and flexibility protocols.

Tests were performed using the UoB custom 6-axis spine simulator with coordinate axes. Tests comprised five cycles with data acquired at 100Hz. Stiffness and flexibility matrices were evaluated from the last three motion cycles using the linear least squares method.

According to theory, inverted flexibility matrices should equal stiffness matrices. In the case of the spring, the matrices matched analytical solutions and inverted flexibility matrices were equivalent to stiffness matrices. Matrices from the spinal tests demonstrated some symmetry, with similarities between inverted flexibility- and stiffness matrices, though these were unequal overall. Matrix element values were significantly affected by displacements assumed to occur at disc centre.

Spring tests proved that for linear, elastic specimens, the spine simulator functioned as expected. However, multiple factors limit the confidence in spine test results. Centre of rotation, displacement assumptions and rigid body transformations are known to impact the results from spinal testing, and these should be addressed going forward to improve the replication of in vivo conditions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 43 - 43
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Injury of the intervertebral disc (IVD) can occur for many reasons including structural weakness due to disc degeneration. A common disc injury is herniation. A herniated nucleus can compress spinal nerves, causing pain, and nucleus depressurisation changes mechanical behaviour. Many studies have investigated in vitro IVD injuries including endplate fracture, incisions, and nucleotomy. There is, however, a lack of consensus on how the biomechanical behaviour of spinal motion segments is affected. The aim of this study was to induce defined changes to IVDs of spine specimens in vitro and apply 6 degree of freedom testing to evaluate the effect of these changes.

Six porcine lumbar spinal motion segments were harvested from organically farmed pigs. Posterior structures were removed to produce isolated spinal disc specimens. Specimens were potted in Wood's metal, ensuring the midplane of the IVD remained horizontal. After potting, specimens were sprayed with 0.9% saline, wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was equilibrated for 30 minutes before testing. Specimens were tested intact and after a partial nucleotomy removing ~0.34g of nuclear material with a curette through an annular incision.

Stiffness tests were performed using the University of Bath's custom 6-axis spine simulator with coordinate axes and displacement amplitudes. Tests comprised five cycles with data acquired at 100Hz. Stiffness matrices were evaluated from the last three motion cycles using the linear least squares method.

Stiffness matrices for intact and nucleotomy tests were compared. No significant differences in shear, axial or torsional stiffnesses were noted. Nucleotomy caused significantly higher stiffness in lateral bending and flexion-extension with increased linearity and the load-displacement behaviour in these axes displayed no neutral zone (NZ).

Induced changes were designed to replicate posterolaterally herniated discs. Unaffected shear, axial and torsional stiffnesses suggest the annulus is crucial in these axes. However, reduced ROM and NZ after nucleotomy suggests bending is most affected by herniation. Increased linearity and lack of defined NZ in these axes demonstrates herniation causes major changes to the viscoelastic behaviour of spine specimens in response to loading.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 46 - 46
17 Apr 2023
Akhtar R
Full Access

To determine the clinical efficacy of vitamin-D supplementation on pain intensity and functional disability in patients with chronic lower back pain.

This prospective cohort study was conducted from 20th March 2017 to 19th March 2019. The inclusion criteria were patients of CLBP aged between 15 to 55 years. Exclusion criteria included all the patients with Disc prolapse, Spinal stenosis, Any signs of neurological involvement, Metabolic bone disease (Hypo- or Hyperparathyroidism) and Chronic kidney disease/Chronic liver disease. Patients were supplemented with 50,000 IU of oral vitamin-D3 every week for 8 weeks (induction phase) and 50,000 IU of oral vitamin-D3 once monthly for 6 months (maintenance phase). Efficacy parameters included pain intensity and functional disability measured by VAS and modified Oswestry disability questionnaire (MODQ) scores at baseline, 2, 3 and 6 months post-supplementation. Vitamin-D3 levels were measured at baseline,2,3 and 6 months.

A total of 600 patients were included in the study. The mean age of patients was 44.2 ± 11.92 years. There were 337 (56.2%) male patients while 263 (43.8%) female patients. Baseline mean vitamin-D levels were 13.32 ± 6.10 ng/mL and increased to 37.18 ± 11.72 post supplementation (P < 0.0001). There was a significant decrease in the pain score after 2nd, 3rd& 6th months (61.7 ± 4.8, 45.2 ± 4.6 & 36.9 ± 7.9, respectively) than 81.2 ± 2.4 before supplementation (P < 0.001). The modified Oswestry disability score also showed significant improvement after 2nd, 3rd & 6th months (35.5, 30.2 & 25.8, respectively) as compared to baseline 46.4 (P < 0.001). About 418 (69.7%) patients attained normal levels after 6 months.

Vitamin-D supplementation in chronic lower back pain patients may lead to improvement in pain intensity and functional ability.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 56 - 56
17 Apr 2023
Arif M Makaram N Macpherson G Ralston S
Full Access

Patients with Paget's Disease of Bone (PDB) more frequently require total hip arthroplasty (THA) and total knee arthroplasty (TKA). However, controversy remains regarding their outcome. This project aims to evaluate the current literature regarding outcomes following THA and TKA in PDB patients.

MEDLINE, EMBASE and Cochrane databases were searched on February 15th, 2022. Inclusion criteria comprised studies evaluating outcomes following THA/TKA in PDB patients. Quality of included studies was assessed using the Newcastle-Ottawa Scale.

19 articles (published between 1976–2022) were included, comprising 58,695 patients (48,766 controls and 10,018 PDB patients), from 209 potentially relevant titles. No study was of high quality. PDB patient pooled mortality was 32.5% at mean 7.8(0.1-20) years following THA and 31.0% at mean 8.5(2-20) years following TKA. PDB patient revision rate was 4.4% at mean 7.2(0-20) years following THA and 2.2% at mean 7.4(2-20) years following TKA. Renal complications, respiratory complications, heterotopic ossification, and surgical site infection were the most common medical and surgical complications.

The largest systematic review, to date, evaluating outcomes following THA and TKA in PDB patients. All functional outcome scores improved. PDB patient revision rate was comparable to UK National Joint Registry. However, there is a significant need for prospective matched case-control studies to robustly compare outcomes in PDB patients with unaffected counterparts.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 27 - 27
17 Apr 2023
Nand R Sunderamoorthy D
Full Access

An isolated avulsion fracture of the peroneus longus tendon is seldom seen and potentially can go undiagnosed using basic imaging methods during an initial emergency visit. If not managed appropriately it can lead to chronic pain, a reduced range of motions and eventually affect mobility. This article brings to light the effectiveness of managing such injuries conservatively.

A 55 year old postman presented to clinic with pain over the instep of his right foot for 2 months with no history of trauma. Clinically the pain was confined to the right first metatarsophalangeal joint with occasional radiation to the calf. X-ray films did not detect any obvious bony injury. MR imaging revealed an ununited avulsion fracture of the base of the 1st metatarsal. The patient was subsequently injected with a mix of steroid and local anesthetic injections at the painful nonunion site under fluoroscopic guidance.

Post procedure there was no neurovascular deficit. The patient was reviewed at three months and his pain score and functional outcome improved significantly. Moreover following our intervention, the Manchester Oxford Foot Questionnaire reduced from 33 to 0. At the one year follow up he remained asymptomatic and was discharged.

The peroneus longus tendon plays a role in eversion and planter flexion of foot along with providing stabilization to arches of foot. The pattern of injury to this tendon is based on two factors one is the mechanism of insult, if injured, and second is the variation in the insertion pattern of peroneus longus tendon itself.

There is no gold standard treatments by which these injuries can be managed. If conservative management fails we must also consider surgery which involves percutaneous fixation, or excision of the non-healed fracture fragment and arthrodesis

To conclude isolated avulsion fractures of peroneus longus tendon are rare injuries and it is important to raise awareness of this injury and the diagnostic and management challenges faced. In this case conservative management was a success in treating this injury however it is important to take factors such as patient selection, patient autonomy and clinical judgement into account before making the final decision.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 30 - 30
17 Apr 2023
Muthu S
Full Access

Platelet-rich plasma (PRP) has been demonstrated to benefit a variety of disciplines. But there exists heterogeneity in results obtained due to lack of standardization of the preparation protocols employed in them. We aim to identify and standardize a preparation protocol for PRP with maximum recovery of platelets to obtain reproducible results across studies.

Blood samples were collected from 20 healthy volunteers. The double spin protocol of PRP preparation was analyzed for variables such as centrifugal acceleration, time, and volume of blood processed and final product utilized. The final PRP prepared was investigated for platelet recovery, concentration, integrity, and viability.

We noted maximum platelet recovery (86-99%) with a mean concentration factor of 6-times baseline, with double centrifugation protocol at 100xg and 1600xg for 20 minutes each. We also noted that 10 ml of blood in a 15 ml tube was the ideal volume of blood to be processed to maximize platelet recovery. We demonstrated that the lower 1/3rd is the ideal volume to be utilized for clinical application. We did not note a loss of integrity or viability of the platelets in the final product from the above-said protocol.

Preparation of PRP by the double spin protocol of 10 ml of blood at 100xg and 1600xg for 20 minutes each in a 15ml tube and using the lower 1/3rd of the final product demonstrated consistent high platelet recovery (86-99%) and concentration (6x) without disturbing the platelet integrity or viability.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability.

Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated.

The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure.

Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts.

Acknowledgements

Supported by the EPSRC-EP/P001076.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 71 - 71
17 Apr 2023
Cochrane I Hussain A Kang N Chaudhury S
Full Access

During the COVID-19 pandemic, video/phone consultations (VPC) were increasingly utilised as an alternative to face-to-face (F2F) consultations, to minimise nosocomial viral exposure. We previously demonstrated that VPCs were highly rated by both patients and clinicians. This study compared satisfaction between both clinic modalities in contemporaneously delivered outpatient surveys. We also assessed the feasibility and effects of converting F2F orthopaedic consultations to VPC.

Surveys were posted to patients who attended VPCs and F2F consultations at a large tertiary centre from August to October 2020 inclusive, across 51 specialties. F2F and VPC patients ranked their overall satisfaction with their consultation on a 10-point numerical scale (10=highest satisfaction). Simultaneously, a pilot study was undertaken of outpatient fracture clinics to identify patients suitable for VPCs, with X-rays (if needed) taken and transferred from satellite sites to reduce tertiary centre footfall.

For F2F consultations, 1419 of 4465 surveys (31.8%) were returned with similar rates for VPCs (1332 of 4572, 29.1%). While mean satisfaction ratings were high for both clinic modalities, they were significantly higher for F2F: 9.13 (95% CI 9.05-9.22) for F2F clinics, compared to 8.23 (95% CI 8.11-8.35) for VPCs (p<0.001, t-test). F2F patients were almost four times more likely to state a preference for future F2F appointments compared to VPCs, whereas patients who attended VPCs showed an equal preference for either option (p< 0.001, chi2 test). 53% of 111 fracture clinic patients sampled were identified as suitable for VPCs. 1 patient (1.7%) requested their VPC to be converted to F2F due to poor symptom control.

Our study showed patients reported high satisfaction ratings for both F2F clinics and VPCs, with prior experience of VPCs affecting patients’ future preferences. Only 1.7% of F2F patients converted to VPCs declined their virtual appointment. Our results support future use of VPCs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 73 - 73
17 Apr 2023
Condell R Flanagan C Kearns S Murphy C
Full Access

Despite considerable legacy issues, Girdlestone's Resection Arthroplasty (GRA) remains a valuable tool in the armoury of the arthroplasty surgeon. When reserved for massive lysis in the context of extensive medical comorbidities which preclude staged or significant surgical interventions, and / or the presence of pelvic discontinuity, GRA as a salvage procedure can have satisfactory outcomes. These outcomes include infection control, pain control and post-op function. We describe a case series of 13 cases of GRA and comment of the indications, peri, and post-operative outcomes.

We reviewed all cases of GRA performed in our unit during an 8 year period, reviewing the demographics, indications, and information pertaining to previous surgeries, and post op outcome for each. Satisfaction was based on a binary summation (happy/unhappy) of the patients’ sentiments at the post-operative outpatient consultations.

13 cases were reviewed. They had a mean age of 75. The most common indication was PJI, with 10 cases having this indication. The other three cases were performed for avascular necrosis, pelvic osteonecrosis secondary to radiation therapy and end stage arthritis on a background of profound learning disability in a non-ambulatory patient. The average number of previous operations was 5 (1-10). All 13 patients were still alive post girdlestone. 7 (54%) were satisfied, 6 were not. 3 patients were diabetic. 5 patients developed a sinus tract following surgery.

With sufficient pre-op patient education, early intensive physiotherapy, and timely orthotic input, we feel this procedure remains an important and underrated and even compassionate option in the context of massive lysis and / or the presence of pelvic discontinuity / refractory PJI. GRA should be considered not a marker of failure but as a definitive procedure that gives predictability to patients and surgeon in challenging situations.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 7 - 7
17 Apr 2023
Righelli L Gonçalves A Rodrigues M Gomes M El Haj A
Full Access

Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic nanoparticles (MNPs), it is possible to remotely induce the tenogenic differentiation of human adipose stem cells (hASCs). In this study, we investigated the tenogenic regenerative potential of remotely-activated MNPs-labelled hASCs in an in vivo rat model. We consider the potential for magnetic controlled nanoparticle mediated tendon repair strategies.

hASCs were labelled with 250 nm MNPs functionalized with anti-Activin Receptor IIA antibody. Using a rapid curing fibrin gel as delivery method, the MNPs-labelled cells were delivered into a Ø2 mm rat patellar tendon defect. The receptor was then remotely stimulated by exposing the rats to a variable magnetic gradient (1.28T), using a customised magnetic box. The stimulation was performed 1 hour/day, 3 days/week up to 8 weeks. Tenogenesis, iron deposition and collagen alignment were assessed by histological staining and IHC. Inflammation mediators levels were assessed by ELISA and IHC. The presence of human cells in tendons after 4 and 8 weeks was assessed by FISH analysis.

Histological staining showed a more organised collagen arrangement in animals treated with MNPs-labelled cells compared to the controls. IHC showed positive expression of tenomodulin and scleraxis in the experimental groups. Immunostaining for CD45 and CD163 did not detect leukocytes locally, which is consistent with the non-significant levels of the inflammatory cytokines analysis performed on plasma. While no iron deposition was detected in the main organs or in plasma, the FISH analysis showed the presence of human donor cells in rat tendons even after 8 weeks from surgery.

Our approach demonstrates in vivo proof of concept for remote control stem cell tendon repair which could ultimately provide injectable solutions for future treatment.

We are grateful for ERC Advanced Grant support ERC No.789119, ERC CoG MagTendon No.772817 and FCT grant 2020.01157.CEECIND.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 83 - 83
17 Apr 2023
Tawy G McNicholas M Biant L
Full Access

Total knee arthroplasty (TKA) aims to alleviate pain and restore joint biomechanics to an equivalent degree to age-matched peers.

Zimmer Biomet's Nexgen TKA was the most common implant in the UK between 2003 and 2016. This study compared the biomechanical outcomes of the Nexgen implant against a cohort of healthy older adults to determine whether knee biomechanics is restored post-TKA.

Patients with a primary Nexgen TKA and healthy adults >55 years old with no musculoskeletal deficits or diagnosis of arthritis were recruited locally.

Eligible participants attended one research appointment. Bilateral knee range of motion (RoM) was assessed with a goniometer. A motorised arthrometer (GENOUROB) was then used to quantify the anterior-posterior laxity of each knee. Finally, gait patterns were analysed on a treadmill. An 8-camera Vicon motion capture system generated the biomechanical model.

Preliminary statistical analyses were performed in SPSS (α = 0.05; required sample size for ongoing study: n=21 per group).

The patient cohort (n=21) was older and had a greater BMI than the comparative group (n=13). Patients also had significantly poorer RoM than healthy older adults. However, there were no inter-group differences in knee laxity, walking speed or cadence. Gait kinematics were comparable in the sagittal plane during stance phase. Peak knee flexion during swing phase was lower in the patient group, however (49.0° vs 41.1°).

Preliminary results suggest that knee laxity and some spatiotemporal and kinematic parameters of gait are restored in Nexgen TKA patients.

While knee RoM remains significantly poorer in the patient cohort, an average RoM of >110° was achieved. This suggests the implant provides sufficient RoM for most activities of daily living. Further improvements to knee kinematics may necessitate additional rehabilitation.

Future recruitment drives will concentrate on adults over the age of 70 for improved inter-group comparability.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 15 - 15
17 Apr 2023
Inglis B Inacio J Dailey H
Full Access

Virtual mechanical testing is a method for measuring bone healing using finite element models built from computed tomography (CT) scans. Previously, we validated a dual-zone material model for ovine fracture callus that differentiates between mineralized woven bone and soft tissue based on radiodensity.1 The objective of this study was to translate the dual-zone material model from sheep to two important clinical scenarios: human tibial fractures in early-stage healing and late-stage nonunions.

CT scans for N = 19 tibial shaft fractures were obtained prospectively at 12 weeks post-op. A second group of N = 33 tibial nonunions with CT scans were retrospectively identified. The modeling techniques were based on our published method.2 The dual-zone material model was implemented for humans by performing a cutoff sweep for both the 12-week and nonunion groups. Virtual torsional rigidity (VTR) was calculated as VTR = ML/φ [N-m2/°], where M is the moment reaction, L is the diaphyseal segment length, and φ is the angle of twist.

As the soft tissue cutoff was increased, the rigidity of the clinical fractures decreased and soft tissue located within the fracture gaps produced higher strains that are not predicted without the dual zone approach. The structural integrity of the nonunions varied, ranging from very low rigidities in atrophic cases to very high rigidities in highly calcified hypertrophic cases, even with dual-zone material modeling.

Human fracture calluses are heterogeneous, comprising of woven bone and interstitial soft tissue. Use of a dual-zone callus material model may be instrumental in identifying delayed unions during early healing when callus formation is minimal and/or predominantly fibrous with little mineralization.

ACKNOWLEDGEMENTS:

This work was supported by the National Science Foundation (NSF) grant CMMI-1943287.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 20 - 20
17 Apr 2023
Reimers N Huynh T Schulz A
Full Access

The objectives of this study are to evaluate the impact of the CoVID-19 pandemic on the development of relevant emerging digital healthcare trends and to explore which digital healthcare trend does the health industry need most to support HCPs.

A web survey using 39 questions facilitating Five-Point Likert scales was performed from 1.8.2020 – 31.10.2020. Of 260 participants invited, 90 participants answered the questionnaire. The participants were located in the Hospital/HCP sector in 11.9%, in other healthcare sectors in 22.2%, in the pharmaceutical sector in 11.1%, in the medical device and equipment industry in 43.3%. The Five-Point Likert scales were in all cases fashioned as from 1 (strongly disagree) to 5 (strongly agree).

As the top 3 most impacted digital health care trends strongly impacted by CoVID-19, respondents named:

- remote management of patients by telemedicine, mean answer 4.44

- shared data governance under patient control, mean answer 3.80

- new virtual interaction between HCP´s and medical industry, mean answer 3.76

Respondents were asked which level of readiness of the healthcare system currently possess to cope with the current trend impacted by CoVID-19.

- Digital and efficient healthcare logistics, mean answer 1.54

- Integrated health care, mean answer 1.73

- Use of big data and artificial intelligence, mean answer 2.03

Asked if collaborative research in the form of digital data platforms for research data sharing and increasing collaboration with multi-centric consortia would have a positive impact on the healthcare sector, the agreement was high with a value of mean 4.10 on the scale.

We can conclude that the impact of COVID-19 appears to be a high agreement of necessary advances in digitalization in the health care sector and in the collaboration of HCPs with the health care industry. Health care professional are unsure, in how far the national health care sector is capable of transformation in healthcare logistics and integrated health care.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 21 - 21
17 Apr 2023
Zioupos S Westacott D
Full Access

Flat-top talus (FTT) is a complication well-known to those treating clubfoot. Despite varying anecdotal opinions, its association with different treatments, especially the Ponseti method, remains uncertain. This systematic review aimed to establish the aetiology and prevalence of FTT, as well as detailing management strategies and their efficacy.

A systematic review was conducted according to PRISMA guidelines to search for articles using MEDLINE, EMBASE and Web of Science until November 2021. Studies with original data relevant to one of three questions were included: 1) Possible aetiology 2) Prevalence following different treatments 3) Management strategies and their outcomes.

32 original studies were included, with a total of 1473 clubfeet. FTT may be a pre-existing feature of the pathoanatomy of some clubfeet as well as a sequela of treatment. It can be a radiological artefact due to positioning or other residual deformity. The Ponseti method is associated with a higher percentage of radiologically normal tali (57%) than both surgical methods (52%) and non-Ponseti casting (29%). Only one study was identified that reported outcomes after surgical treatment for FTT (anterior distal tibial hemiepiphysiodesis).

The cause of FTT remains unclear. It is seen after all treatment methods but the rate is lowest following Ponseti casting. Guided growth may be an effective treatment.

Key words:

Clubfoot, Flat-top talus, Ponseti method, guided growth

Disclosures: The authors have no relevant disclosures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 87 - 87
17 Apr 2023
Aljuaid M Alzahrani S Bazaid Z Zamil H
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular inclination (AI) and acetabular and femoral head arcs’ radii (AAR and FHAR).

A cross-sectional retrospective study that had been done in a tertiary center where Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis.

A total of 84 patients was included with 52% of them were females. The mean of age was 30.38± 5.48. Also, Means of AI were 38.02±3.89 and 40.15±4.40 (P 0.02, significant gender difference) for males and females, respectively. Nonetheless, Head neck shaft angle (HNSA) means were 129.90±5.55 and 130.72±6.62 for males and females, respectively. However, AAR and FHAR means for males and females were 21.3±3.1mm, 19.9±3.1mm, P 0.04 and 19.7±3.1mm, 18.1±2.7mm, P 0.019, respectively. In addition, negative significant correlations were detected between AI against AAR, FHAR, HNSA and body mass index (BMI) (r 0.529, P ≤0.0001, r 0.445, P ≤0.0001, r 0.238, P 0.029, r 0.329, P ≤0.007, respectively). On the other hand, high BMI was associated with AAR and FHAR (r 0.577, P 0.0001 and r 0.266, p 0.031, respectively).

This study shows that high AI is correlated with lower AAR, FHAR. Each ethnic group has its own normal values that must be studied to tailor the path for future implications in clinical setting.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 90 - 90
17 Apr 2023
Kale S Singh S Dhar S
Full Access

To evaluate the functional outcome of open humerus diaphyseal fractures treated with the Three-stitch technique of antegrade humerus nailing.

This is a retrospective study conducted at the Department of Orthopaedics in D. Y. Patil University, School of Medicine, Navi Mumbai, India. The study included 25 patients who were operated on from January 2019 to April 2021 and follow-ups done till May 2022. Inclusion criteria were adult patients with open humerus diaphyseal fractures (Gustilo-Anderson Classification). All patients with closed fractures, skeletally immature patients, and patients with associated head injury were excluded from the study. All patients were operated on with a minimally invasive Three-stitch technique for antegrade humerus nailing. All patients were evaluated based on DASH score.

Out of the 25 patients included in the study, all patients showed complete union. The mean age of the patients was 40.4 years (range 23–66 years). The average period for consolidation of fracture was 10.56 weeks (range 8–14 weeks). The DASH score ranged from 0 to 15.8 with an average score of 2.96. Five patients reported complications with three patients of post-operative infection and delayed wound healing and two patients with screw loosening. All complications were resolved with proper wound care and the complete union was noted. None of the patients had an iatrogenic neurovascular injury.

Three-stitch antegrade nailing technique is a novel method to treat diaphyseal humerus fractures and provides excellent results. It has various advantages such as minimal invasiveness, minimal injury to the rotator cuff, fewer infection rates, minimal iatrogenic injuries, and good functional outcomes. Therefore, this treatment modality can be effectively used for open humerus diaphyseal fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 91 - 91
17 Apr 2023
Snuggs J Senter R Whitt J Le Maitre C
Full Access

Low back pain affects 80% of the population with half of cases attributed to intervertebral disc (IVD) degeneration. However, the majority of treatments focus on pain management, with none targeting the underlying pathophysiological causes. PCRX-201 presents a novel gene therapy approach that addresses this issue. PCRX-201 codes for interleukin-1 receptor antagonist (IL-1Ra), the natural inhibitor of the pro-inflammatory cytokine IL-1, which orchestrates the catabolic degeneration of the IVD. Our objective here is to determine the ability of PCRX-201 to infect human nucleus pulposus (NP) cells and tissue to increase the production of IL-1Ra and assess downstream effects on catabolic protein production.

Degenerate human NP cells and tissue explants were infected with PCRX-201 at 0 or 3000 multiplicities of infection (MOI) and subsequently cultured for 5 days in monolayer (n=7), 21 days in alginate beads (n=6) and 14 days in tissue explants (n=5). Cell culture supernatant was collected throughout culture duration and downstream targets associated with pain and degeneration were assessed using ELISA.

IL-1Ra production was increased in NP cells and tissue infected with PCRX-201. The production of downstream catabolic proteins such as IL-1β, IL-6, MMP3, ADAMTS4 and VEGF was decreased in both 3D-cultured NP cells and tissue explants.

Here, we have demonstrated that a novel gene therapy, PCRX-201, is able to infect and increase the production of IL-1Ra in degenerate NP cells and tissue in vitro. The increase of IL-1Ra also resulted in a decrease in the production of a number of pro-inflammatory and catabolic proteins, suggesting PCRX-201 enables the inhibition of IL-1-driven IVD degeneration. At present, no treatments for IVD degeneration target the underlying pathology. The ability of FX201 to elicit anti-catabolic responses is promising and warrants further investigation in vitro and in vivo, to determine the efficacy of this exciting, novel gene therapy.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 95 - 95
17 Apr 2023
Gupta P Butt S Galhoum A Dasari K
Full Access

Between 2016–2019, 4 patients developed hip infections post-hemiarthroplasty. However, between 2020–2021 (Covid-19 pandemic period), 6 patients developed hip infections following hip hemiarthroplasty.

The purpose of the investigation is to establish the root causes and key learning from the incident and use the information contained within this report to reduce the likelihood of a similar incident in the future. 65 patients presented with a neck of femur fracture during Covid-19 pandemic period between 2020–2021, 26 had hip hemiarthroplasty of which 6 developed hip infections. Medical records, anaesthetic charts and post-hip infections guidelines from RCS and NICE were utilised.

Proteus, Enterococci and Strep. epidermis were identified as the main organisms present causing the hip infection. The average number of ward moves was 4 with 90% of patients developing COVID-19 during their hospital stay. The chance of post-operative wound infection were multifactorial. Having had 5 of 6 patients growing enterococci may suggest contamination of wound either due to potential suboptimal hygiene measures, inadequate wound management /dressing, potential environmental contamination if the organisms (Vancomycin resistant enterococci) are found to be of same types and potential hospital acquired infection due to inadequate infection control measures or suboptimal hand hygiene practices. 3 of the 5 patients grew Proteus, which points towards suboptimal hygiene practices by patients or poor infection control practices by staff.

Lack of maintenance of sterility in post op wound dressings alongside inexperience of the handling of post-operative wound in non-surgical wards; multiple ward transfers exceeding the recommended number according to trust guidelines especially due to pandemic isolation measures and COVID-19 infection itself had resulted in an increased rate of hip infections during the COVID-19 pandemic. Multidisciplinary team education and planned categorisation and isolation strategy is essential to minimise the rate of further hip infections during the pandemic period in future.