Abstract
Abstract
Background
Ultrasonic cutting of bone boasts many advantages over alternatively powered surgical instruments, including but not limited to: elimination of swarf, reduced reaction forces, increased precision in cutting and reduced adjacent soft tissue damage, reduced post-operative complications such as bleeding and bone fracture, reduced healing time, reduced intra-operative noise and ease of handling. Despite ultrasonic cutting devices being well established in oral and maxillofacial surgery, applications in orthopaedic surgery are more niche and are not as well understood. The aim of this study was to investigate the cutting speed (mm/s) and cutting forces (N) of orthopaedic surgeons using a custom-designed state of the art ultrasonic cutting tool to cut fresh human bone samples.
Methods
A setup based on the Robot Operating System (ROS) and AprilTag was designed to track and to record the real time position of the ultrasonic cutting tool in space. Synchronised load cell axial force readings of three separate orthopaedic surgeons during ultrasonic cutting were recorded. Each surgeon was asked to find a comfortable position that reflects as close as possible their clinical handling of a cutting instrument used in surgery, and to perform two cuts in each of three samples of human cortical bone. Bone samples were obtained following ethical approval from an institutional review board (ethics approval number: SR1342) and prior informed consent was obtained from all patients. Bone samples were extracted from the femoral neck region of three hip osteoarthritis patients. During cutting, surgeons were allowed a total cutting time of one minute and cutting was conducted using an ultrasonic tool with frequency of a 35kHz (35.7 µm peak to peak displacement amplitude) under constant irrigation using a MINIPULS® 3 Peristaltic pump (38 revolutions per minute) using Phosphate-Buffered Saline (PBS) at 25°C. From the recorded data, the average instantaneous cutting velocity was calculated and the maximum cutting force was identified.
Results
All surgeons assumed a back-and-forth cutting motion, variation in the applied cutting force was observed. The average vertical cutting speed, axial cutting force and cutting depth across all surgeons and all samples was 1.64 mm/s, 1.91 N and 0.73 mm, respectively. While increasing the axial cutting force resulted in a deeper cut, overloading of the ultrasound transducer occurred when the tool advanced too quickly into the bone tissue during cutting. The exact force threshold, or the optimal speed at which the surgeon can maintain a constant force during cutting, requires further investigation.
Conclusions
In this study, all surgeons cut using a back-and-forth cutting motion, with variation in the applied cutting force which may ultimately inform which clinical applications in orthopaedic engineering are most suitable for this technology. Applying too much force caused overloading of the ultrasound transducer, which is a limitation with the current cutting tool. The results from this study may facilitate the eventual uptake of ultrasonic cutting tools for application in orthopaedic surgery.
Declaration of Interest
(b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.