Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

QUANTIFICATION OF ERROR IN THE MANUAL SEGMENTATION OF ANKLE CT SCANS

The British Orthopaedic Research Society (BORS) 2023 Meeting, Cambridge, England, 25–26 September 2023.



Abstract

Abstract

Objectives

The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented bone geometry is independent of the particular bone being measured.

Methods

Computed tomography (CT) scan data (slice thickness 1 mm, pixel size 808±7 µm) from three anonymous patients was used for the development of the ankle geometries (consisting of the tibia, fibula, talus, calcaneus, and navicular bones) using Simpleware Scan IP software (Synopsys, Exeter, UK). Each CT scan was segmented 4 times by an inexperienced undergraduate, resulting in a total of 12 geometry assemblies. An experienced researcher segmented each scan once, and this was used as the ‘gold standard’ to quantify the accuracy. The solid bone geometries were imported into CAD software (Inventor 2023, Autodesk, CA, USA) for measurement of the surface area and volume of each bone, and the distances between bones (tibia to talus, talus to navicular, talus to calcaneus, and tibia to fibula) were carried out. The intra-class coefficient (ICC) was used to assess intra-observer reliability. Bland Altman plots were employed as a statistical measure for criteria validity (accuracy) [1].

Results

The average ICC score was 0.93, which is regarded as a high reliability score for an inexperienced user. The talus to navicular and talus to tibia separations, which had the smallest distances, showed a slight decrease in reliability and this was observed for all separations shorter than 2 mm. According to the Bland-Altman plots, more than 95% of the data points were inside the borders of agreement, which is an excellent indication of accuracy. The bias percentage (average error percentage) varied between 1% and 4% and was constant across all parameters, with the proportion rising for short distance separations.

Conclusions

The current study demonstrates that an inexperienced undergraduate, with access to software manuals, can segment an ankle CT scan with excellent reliability. The present study also concluded that all five bones were segmented with high levels of accuracy, and this was not influenced by bone volume or type. The only factor found to influence the reliability was the magnitude of distance between bones, where if this was smaller than 2 mm it reduced the reliability, indicating the influence of CT scan resolution on the segmentation reliability.

Declaration of Interest

(b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.