Abstract
It is still difficult to determine an appropriate hinge position to prevent fracture in the lateral cortex of tibia in the process of making an open wedge during biplane open wedge high tibial osteotomy. The objective of this study was to present a biomechanical basis for determining the hinge position as varus deformity.
T Three-dimensional lower extremity models were constructed using Mimics. The tibial wedge started at 40 mm distal to the medial tibial plateau, and osteotomy for three hinge positions was performed toward the head of the fibula, 5 mm proximal from the head of the fibula, and 5 mm distal from the head of the fibula. The three tibial models were made with varus deformity of 5, 10, 15 degrees with heterogeneous material properties. These properties were set to heterogeneous material properties which converted from Hounsfield's unit to Young's modulus by applying empirical equation in existing studies. For a loading condition, displacement at the posterior cut plane was applied referring to Hernigou's table considering varus deformity angle. All computational analyses were performed to calculate von-mises stresses on the tibial wedges.
The maximum stress increased to an average of 213±9% when the varus angle was 10 degrees compared to 5 degrees and increased to an average of 154±8.9% when the varus angle was 15 degrees compared to 10 degrees. In addition, the maximum stress of the distal position was 19 times higher than that of the mid position and 5 times higher than that of the proximal position on average.
Conclusion:
For varus deformity angles, the maximum stress of the tibial wedge tended to increase as the varus deformity angle increased. For hinge position of tibial wedge, maximum stress was the lowest in the mid position, while the highest in the distal position.
*This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2022R1A2C1009995)