Advertisement for orthosearch.org.uk
Results 1 - 20 of 329
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 261 - 266
1 Feb 2005
Földhazy Z Arndt A Milgrom C Finestone A Ekenman I

Strains applied to bone can stimulate its development and adaptation. High strains and rates of strain are thought to be osteogenic, but the specific dose response relationship is not known. In vivo human strain measurements have been performed in the tibia to try to identify optimal bone strengthening exercises for this bone, but no measurements have been performed in the distal radial metaphysis, the most frequent site of osteoporotic fractures. Using a strain gauged bone staple, in vivo dorsal metaphyseal radial strains and rates of strain were measured in ten female patients during activities of daily living, standard exercises and falls on extended hands. Push-ups and falling resulted in the largest compression strains (median 1345 to 3146 με, equivalent to a 0.1345% to 0.3146% length change) and falling exercises in the largest strain rates (18 582 to 45 954 με/s). On the basis of their high strain and/or strain rates these or variations of these exercises may be appropriate for distal radial metaphyseal bone strengthening


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 11 - 11
17 Apr 2023
Inacio J Schwarzenberg P Yoon R Kantzos A Malige A Nwachuku C Dailey H
Full Access

The objective of this study was to use patient-specific finite element modeling to measure the 3D interfragmentary strain environment in clinically realistic fractures. The hypothesis was that in the early post-operative period, the tissues in and around the fracture gap can tolerate a state of strain in excess of 10%, the classical limit proposed in the Perren strain theory. Eight patients (6 males, 2 females; ages 22–95 years) with distal femur fractures (OTA/AO 33-A/B/C) treated in a Level I trauma center were retrospectively identified. All were treated with lateral bridge plating. Preoperative computed tomography scans and post-operative X-rays were used to create the reduced fracture models. Patient-specific materials properties and loading conditions (20%, 60%, and 100% body weight (BW)) were applied following our published method.[1]. Elements with von Mises strains >10% are shown in the 100% BW loading condition. For all three loading scenarios, as the bridge span increased, so did the maximum von Mises strain within the strain visualization region. The average gap closing (Perren) strain (mean ± SD) for all patient-specific models at each body weight (20%, 60%, and 100%) was 8.6% ± 3.9%, 25.8% ± 33.9%, and 39.3% ± 33.9%, while the corresponding max von Mises strains were 42.0% ± 29%, 110.7% ± 32.7%, and 168.4% ± 31.9%. Strains in and around the fracture gap stayed in the 2–10% range only for the lowest load application level (20% BW). Moderate loading of 60% BW and above caused gap strains that far exceeded the upper limit of the classical strain rule (<10% strain for bone healing). Since all of the included patients achieved successful unions, these findings suggest that healing of distal femur fractures may be robust to localized strains greater than 10%


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 40 - 40
17 Nov 2023
Kuder I Jones G Rock M van Arkel R
Full Access

Abstract. Objectives. Ultrasound speckle tracking is a safe and non-invasive diagnostic tool to measure soft tissue deformation and strain. In orthopaedics, it could have broad application to measure how injury or surgery affects muscle, tendon or ligament biomechanics. However, its application requires custom tuning of the speckle-tracking algorithm then validation against gold-standard reference data. Implementing an experiment to acquire these data takes months and is expensive, and therefore prohibits use for new applications. Here, we present an alternative optimisation approach that automatically finds suitable machine and algorithmic settings without requiring gold-standard reference data. Methods. The optimisation routine consisted of two steps. First, convergence of the displacement field was tested to exclude the settings that would not track the underlying tissue motion (e.g. frame rates that were too low). Second, repeatability was maximised through a surrogate optimisation scheme. All settings that could influence the strain calculation were included, ranging from acquisition settings to post-processing smoothing and filtering settings, totalling >1,000,000 combinations of settings. The optimisation criterion minimised the normalised standard deviation between strain maps of repeat measures. The optimisation approach was validated for the medial collateral ligament (MCL) with quasi-static testing on porcine joints (n=3), and dynamic testing on a cadaveric human knee (n=1, female, aged 49). Porcine joints were fully dissected except for the MCL and loaded in a material-testing machine (0 to 3% strain at 0.2 Hz), which was captured using both ultrasound (>14 repeats per specimen) and optical digital image correlation (DIC). For the human cadaveric knee (undissected), 3 repeat ultrasound acquisitions were taken at 18 different anterior/posterior positions over the MCL while the knee was extended/flexed between 0° and 90° in a knee extension rig. Simultaneous optical tracking recorded the position of the ultrasound transducer, knee kinematics and the MCL attachments (which were digitised under direct visualisation post testing). Half of the data collected was used for optimisation of the speckle tracking algorithms for the porcine and human MCLs separately, with the remaining unseen data used as a validation test set. Results. For the porcine MCLs, ultrasound strains closely matched DIC strains (R. 2. > 0.98, RMSE < 0.59%) (Figure 1A). For the human MCL (Figure 1B), ultrasound strains matched the strains estimated from the optically tracked displacements of the MCL attachments. Furthermore, strains developed during flexion were highly correlated with AP position (R = 0.94) with strains decreasing the further posterior the transducer was on the ligament. This is in line with previously reported length change values for the posterior, intermediate and anterior bundles of the MCL. Conclusions. Ultrasound speckle tracking algorithms can be adapted for new applications without ground-truth data by using an optimisation approach that verifies displacement field convergence then minimises variance between repeat measurements. This optimisation routine was insensitive to anatomical variation and loading conditions, working for both porcine and human MCLs, and for quasi-static and dynamic loading. This will facilitate research into changes in musculoskeletal tissue motion due to abnormalities or pathologies. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 75 - 75
4 Apr 2023
Numpaisal P Khatsee S Arunsan P Ruksakulpiwat Y
Full Access

Silk fibroin (SF) has been used as a scaffold for cartilage tissue engineering. Different silkworms strain produced different protein. Also, molecular weight of SF depends on extraction method. We hypothesised that strain of silkworm and method of SF extraction would effect biological properties of SF scaffold. Therefore, cell viability and chondrogenic gene expression of human chondrogenic progenitor cells (HCPCs) treated with SF from 10 silkworm strains and two common SF extraction methods were investigate in this study. Twenty g of 10 strains silk cocoons were separately degummed in 0.02M Na2CO3 solution and dissolved in 100๐C for 30 minutes. Half of them were then dissolved in CaCl2/Ethanol/H2O [1:2:8 molar ratio] at 70±5๐C (method 1) and other half was dissolved in 46% w/v CaCl2 at 105±5๐C (method 2) for 4 hours. HCPCs were cultured in SF added cultured medial according to strain and extraction method. Cell viability at day 1, 3, and 7, were determined. Expression of collagen I, collagen II, and aggrecan at day 7 and 14, was studied. All experiment were done in triplicated samples. Generally, method 1 SF extraction showed higher cell viability in all strains. Cell viability from Nanglai Saraburi, Laung Saraburi and Nangtui strains were higher than those without SF in every time point while Wanasawan and J108 had higher viability at day 1 and decreased by time. Expression in collagen 1, collagen 2 and aggrecan in method 1 are higher at day 7 and day 14. Collagen 1 expression was highest in Nangnoi Srisaket, followed by Laung Saraburi and Nanglai Saraburi in day 7. Nangnoi Srisaket also had highest expression at day 14, followed by Nanglai Saraburi and Laung Saraburi respectively. Nangseaw had highest collagen 2 expression, follow by Laung Saraburi and Nangnoi Srisaket respectively. Higher aggrecan gene expression of Tubtimsiam, Wanasawan, UB 1 and Nangnoi Srisaket was observed at day 7 and increased expression of all strains at day 14. SF extraction using CaCl2/Ethanol/H2O offered better cell viability and chondrogenic expression. Nangseaw, Laung Saraburi and Nangnoi Srisaket strains expressed more chondrogenic phenotype


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 44 - 44
1 Mar 2021
Clark J Tavana S Jeffers J Hansen U
Full Access

Abstract. OBJECTIVES. An unresolved challenge in osteoarthritis research is characterising the localised intra-tissue mechanical response of articular cartilage. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) and digital volume correlation (DVC) permit non-destructive visualisation of three-dimensional (3D) strain fields in human articular cartilage. METHODS. Human articular cartilage specimens were harvested from the knee (n=4 specimens from 2 doners), mounted into a loading device and imaged in the loaded and unloaded state using a micro-CT scanner. Strain was calculated throughout the volume of the cartilage using the CT image data. RESULTS. Strain was calculated in the 3D volume with a spatial resolution of 75 µm, and the volumetric DVC calculated strain was within 5% of the known applied stain. Variation in strain distribution between the superficial, middle and deep zones was observed, consistent with the different architecture of the material in these locations. CONCLUSIONS. The DVC method is suitable for calculating strain in human articular cartilage. This method will be useful to generate chondral repair scaffolds that that seek to replicate the strain gradient in cartilage. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 75 - 75
1 Nov 2021
Ramos A Matos M
Full Access

Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º inclination angle and 20º in the anteversion angle. Were developed five models with same initial bone, one with intact condition simulating the cartilage between bones and four with different bone loss around the acetabular component. These four models representing the evolution of bone support of acetabular components presented in the literature. The evolution of bone loss was imposed with a CAD CAM process in same iliac bone model. The models were instrumented with 5 rosettes in critical region at the cortical bone to measure the strain evolution along the process. Results. The results of strain gauges present the influence of acetabular component implantation, reducing the bone strains and presented the effect of the strain shielding. The acetabular component works as a shield in the load transfer. The critical region is the posterior region with highest principal strains and the strain effect was observed with different bone loss around acetabular component. The maximum value of principal strain was observed in the intact condition in the anterior region, with 950μ∊. In the posterior superior region, the effect of bone loss is more important presenting a reduction of 500% in the strains. The effect of bone loss is presented in the strains induced with acetabular implantation, in the first step of implantation the maximum strain was 950μ∊ and in the last model the value was 50μ∊, indicating lower press-fit fixation. Conclusions. The models developed allows study the effect of bone loss and acetabular implant fixation in the load transfer at the hip articulation. The results presented a critical region as the anterior-superior and the effect of strain shielding was observed in comparison with intact articulation. The results of press-fit fixation present a reduction of implant stability along bone loss. The process of bone fixation developed present some limitation associated to the bone adhesion in the interface, not considered. Acknowledgement. This work was supported by POCI-01-0145-FEDER-032486,– FCT, by the FEDER, with COMPETE2020 - (POCI), FCT/M


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 28 - 28
14 Nov 2024
Heumann M Jacob A Gueorguiev B Richards G Benneker L
Full Access

Introduction. Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured vertebra during healing with a pedicle-screw-rod constructs. As healing is taking place the load shifts from the implant back to the spine. Monitoring the load-induced deflection of the rods over time would allow quantifiable postoperative assessment of healing progress without the need for radiation exposure or frequent hospital visits. This approach, previously demonstrated to be effective in assessing fracture healing in long bones and monitoring posterolateral spinal fusion in sheep, is now being investigated for its potential in evaluating lumbar vertebra transosseous fracture healing. Method. Six human cadaveric spines were instrumented with pedicle-screws and rods spanning L3 vertebra. The spine was loaded in Flexion-Extension (FE), Lateral-Bending (LB) and Axial-Rotation (AR) with an intact L3 vertebra (representing a healed vertebra) and after transosseous disruption, creating an AO type B1 fracture. The implant load on the rod was measured using an implantable strain sensor (Monitor) on one rod and on the contralateral rod by a strain gauge to validate the Monitor's measurements. In parallel the range of motion (ROM) was assessed. Result. The ROM increased significantly in all directions in the fractured model (p≤0.049). The Monitor measured a significant increase in implant load in FE (p=0.002) and LB (p=0.045), however, not in AR. The strain gauge detected an increased implant load not only in FE (p=0.001) and LB (p=0.016), but also in AR (p=0.047). The highest strain signal was found during LB for both, the Monitor, and the strain gauge. Conclusion. After a complete transosseous disruption of L3 vertebra the load on the implants was significantly higher than in the intact respectively healed state. Innovative implantable sensors could be used to monitor those changes allowing the assessment of healing progression based on quantifiable data rather than CT-imaging


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 78 - 78
1 Dec 2020
Dandois F Taylan O D'hooge J Vandenneucker H Slane L Scheys L
Full Access

In-situ assessment of collateral ligaments strain could be key to improving total knee arthroplasty outcomes by improving the ability of surgeons to properly balance the knee intraoperatively. Ultrasound (US) speckle tracking methods have shown promise in their capability to measure in-situ soft tissue strain in large tendons but prior work has also highlighted the challenges that arise when attempting to translate these approaches to the in-situ assessment of collateral ligaments strain. Therefore, the aim of this project was to develop and validate an US speckle tracking method to specifically assess in-situ strains of both the MCL and LCL. We hypothesize that coefficients of determination (R. 2. ) would be above 0.90 with absolute differences below 0.50% strain for the comparison between US-based and the reference strain, with better results expected for the LCL compared with the MCL. Five cadaveric legs with total knee implants (NH019 2017-02-03) were submitted to a varus (LCL) and valgus (MCL) ramped loading (0 – 40N). Ultrasound radiofrequency (rf) data and reference surface strains data, obtained with 3D digital image correlation (DIC), were collected synchronously. Prior to processing, US data were qualitatively assessed and specimens displaying substantial imaging artefacts were discarded, leaving five LCL and three MCL specimens in the analysis. Ultrasound rf data were processed in Matlab (The MathWorks, Inc., Natick, MA) with a custom-built speckle tracking approach adapted from a method validated on larger tendons and based on normalized cross-correlation. Digital image correlation data were processed with commercial software VIC3D (Correlated Solutions, Inc., Columbia, SC). To optimize speckle tracking, several tracking parameters were tested: kernel and search window size, minimal correlation coefficient and simulated frame rate. Parameters were ranked according to three comparative measures between US- and DIC-based strains: R. 2. , mean absolute error and strains differences at 40N. Parameters with best average rank were considered as optimal. To quantify the agreement between US- and DIC-based strain of each specimen, the considered metrics were: R. 2. , mean absolute error and strain differences at 40N. The LCL showed a good agreement with a high average R. 2. (0.97), small average mean absolute difference (0.37%) and similar strains at 40N (DIC = 2.92 ± 0.10%; US = 2.99 ± 1.16%). The US-based speckle tracking method showed worse performance for the MCL with a lower average correlation (0.55). Such an effect has been observed previously and may relate to the difficulty in acquiring sufficient image quality for tracking the MCL compared to the LCL, which likely arises due to structural or mechanical differences; notably MCL is larger, thinner, more wrapped around the bone and stretches less. However, despite these challenges, the MCL tracking still showed small average mean absolute differences (0.44%) and similar strains at 40N (DIC = 1.48 ± 0.06%; US = 1.44 ± 1.89%). We conclude that the ultrasound speckle tracking method developed is ready to be used as a tool to assess in-situ strains of LCL. Concerning the MCL strain assessment, despite some promising results in terms of strain differences, further work on acquisition could be beneficial to reach similar performance


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. Methods. A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system. Results. A 5° increase in tibial component posterior slope resulted in a 53% increase in mean major principal strain in the posterior tibial zone adjacent to the implant (p = 0.003). The highest strains for all implant positions were recorded in the anterior cortex 2 cm to 3 cm distal to the implant. Posteriorly, strain tended to decrease with increasing distance from the implant. Lateral cortical strain showed no significant relationship with implant position. Conclusion. Relatively small changes in implant position and orientation may significantly affect tibial cortical strain. Avoidance of excessive posterior tibial slope may be advisable during lateral UKA. Cite this article: A. M. Ali, S. D. S. Newman, P. A. Hooper, C. M. Davies, J. P. Cobb. The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty: A Biomechanical Model Using Digital Image Correlation. Bone Joint Res 2017;6:522–529. DOI: 10.1302/2046-3758.68.BJR-2017-0067.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 17 - 17
17 Nov 2023
Naeem H Maroy R Lineham B Stewart T Harwood P Howard A
Full Access

Abstract. OBJECTIVES. To determine if force measured using a strain gauge in circular external fixation frames is different for 1) different simulated stages of bone healing, and for 2) fractures clinically deemed either united or un-united. METHODS. In a laboratory study, 3 similar Ilizarov frame constructs were assembled using a Perspex bone analogue. Constructs were tested in 10 different clinical situations simulating different stages of bone healing including with the bone analogue intact, with 1,3 and 50mm gaps, and with 6 materials of varying stiffness's within the 50mm gap. A Bluetooth strain gauge was inserted across the simulated fracture focus, replacing one of the 4 threaded rods used to construct the frame. Constructs were loaded to 700N using an Instron testing machine and maximum force during loading was measured by the strain gauge. Testing was repeated with the strain gauge replacing each of the 4 threaded rods in turn, with measurements being repeated 3 times, across all 3 frame constructs for all 10 simulated clinical situations (n=360). Force measurements between the situations were compared using a Kruskal-Wallis test (KW) and a post-hoc Steel test was used for multiple comparison against control (intact bone model). Additionally, a pilot study has been initiated to assess clinical efficacy of the strain gauge measurement in patients with circular frames. The strain gauge replaced the anterior rod across the fracture focus for each patient. Patients were asked to step on a weighing scale with their affected limb, and maximum weight transfer through the limb and maximal force measured in the frame were recorded. This was repeated 3 times and a mean ratio of force to weight through affected limb was calculated for each patient. The clinical situation at each measurement was designated as united or un-united by one of the senior authors for analysis. Force measurements between the situations were compared using a Wilcoxon-Mann-Whitney test. RESULTS. In the laboratory study, including all constructs with the strain gauge in all positions, a statistically significant relationship between model stability and force measured was identified (KW test for overall relationship p<0.0001). The largest force was measured in the model with a 50mm gap (median 170N, IQR 155–192, range 83–213) and the smallest in the intact bone model (median 3N, IQR 1–8, range 0–11). Multiple comparison testing found a significant difference between intact bone and all the unstable situations (p=0.002 or better). Examining initial results from our pilot clinical study, nine measurements were available in seven patients. Three of these were taken in patients with fractures yet to unite, six in patients where union has since been confirmed clinically. The median force measured was significantly greater where the fracture was not united (median 1.66 N/kg, range 1.07–1.99 vs 0.12 N/kg, range 0.05–0.73, p=0.02). CONCLUSIONS. This laboratory study demonstrates that force measurement may be different at different stages of healing, and although only limited data was available, a pilot clinical study showed a significant relationship between the force measured and clinical union of the patient's fracture. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 61 - 61
1 Dec 2020
Ramos A Mesnard M Sampaio P
Full Access

Introduction. The ankle cartilage has an important function in walking movements, mainly in sports; for active young people, between 20 and 30 years old, the incidence of osteochondral lesions is more frequent. They are also more frequent in men, affecting around 21,000 patients per year in USA with 6.5% of ankle injuries generating osteochondral lesions. The lesion is a result of ankle sprain and is most frequently found in the medial location, in 53% of cases. The main objective of this work was to develop an experimental and finite element models to study the effect of the ankle osteochondral lesion on the cartilage behavior. Materials and Methods. The right ankle joint was reconstructed from an axial CT scan presenting an osteochondral lesion in the medial position with 8mm diameter in size. An experimental model was developed, to analyze the strains and influence of lesion size and location similar to the patient. The experimental model includes two cartilages constructed by Polyjet™ 3D printing from rubber material (young modulus similar to cartilage) and bone structures from a rigid polymer. The cartilage was instrumented with two rosettes in the medial and lateral regions, near the osteochondral region. The fluid considered was water at room temperature and the experimental test was run at 1mm/s. The Finite element model (FE) includes all the components considered in the experimental apparatus and was assigned the material properties of bone as isotropic and linear elastic materials; and the cartilage the same properties of rubber material. The fluid was simulated as hyper-elastic one with a Mooney-Rivlin behavior, with constants c1=0.07506 and c2=0.00834MPa. The load applied was 680N in three positions, 15º extension, neutral and 10º flexion. Results. The experimental strain measured in the cartilage in the rosettes presents similar behavior in all experiments and repetitions. The maximum value observed near the osteochondral lesion was 3014(±5.6)µε in comparison with the intact condition it was 468 (±1.95)µε. The osteochondral lesion increases the strains around 6.5 times and the synovial liquid reduces the intensity of strain distribution. The numerical model presents a good correlation with the experiments (R2 0.944), but the FE model underestimates the values. Discussion and conclusion. As a first conclusion, the size of the osteochondral lesion is important for the strains developed in cartilage. The size of lesion greater than 10mm is critical for the strains concentration. The synovial fluid present an important aspect in the strains measured, it reduces the strains in the external surface of cartilage and induces an increase in the lower part. This phenomenon should be addressed in more studies to evaluate this effect


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 63 - 63
1 Mar 2021
Halcrow B Wilcox R Brockett C
Full Access

Abstract. Introduction. Ankle arthritis is estimated to affect approximately 72 million people worldwide. Treatment options include fusion and total ankle replacement (TAR). Clinical performance of TAR is not as successful as other joint replacement and failure is poorly understood. Finite element analysis offers a method to assess the strain in bone implanted with a TAR. Higher strain has been associated with microfracture and alters the bone-implant interface. The aim of this study was to explore the influence of implant fixation on strain within the tibia when implanted with a TAR through subject-specific models. Methods. Five cadaveric ankles were scanned using a Scanco Xtreme CT. The Tibia and Talus were segmented from each scan and virtually implanted with a Zenith TAR (Corin, UK) according to published surgical technique. Patient specific models were created and run at five different positions of the gait cycle corresponding to peak load and flexion values identified from literature. Bone material properties were derived from CT greyscale values and all parts were meshed with linear tetrahedral elements. The implant-bone interface was adjusted to fully-fixed or frictionless contact, representing different levels of fixation post-surgery. Strain distributions around the tibial bone fixation were measured. Results. Initial results showed clear differences in strain distributions both between different ankle specimens and fixation levels, with highest strain occurring within the bone at the tip of the tibial stem. Frictionless contact gave higher strain outputs than fully-fixed for all specimens with a range 0.12–0.3% and 0.07%–0.13% respectively. Conclusions. In all specimens, strain was higher in the frictionless contact, which may be considered representative of no bony ingrowth, highlighting fixation may be a critical factor in TAR failure. Differences observed between specimens highlights that TAR may not be a suitable intervention for all patients, due to variation in bone quality and anatomy. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 3 - 3
1 Jan 2019
Edwards J Ingham E Fisher J Herbert A
Full Access

We have developed a decellularised porcine superflexor tendon (pSFT), which has shown promising regenerative capacity in an ovine model of anterior cruciate ligament (ACL) repair. This study investigated the strain rate dependent and dynamic mechanical properties of native and decellularised pSFTs. Decellularisation was carried out using a previously established procedure, including antibiotic washes, low concentration detergent (0.1% sodium dodecyl sulphate) washes and nuclease treatments. Three different strain rates were employed: 1, 10 & 100%s-1 (n=6 for all groups). Toe-region modulus (E0), linear-region modulus (E1), transition coordinates (εT, σT), tensile strength (UTS) and failure strain were calculated. For DMA, specimens were loaded between 1 & 5MPa with increasing frequency up to 2Hz. Dynamic (E*), storage (E') and loss (E'') moduli, and tan delta were calculated for native and decellularised groups (n=6). Data was analysed by 2-way ANOVA and Tukey post-hoc test (p<0.05). For decellularised tendons, altering the strain rate did not affect any of the static tensile properties. For native pSFTs, the UTS, failure strain and E1 were not affected by changing the strain rate. Increasing the strain rate significantly increased E0 (1% vs 10% and 1% vs 100%) and σT (1% vs 100%) and decreased εT (1% vs 10% and 1% vs 100%) for native pSFT. E*, E' and E'' were all significantly reduced in decellularised specimens compared to native controls across all frequencies investigated. No significant differences were found for tan delta. Evidence of strain rate dependency was witnessed in the native pSFTs by increase of the toe region modulus and displacements of the transition point coordinates. This response was not seen in the tissue following decellularisation. DMA demonstrated a reduction in dynamic, storage and loss moduli. Tan delta (E''/E') remained unchanged, indicating reductions in solid and fluid components are interlinked


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 124 - 130
1 Jan 2009
Deuel CR Jamali AA Stover SM Hazelwood SJ

Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs. The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 821 - 824
1 Jun 2008
Board TN Rooney P Kay PR

In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an in vitro experiment to measure strain-related release of bone morphogenetic protein-7 (BMP-7) from fresh-frozen femoral head allograft. A total of 40 10 mm cubes of cancellous bone were cut from ten samples of fresh-frozen femoral head. The marrow was removed from the cubes and the baseline concentrations of BMP-7 were measured. Specimens from each femoral head were allocated to four groups and subjected to different compressive strains with a material testing machine, after which BMP-7 activity was reassessed. It was present in all groups. There was a linear increase of 102.1 pg/g (95% confidence interval 68.6 to 135.6) BMP-7 for each 10% increase in strain. At 80% strain the mean concentration of BMP-7 released (830.3 pg/g bone) was approximately four times that released at 20% strain. Activity of BMP-7 in fresh-frozen allograft has not previously been demonstrated. This study shows that the freezing and storage of femoral heads allows some maintenance of biological activity, and that impaction grafting provides a source of osteoinductive bone for remodelling. We have shown that BMP-7 is released from fresh-frozen femoral head cancellous bone in proportion to the strain applied to the bone. This suggests that the impaction process itself may contribute to the biological process of remodelling and bony incorporation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 108 - 108
1 Aug 2012
Wallace R Simpson A
Full Access

There is an established link between bone quality and fracture risk. It has been suggested that reduced bone quality will also reduce the toughening mechanisms displayed during loading at a high strain rate. We hypothesised that partially decalcified bone will not demonstrate an increase in force required to cause failure when comparing low and high strain rate loading. Mechanical properties were defined by the maximum force at failure. Bone quality was defined by the mineral content. This was altered by subjecting the bones to ultrasonically assisted decalcification in 10M EDTA to achieve an average 18% mineral reduction (A 70 yr old woman has approx 18% of her peak bone mass). 20 pairs of sheep femurs were harvested and split into four equal groups: normal bone quality, fast strain rate (NF); normal bone quality, slow strain rate (NS); low bone quality, fast strain rate (LF) and low bone quality, slow strain rate (LS). All mechanical testing was carried out by means of 3-point bending. Load representing the slow strain rate was applied by a mechanical testing machine (Zwick) at a rate resulting in a deflection of 1mm/s. The dynamic loading was applied by a custom designed pneumatic ram at a mean rate of deflection between the specimens of 2983 mm/s (±SD 1155), this equates to strain rates experienced in a road traffic accident. The following results for force at failure were found (mean ± SD). NF: Force 5503N (± 1012); NS: Force 3969N (± 572); LF: Force 3485N (± 772); LS: Force 3165N (± 605). Groups were compared using a Mann-Whitney U test. Significant results were found between the following groups: Normal bone quality, strain rate compared (NF-NS) p<0.002; Fast strain rate, bone quality compared (NF-LF) p=0.008; Slow strain rate, bone quality compared (NS-LS) p=0.02. No statistical significance was found when comparing low bone quality, strain rate compared (LF-LS) p=0.47. These results show that normal healthy bone has an ability to withstand higher strain rates which protects it against fracture. This ability to withstand high strain rates is lost in decalcified bone making it more susceptible to fracture. The results of this study indicate the importance of strain rate reduction as well as energy absorption in the design of hip protectors and in environmental modifications


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 120 - 120
1 Jan 2017
Palanca M Marco M Ozóg K Cristofolini L
Full Access

The causes of spine disease are often biomechanical ones (e.g. disc degeneration, vertebral fracture). Currently, a deep investigation of the spine biomechanics is missing, due to the high complexity of the spine system (Fung 1980, Brandolini, Cristofolini et al. 2014): vertebrae and intervertebral discs. Recently, the Digital Image Correlation allowed measuring in vitrothe displacement and strain on the surface of soft and hard tissues, upon a specific non-invasive preparation of their surface with a speckle pattern (Palanca, Tozzi et al. 2016). The aim of this explorative work was to evaluate the deformation on spine segments, being able to distinguish between hard and soft tissue in the elastic regime and up to fracture. Segment of four vertebrae were extracted from porcine spines. All ligaments and muscles were removed, without damaging the spine segment (vertebrae and intervertebral discs). A suitable non-conventional white-on-black speckle pattern was prepared on the surface with airbrush airgun to track the movements of the specimen with DIC (Lionello, Sirieix et al. 2014). The endplates of the extreme vertebrae were potted in poly-methyl-methacrylate. The spine segments were tested in pure axial loading with cycles of increasing magnitude, up to fialure. A commercial 3D-DIC (Dantec Dynamics, Denmark) was used. In the present configuration, it allowed a resolution of 30 micrometers. It was used to measure the displacements and strains in a full-field and contactless way on the frontal surface of the spine segments. DIC allowed measuring with success the displacement and strain during the entire test, in the elastic regime and up to failure. The displacements and strains could be measured on the entire specimen, both in the vertebrae (hard tissue) and in the intervertebral discs (soft tissue). The axial strain evaluated prior to failure was close to 10’000 microstrain on the vertebral body surface and exceed 70’000 microstrain on the intervertebral discs, where failure was localized. The pattern, prepared in a dedicated way showed its suitability for both the bone and the disc. The evaluated failure strains were in agreement with the literature (Bayraktar, Morgan et al. 2004) (Spera, Genovese et al. 2011). To the authors' best knowledge, this kind of measurement including strain on soft and hard tissue simultaneously has never been performed before. This work showed the capability of DIC in providing full-field measures on the surface with complex geometry, such as the spine. The assertion of these potentialities could open the way to further application of DIC to study the behaviour of human spines, including improvement of spinal fixation devices


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 295 - 301
1 Mar 2001
Kim Y Kim J Cho S

Six pairs of human cadaver femora were divided equally into two groups one of which received a non-cemented reference implant and the other a very short non-dependent experimental implant. Thirteen strain-gauge rosettes were attached to the external surface of each specimen and, during application of combined axial and torsional loads to the femoral head, the strains in both groups were measured. After the insertion of a non-cemented femoral component, the normal pattern of a progressive proximal-to-distal increase in strains was similar to that in the intact femur and the strain was maximum near the tip of the prosthesis. On the medial and lateral aspects of the proximal femur, the strains were greatly reduced after implantation of both types of implant. The pattern and magnitude of the strains, however, were closer to those in the intact femur after insertion of the experimental stem than in the reference stem. On the anterior and posterior aspects of the femur, implantation of both types of stem led to increased principal strains E1, E2 and E3. This was most pronounced for the experimental stem. Our findings suggest that the experimental stem, which has a more anatomical proximal fit without having a distal stem and cortex contact, can provide immediate postoperative stability. Pure proximal loading by the experimental stem in the metaphysis, reduction of excessive bending stiffness of the stem by tapering and the absence of contact between the stem and the distal cortex may reduce stress shielding, bone resorption and thigh pain