Abstract
Silk fibroin (SF) has been used as a scaffold for cartilage tissue engineering. Different silkworms strain produced different protein. Also, molecular weight of SF depends on extraction method. We hypothesised that strain of silkworm and method of SF extraction would effect biological properties of SF scaffold. Therefore, cell viability and chondrogenic gene expression of human chondrogenic progenitor cells (HCPCs) treated with SF from 10 silkworm strains and two common SF extraction methods were investigate in this study.
Twenty g of 10 strains silk cocoons were separately degummed in 0.02M Na2CO3 solution and dissolved in 100๐C for 30 minutes. Half of them were then dissolved in CaCl2/Ethanol/H2O [1:2:8 molar ratio] at 70±5๐C (method 1) and other half was dissolved in 46% w/v CaCl2 at 105±5๐C (method 2) for 4 hours. HCPCs were cultured in SF added cultured medial according to strain and extraction method. Cell viability at day 1, 3, and 7, were determined. Expression of collagen I, collagen II, and aggrecan at day 7 and 14, was studied. All experiment were done in triplicated samples.
Generally, method 1 SF extraction showed higher cell viability in all strains. Cell viability from Nanglai Saraburi, Laung Saraburi and Nangtui strains were higher than those without SF in every time point while Wanasawan and J108 had higher viability at day 1 and decreased by time. Expression in collagen 1, collagen 2 and aggrecan in method 1 are higher at day 7 and day 14. Collagen 1 expression was highest in Nangnoi Srisaket, followed by Laung Saraburi and Nanglai Saraburi in day 7. Nangnoi Srisaket also had highest expression at day 14, followed by Nanglai Saraburi and Laung Saraburi respectively. Nangseaw had highest collagen 2 expression, follow by Laung Saraburi and Nangnoi Srisaket respectively. Higher aggrecan gene expression of Tubtimsiam, Wanasawan, UB 1 and Nangnoi Srisaket was observed at day 7 and increased expression of all strains at day 14.
SF extraction using CaCl2/Ethanol/H2O offered better cell viability and chondrogenic expression. Nangseaw, Laung Saraburi and Nangnoi Srisaket strains expressed more chondrogenic phenotype.