Advertisement for orthosearch.org.uk
Results 1 - 20 of 3267
Results per page:

Aims. This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. Methods. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy. Results. The maximum resection amount error was 2 mm. Out of 29 resection amount errors, 15 (51.7%) were grade 1 errors and 14 (48.3%) were grade 2 errors. Complex resections were associated with higher-grade resection amount errors (p < 0.001). The actual resection margins correlated significantly with the planned margins; however, there were some discrepancies. The maximum guide-fitting error was 3 mm. There were 22 (75.9%), five (17.2%), and two (6.9%) grade 1, 2, and 3 guide-fitting errors, respectively. There was no significant association between complex resection and fitting error grades. The guide distortion after one month in all patients was rated as grade 1. Conclusion. In terms of the accurate resection amount according to the preoperative planning, 3DP-PSRGs can be a viable option for bone tumour resection. However, 3DP-PSRG use may be associated with resection margin length discrepancies relative to the planned margins. Such discrepancies should be considered when determining surgical margins. Therefore, a thorough evaluation of the preoperative imaging and surgical planning is still required, even if 3DP-PSRGs are to be used. Cite this article: Bone Joint J 2023;105-B(2):190–197


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims. Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. Methods. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (. Δ. sacral slope(SS). stand-sit. > 30°), or stiff (. ∆. SS. stand-sit. < 10°) spinopelvic mobility contributed to increased error rates. Results. The paired absolute difference between CAS and postoperative imaging measurements was 2.3° (standard deviation (SD) 2.6°) for inclination and 3.1° (SD 4.2°) for anteversion. Using a target zone of 40° (± 10°) (inclination) and 20° (± 10°) (anteversion), postoperative standing radiographs measured 96% of acetabular components within the target zone for both inclination and anteversion. Multiple logistic regression analysis controlling for BMI and sex revealed that hypermobile spinopelvic mobility significantly increased error rates for anteversion (odds ratio (OR) 2.48, p = 0.009) and inclination (OR 2.44, p = 0.016), whereas stiff spinopelvic mobility increased error rates for anteversion (OR 1.97, p = 0.028). There were no dislocations at a minimum three-year follow-up. Conclusion. Despite high reliability in acetabular positioning for inclination in a large patient cohort using an optical CAS system, hypermobile and stiff spinopelvic mobility significantly increased the risk of clinically relevant errors. In patients with abnormal spinopelvic mobility, CAS systems should be adjusted for use to avoid acetabular component misalignment and subsequent risk for long-term dislocation. Cite this article: Bone Jt Open 2022;3(6):475–484


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 30 - 30
1 Dec 2022
Lohre R Lobo A Bois A Pollock J Lapner P Athwal G Goel D
Full Access

Glenoid baseplate orientation in reverse shoulder arthroplasty (RSA) influences clinical outcomes, complications, and failure rates. Novel technologies have been produced to decrease performance heterogeneity of low and high-volume surgeons. This study aimed to determine novice and experienced shoulder surgeon's ability to accurately characterise glenoid component orientation in an intra-operative scenario. Glenoid baseplates were implanted in eight fresh frozen cadavers by novice surgical trainees. Glenoid baseplate version, inclination, augment rotation, and superior-inferior centre of rotation (COR) offset were then measured using in-person visual assessments by novice and experienced shoulder surgeons immediately after implantation. Glenoid orientation parameters were then measured using 3D CT scans with digitally reconstructed radiographs (DRRs) by two independent observers. Bland-Altman plots were produced to determine the accuracy of glenoid orientation using standard intraoperative assessment compared to postoperative 3D CT scan results. Visual assessment of glenoid baseplate orientation showed “poor” to “fair” correlation to 3D CT DRR measurements for both novice and experienced surgeon groups for all measured parameters. There was a clinically relevant, large discrepancy between intra-operative visual assessments and 3D CT DRR measurements for all parameters. Errors in visual assessment of up to 19.2 degrees of inclination and 8mm supero-inferior COR offset occurred. Experienced surgeons had greater measurement error than novices for all measured parameters. Intra-operative measurement errors in glenoid placement may reach unacceptable clinical limits. Kinesthetic input during implantation likely improves orientation understanding and has implications for hands-on learning


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 7 - 7
1 Dec 2022
Camp M Li W Stimec J Pusic M Herman J Boutis K
Full Access

Diagnostic interpretation error of paediatric musculoskeletal (MSK) radiographs can lead to late presentation of injuries that subsequently require more invasive surgical interventions with increased risks of morbidity. We aimed to determine the radiograph factors that resulted in diagnostic interpretation challenges for emergency physicians reviewing pediatric MSK radiographs. Emergency physicians provided diagnostic interpretations on 1,850 pediatric MSK radiographs via their participation in a web-based education platform. From this data, we derived interpretation difficulty scores for each radiograph using item response theory. We classified each radiograph by body region, diagnosis (fracture/dislocation absent or present), and, where applicable, the specific fracture location(s) and morphology(ies). We compared the interpretation difficulty scores by diagnosis, fracture location, and morphology. An expert panel reviewed the 65 most commonly misdiagnosed radiographs without a fracture/dislocation to identify normal imaging findings that were commonly mistaken for fractures. We included data from 244 emergency physicians, which resulted in 185,653 unique radiograph interpretations, 42,689 (23.0%) of which were diagnostic errors. For humerus, elbow, forearm, wrist, femur, knee, tibia-fibula radiographs, those without a fracture had higher interpretation difficulty scores relative to those with a fracture; the opposite was true for the hand, pelvis, foot, and ankle radiographs (p < 0 .004 for all comparisons). The descriptive review demonstrated that specific normal anatomy, overlapping bones, and external artefact from muscle or skin folds were often mistaken for fractures. There was a significant difference in difficulty score by anatomic locations of the fracture in the elbow, pelvis, and ankle (p < 0 .004 for all comparisons). Ankle and elbow growth plate, fibular avulsion, and humerus condylar were more difficult to diagnose than other fracture patterns (p < 0 .004 for all comparisons). We identified actionable learning opportunities in paediatric MSK radiograph interpretation for emergency physicians. We will use this information to design targeted education to referring emergency physicians and their trainees with an aim to decrease delayed and missed paediatric MSK injuries


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 12 - 12
1 Dec 2022
Li W Stimec J Camp M Pusic M Herman J Boutis K
Full Access

Diagnostic interpretation error of paediatric musculoskeletal (MSK) radiographs can lead to late presentation of injuries that subsequently require more invasive surgical interventions with increased risks of morbidity. We aimed to determine the radiograph factors that resulted in diagnostic interpretation challenges for emergency physicians reviewing pediatric MSK radiographs. Emergency physicians provided diagnostic interpretations on 1,850 pediatric MSK radiographs via their participation in a web-based education platform. From this data, we derived interpretation difficulty scores for each radiograph using item response theory. We classified each radiograph by body region, diagnosis (fracture/dislocation absent or present), and, where applicable, the specific fracture location(s) and morphology(ies). We compared the interpretation difficulty scores by diagnosis, fracture location, and morphology. An expert panel reviewed the 65 most commonly misdiagnosed radiographs without a fracture/dislocation to identify normal imaging findings that were commonly mistaken for fractures. We included data from 244 emergency physicians, which resulted in 185,653 unique radiograph interpretations, 42,689 (23.0%) of which were diagnostic errors. For humerus, elbow, forearm, wrist, femur, knee, tibia-fibula radiographs, those without a fracture had higher interpretation difficulty scores relative to those with a fracture; the opposite was true for the hand, pelvis, foot, and ankle radiographs (p < 0 .004 for all comparisons). The descriptive review demonstrated that specific normal anatomy, overlapping bones, and external artefact from muscle or skin folds were often mistaken for fractures. There was a significant difference in difficulty score by anatomic locations of the fracture in the elbow, pelvis, and ankle (p < 0 .004 for all comparisons). Ankle and elbow growth plate, fibular avulsion, and humerus condylar were more difficult to diagnose than other fracture patterns (p < 0 .004 for all comparisons). We identified actionable learning opportunities in paediatric MSK radiograph interpretation for emergency physicians. We will use this information to design targeted education to referring emergency physicians and their trainees with an aim to decrease delayed and missed paediatric MSK injuries


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 16 - 16
17 Nov 2023
Youssef A Pegg E Gulati A Mangwani J Brockett C Mondal S
Full Access

Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented bone geometry is independent of the particular bone being measured. Methods. Computed tomography (CT) scan data (slice thickness 1 mm, pixel size 808±7 µm) from three anonymous patients was used for the development of the ankle geometries (consisting of the tibia, fibula, talus, calcaneus, and navicular bones) using Simpleware Scan IP software (Synopsys, Exeter, UK). Each CT scan was segmented 4 times by an inexperienced undergraduate, resulting in a total of 12 geometry assemblies. An experienced researcher segmented each scan once, and this was used as the ‘gold standard’ to quantify the accuracy. The solid bone geometries were imported into CAD software (Inventor 2023, Autodesk, CA, USA) for measurement of the surface area and volume of each bone, and the distances between bones (tibia to talus, talus to navicular, talus to calcaneus, and tibia to fibula) were carried out. The intra-class coefficient (ICC) was used to assess intra-observer reliability. Bland Altman plots were employed as a statistical measure for criteria validity (accuracy) [1]. Results. The average ICC score was 0.93, which is regarded as a high reliability score for an inexperienced user. The talus to navicular and talus to tibia separations, which had the smallest distances, showed a slight decrease in reliability and this was observed for all separations shorter than 2 mm. According to the Bland-Altman plots, more than 95% of the data points were inside the borders of agreement, which is an excellent indication of accuracy. The bias percentage (average error percentage) varied between 1% and 4% and was constant across all parameters, with the proportion rising for short distance separations. Conclusions. The current study demonstrates that an inexperienced undergraduate, with access to software manuals, can segment an ankle CT scan with excellent reliability. The present study also concluded that all five bones were segmented with high levels of accuracy, and this was not influenced by bone volume or type. The only factor found to influence the reliability was the magnitude of distance between bones, where if this was smaller than 2 mm it reduced the reliability, indicating the influence of CT scan resolution on the segmentation reliability. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 29 - 29
1 Apr 2018
Hirade T Izumida M Iguchi H Otsuka T
Full Access

Introduction. The volume of intraoperative blood loss is measured and reported by OR nurses in many hospitals and doctors do not usually measure it by themselves. To measure intraoperative blood loss accurately is such a difficult task that many measurement errors occur due to various factors. However, it is important to obtain a more correct measurement for performing a safe operation and stable anesthesia control. Case report. In total hip arthroplasty (THA) we had experienced massive intraoperative blood loss errors and later identified the two major causes of these errors. One is the excess volume of infusions for irrigation infusions, and the other is the validity and reliability of the scales on infusion containers. To accurately measure intraoperative blood loss, we should know these two important factors of intraoperative blood loss errors. In arthroplasty we use many infusions for irrigation of the operative field. The labeled (nominal) volume of infusion containers do not accurately indicate the volume of infusions in the container. This is even defined by the WHO international pharmacopoeia (pharmaceutical laws), US, EU, and Japanese pharmacopoeia. According to these pharmacopoeia, the actual volume of infusions is (must be) not less than the labeled (nominal) volume. Moreover, the upper limit of excess volume is not regulated so far. This results in all parenteral infusions (i.e., I.V infusion bags, or bottles of saline) having excess volume compared to their respective labeled volumes. We also have verified the accuracy of volume scales on the infusions bags and bottles and found out some products have inaccuracies that we cannot ignore. After inquiring the pharmaceutical companies about the information concerning excess volume of infusions, we discovered that the excess volume is 2–5% higher than the labeled (nominal) volume depending on the product and company. (e.g., One product has around 3140ml in the container labeled 3000ml). Discussion. Detailed information about excess volume of infusions is neither well recognized so far nor is it open to the public. Knowledge about the excess volume of infusions is necessary to acquire the accurate volume of intraoperative blood loss when using large volume of infusions (i.e., above 3 liters) for irrigating the field of operation. In these cases, excess volume in infusions can be large and cannot be ignored. Further investigation revealed intraoperative blood loss errors tend to be greater when irrigating Total Hip Arthroplasty (THA) compared to the Total Knee Arthroplasty (TKA). A large error in the volume of intraoperative blood loss may affect the decision of whether or not to perform a blood transfusion. Conclusions. This presentation highlights two causes of intraoperative blood loss errors; excess volume of infusions and the validity and reliability of scales on infusion containers. This information has not been shared in any known medical publications and has not been written so far on package inserts (i.e. attached document, Labeling, SmPC, interview form)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 65 - 65
1 May 2012
Radovanovic J Brighton RW
Full Access

Typical devices to limit leg length changes rely on a fixed point in the ileum and femur in order to measure leg length changes intraoperatively. The aim of this study is to determine the ideal position for placement of these devices and to identify potential sources of error. Using saw bones the leg length device was attached at four different positions along the iliac crest extending from the ASIS to its midpoint. After marking the femur on the lateral edge of the Greater Trochanter, measurements were taken with gradually increasing leg length from each individual position on the ileum. This was also performed for different degrees of hip flexion. It was determined that when the hip was in an extended position the degree of error was small for all positions along the iliac crest, with a tendency for an increase error the closer the pin is to the ASIS. When the hip is flexed the error is increased with pin positions closer to the ASIS. With a lengthening of 10 mm, minimal leg length changes can be determined using the device. More than 20 mm resulted in significant change using the leg length device. Ideal iliac crest pin position is towards the midpoint of the iliac crest, which will minimise the potential error. Measuring the leg length while the hip is in a neutral position will limit the error and increase the accuracy—thus avoiding unwanted lengthening


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 41 - 41
1 Mar 2008
Bailey C Fisher C Dvorak M
Full Access

This study examined the occurrence of type II (Beta) error in the spine surgical literature. A literature search from 1966 until present identified twenty-nine randomized control trials, which had a two-group parallel design and reported a non-significant difference in the primary outcome measure. We determined whether these trials had sufficient sample size to detect a 25% and 50% relative change in the primary outcome. Nine studies specifically identified a primary outcome. Four studies reported a sample size calculation. Therefore, twenty-five trials were at risk of committing a type II error. The purpose of this study was to determine the frequency of potential type II error in randomized controlled trails reported in the spine surgical literature. A literature search was conducted of the Medline, Pubmed, and the Cochrane databases using the keywords of “spine” and “surgery”, between 1967 until present to identify randomized controlled trials involving spine surgery. Trials were included in this study if they were of a two-group design, with at least one of the groups being a surgical cohort, and that reported a non-significant difference in the primary outcome. We determined the frequency for which the primary outcome and sample size calculation was reported. The sample size was assessed to determine whether the trial had sufficient subjects to detect a 25% and 50% relative difference in the primary outcome for a power of 80%. Twenty-nine studies satisfied the inclusion criteria. Nine studies specifically identified a primary outcome. All others reported multiple outcomes with no specified primary measure. Four studies reported a sample size calculation. Of the remaining twenty-five that did not, three had sufficient power and the rest were at significant risk of committing a type II error. The spine surgical literature is plagued with a high potential for type II errors in the published trails with a non-significant outcome. In the spine surgical literature, a randomized controlled trial that fails to reject its null hypothesis, requires careful scrutiny of its methodology to prevent misinterpretation of the results


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 251 - 252
1 May 2009
Ravi B Rampersaud YR
Full Access

To determine the range of in-vivo magnification error in lateral spinal digital radiographs, and determine the effect of BMI on this error. An analysis of two hundred and fifty patients with digital radiographs and CT/MRIs was performed. Digital imaging software was used to measure the antero-posterior vertebral body dimensions (VBD) at C2, C5, L1, and L4. Magnification values were determined in comparison to CT/MRI. CT measurements were also compared to MRI. BMI for each patient was obtained by chart review. The difference between the mean VBD as measured on CT and MRI was < 0.1mm (n=130, p< 0.2514, paired t-test). Mean magnification at the cervical spine was 21% (1.21 ± 0.01; range = 1.06–1.57 (n=177)) and 31% at the lumbar spine (1.31 ± 0.01; range = 1.09–1.63 (n=284)). Linear regression showed a significant positive correlation between BMI and magnification at both the cervical and lumbar spine (Cervical: n=96; p=0.0019; Lumbar: n=144; p< 0.0001). There was a significant difference in magnification between non-obese and obese patients at both the cervical and lumbar levels. Cervical: 1.19 ± 0.01 magnification for non-obese (n=136), versus 1.26 ± 0.01 for obese (n=39) (p< 0.0001). Lumbar: 1.28 ± 0.01 (n=207), versus 1.38 ± 0.01 (n=71) (p< 0.0001), respectively. Linear in-vivo measurements obtained on digital radiographs are subject to magnification errors at both cervical and lumbar spine. This error correlates to the patient’s BMI. Consequently, clinical-decision making, regardless of the anatomical area, that is based on linear measurements obtained from radiographs that do not account for this error are invalid. In the scenario that this measurement is crucial (e.g. dynamic radiographs), this error can be corrected by comparison to morphometric data from CT/MRI


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1238 - 1244
1 Sep 2010
Nicoll D Rowley DI

This study used CT analysis to determine the rotational alignment of 39 painful and 26 painless fixed-bearing total knee replacements (TKRs) from a cohort of 740 NexGen Legacy posterior-stabilised and cruciate-retaining prostheses implanted between May 1996 and August 2003. The mean rotation of the tibial component was 4.3° of internal rotation (25.4° internal to 13.9° external rotation) in the painful group and 2.2° of external rotation (8.5° internal to 18.2° external rotation) in the painfree group (p = 0.024). In the painful group 17 tibial components were internally rotated more than 9° compared with none in the painfree group (p < 0.001). Additionally, six femoral components in the painful group were internally rotated more than 6° compared with none in the painfree group (p = 0.017). External rotational errors were not found to be associated with pain. Overall, 22 (56.4%) of the painful TKRs had internal rotational errors involving the femoral, the tibial or both components. It is estimated that at least 4.6% of all our TKRs have been implanted with significant internal rotational errors


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1201 - 1203
1 Sep 2013
Tsukeoka T Tsuneizumi Y Lee TH

We performed a CT-based computer simulation study to determine how the relationship between any inbuilt posterior slope in the proximal tibial osteotomy and cutting jig rotational orientation errors affect tibial component alignment in total knee replacement. Four different posterior slopes (3°, 5°, 7° and 10°), each with a rotational error of 5°, 10°, 15°, 20°, 25° or 30°, were simulated. Tibial cutting block malalignment of 20° of external rotation can produce varus malalignment of 2.4° and 3.5° with a 7° and a 10° sloped cutting jig, respectively. Care must be taken in orientating the cutting jig in the sagittal plane when making a posterior sloped proximal tibial osteotomy in total knee replacement. Cite this article: Bone Joint J 2013;95-B:1201–3


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 68 - 68
1 Jan 2013
Pagkalos J Davis E Gallie P Macgroarty K Waddell J Schemitsch E
Full Access

Implant alignment in knee arthroplasty has been identified as critical factor for a successful outcome. Human error during the registration process for imageless computer navigation knee arthroplasty directly affects component alignment. This cadaveric study aims to define the error in the registration of the landmarks and the resulting error in component alignment. Five fresh frozen cadaveric limbs including the hemipelvis were used for the study. Five surgeons performed the registration process via a medial parapatellar approach five times. In order to identify the gold standard point, the soft tissues were stripped and the registration was repeated by the senior author. Errors are presented as mm or degrees from the gold standard registration. The error range in the registration of the femoral centre in the coronal plane was 6.5mm laterally to 5.0mm medially (mean: −0.1, SD: 2.7). This resulted in a mechanical axis error of 5.2 degrees valgus to 2.9 degrees varus (mean: 0.1, SD: 1.1). In the sagittal plane this error was between −1.8 degrees (extension) and 2.7 degrees (flexion). The error in the calculation of the tibial mechanical axis ranged from −1.0 (valgus) to 2.3 (varus) degrees in the coronal plane and −3.2 degrees of extension to 1.3 degrees of flexion. Finally the error in calculating the transepicondylar axis was −11.2 to 6.3 degrees of internal rotation (mean: −3.2, SD: 3.9). The error in the registration process of the anatomical landmarks can result in significant malalignment of the components. The error range for the mechanical axis of the femur alone can exceed the 3 degree margin that has been previously been associated with implant longevity. The technique during the registration process is of paramount importance for image free computer navigation. Future research should be directed towards simplifying this process and minimizing the effect of human error


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 19 - 19
1 May 2018
McMahon S Magill P Bopf D Beverland D
Full Access

Introduction. Radiological inclination (RI) is determined in part by operative inclination (OI), which is defined as the angle between the cup axis or handle and the sagittal plane. In lateral decubitus the theatre floor becomes a surrogate for the pelvic sagittal plane. Critically at the time of cup insertion if the pelvic sagittal plane is not parallel to the floor either because the upper hemi pelvis is internally rotated or adducted, RI can be much greater than expected. We have developed a simple Pelvic Orientation Device (POD) to help achieve a horizontal pelvic sagittal plane. The POD is a 3-sided square with flat footplates that are placed against the patient's posterior superior iliac spines following initial positioning (figure 1). A digital inclinometer is then placed parallel and perpendicular to the patient to give readings of internal rotation and adduction, which can then be corrected. Methods. A model representing the posterior aspect of the pelvis was created. This permitted known movement in two planes to simulate internal rotation and adduction of the upper hemi pelvis, with 15 known pre-set positions. 20 participants tested the POD in 5 random, blinded position combinations, providing 200 readings. The accuracy was measured by subtracting each reading from the known value. Results. 2 statistical outliers were identified and removed from analysis. The mean adduction error was 0.73°. For internal rotation, the mean error was −0.03°. Accuracy within 2.0° was achieved in 176 of 190 (93%) of readings (Table 1). The maximum error was 3.6° for internal rotation and 3.1° for adduction. Conclusion. In a model pelvis the POD provided an accurate and reproducible method of achieving a horizontal sagittal plane. Applied clinically, this simple tool has the potential to reduce the high values of RI sometimes seen following THA in lateral decubitus. For any figures and tables, please contact the authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 434 - 437
1 Apr 2004
Faraj S Atherton WG Stott NS

Reimers’ hip migration percentage is commonly used to document the extent of subluxation of the hip in children with spasticity. In this study, two measurers, with six months paediatric orthopaedic experience, measured the migration percentage on 44 pelvic radiographs of children with cerebral palsy, aged between two and eight years. Unknown to the measurers, each radiograph was duplicated, giving 22 non-identical radiographs (44 hips) which were measured twice at time 0 and twice six weeks later. The intra-measurer, intra-sessional absolute differences between the first and second measurements ranged from 0% to 23%, with median values of 2.5% to 3.6%. The intra-sessional median absolute differences were not statistically different between the two measurers and measuring sessions (p = 0.42, Kruskal-Wallis test). The inter-sessional absolute differences for measurements made by the same measurers ranged from 0% to 18% with a median absolute difference of 1.7% to 3.2%. Overall, only 5% of the intra-measurer measurement differences, within and between sessions, were above 13%. Repeated measurements by one measurer over time must, therefore, vary by more than 13% in order to be 95% confident of a true change. The inter-measurer error was higher with median absolute differences between the two measurers’ measurements of the same hip of 3.25% to 5% (0% to 26%) and a 95. th. upper confidence interval of 21% to 23%. Averaging the four separate measurements over the two sessions reduced the inter-measurer error to a median absolute difference of 2.8%, but did not improve the 95. th. upper confidence interval, which measured 22.4%. Such inter-measurer errors may be clinically unacceptable


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 317 - 317
1 Sep 2005
Smith N Birch J
Full Access

Introduction and Aims: Union of femoral shaft fractures in a shortened position is a recognised complication of spica cast treatment. Such shortening can only be assessed radiographically until the spica has been removed. The constraints of a spica cast complicate the imaging of the femur and may lead to error in assessing shortening. This study aims to quantify the magnitude of such error for application to clinical practice. Method: A model for a spiral femoral fracture in a spica cast was devised. Shortening of the femoral segment through telescoping and angulation was controlled with a Wagner lengthening device external to the spica. Shortening from angulation and telescoping were varied and radiographic measurements compared with real measurements. The correlation between true and radiographic shortening of > 2cm was measured with the kappa value. Results: There was good agreement between radiological and real shortening of > 2cm. Where shortening was present without angulation, the radiological measurement over-estimated the degree of shortening. The error increased with the amount of shortening. Angulation of more than 30 degrees caused the radiological measurement to under-estimate the true amount of segmental shortening. Conclusion: This study suggests that radiological measurement of femoral shortening in a spica should reliably predict clinically significant shortening when there is less than 30 degrees of fracture angulation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 54 - 54
1 Mar 2013
Hopkins S Knapp K Parker D Yusof R
Full Access

Introduction. Precision error (PE) in Dual Energy X-Ray Absorptiometry (DXA) is important for accurate monitoring of changes in Bone-Mineral-Density (BMD). It has been demonstrated that BMD PE increases with increasing BMI. In vivo PE for the Trabecular-Bone-Score (TBS) has not been reported. This study aimed to evaluate the short-term PE (STPE)) of BMD and TBS and to investigate the effect of obesity on DXA PE. Method. DXA lumbar spine scans (L1–L4) were performed using GE Lunar Prodigy. STPE was measured in 91 women (Group A) at a single visit by duplicating scans with repositioning in-between. PE was calculated as the percentage coefficient of variation (%CV). Group A was sub-divided into four groups based on BMI (A.1. <25kg/m2, A.2. 25–29.9kg/m2, A.3. 30–35kg/m2 and A.4. >35kg/m2) to assess the effect of obesity on STPE. Abnormally different vertebrae were excluded from the analysis in accordance with The International Society for Clinical Densitometry (ISCD) recommendations. Results. The Group A STPE was 1.26 % for BMD and 2.04% for TBS. Short-term PE for BMD and TBS respectively in the BMI subgroups was: A.1. 1.07% and 1.82%, A.2. 1.34% and 2.26%, A.3. 1.25% and 2.35%, A.4. 1.68% and 1.82%. Conclusion. The results show that STPE is higher for TBS than for BMD. Short-term PE for both BMD and TBS are adversely affected by increasing BMI but this effect is mitigated in the highest BMI category where use of the ‘thick’ scanning mode improves signal to noise ratio


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1406 - 1409
1 Oct 2016
Cundall-Curry DJ Lawrence JE Fountain DM Gooding CR

Aims

We present an audit comparing our level I major trauma centre’s data for a cohort of patients with hip fractures in the National Hip Fracture Database (NHFD) with locally held data on these patients.

Patients and Methods

A total of 2036 records for episodes between July 2009 and June 2014 were reviewed.


The Journal of Bone & Joint Surgery British Volume
Vol. 62-B, Issue 4 | Pages 428 - 431
1 Nov 1980
Hardcastle P Ross R Hamalainen M Mata A

A study was undertaken to assess the degree of inter-observer error when a panel of observers classified the radiographs of patients with early Perthes' disease, using Catterall grouping and "at risk" signs. The anteroposterior and lateral radiographs, taken within three months of diagnosis of Perthes' disease, were available for 69 hips and were shown in turn to 10 observers. The radiological end-results were assessed at least four years from diagnosis. The results showed a poor ability of the observers to delineate Groups 1, 2 and 3, with a more satisfactory performance in Group 4 and when Groups 2 and 3 were combined. Interpretation of "at risk" signs was unsatisfactory except when there was an increase in medial joint space greater than two millimetres. The end-results correlated well with early Catterall grouping and "at risk" signs when these were correctly interpreted