Abstract
Introduction
Precision error (PE) in Dual Energy X-Ray Absorptiometry (DXA) is important for accurate monitoring of changes in Bone-Mineral-Density (BMD). It has been demonstrated that BMD PE increases with increasing BMI. In vivo PE for the Trabecular-Bone-Score (TBS) has not been reported. This study aimed to evaluate the short-term PE (STPE)) of BMD and TBS and to investigate the effect of obesity on DXA PE.
Method
DXA lumbar spine scans (L1–L4) were performed using GE Lunar Prodigy. STPE was measured in 91 women (Group A) at a single visit by duplicating scans with repositioning in-between. PE was calculated as the percentage coefficient of variation (%CV). Group A was sub-divided into four groups based on BMI (A.1. <25kg/m2, A.2. 25–29.9kg/m2, A.3. 30–35kg/m2 and A.4. >35kg/m2) to assess the effect of obesity on STPE. Abnormally different vertebrae were excluded from the analysis in accordance with The International Society for Clinical Densitometry (ISCD) recommendations.
Results
The Group A STPE was 1.26 % for BMD and 2.04% for TBS. Short-term PE for BMD and TBS respectively in the BMI subgroups was: A.1. 1.07% and 1.82%, A.2. 1.34% and 2.26%, A.3. 1.25% and 2.35%, A.4. 1.68% and 1.82%.
Conclusion
The results show that STPE is higher for TBS than for BMD. Short-term PE for both BMD and TBS are adversely affected by increasing BMI but this effect is mitigated in the highest BMI category where use of the ‘thick’ scanning mode improves signal to noise ratio.