Abstract
Introduction
Radiological inclination (RI) is determined in part by operative inclination (OI), which is defined as the angle between the cup axis or handle and the sagittal plane. In lateral decubitus the theatre floor becomes a surrogate for the pelvic sagittal plane.
Critically at the time of cup insertion if the pelvic sagittal plane is not parallel to the floor either because the upper hemi pelvis is internally rotated or adducted, RI can be much greater than expected. We have developed a simple Pelvic Orientation Device (POD) to help achieve a horizontal pelvic sagittal plane.
The POD is a 3-sided square with flat footplates that are placed against the patient's posterior superior iliac spines following initial positioning (figure 1). A digital inclinometer is then placed parallel and perpendicular to the patient to give readings of internal rotation and adduction, which can then be corrected.
Methods
A model representing the posterior aspect of the pelvis was created. This permitted known movement in two planes to simulate internal rotation and adduction of the upper hemi pelvis, with 15 known pre-set positions. 20 participants tested the POD in 5 random, blinded position combinations, providing 200 readings.
The accuracy was measured by subtracting each reading from the known value.
Results
2 statistical outliers were identified and removed from analysis. The mean adduction error was 0.73°. For internal rotation, the mean error was −0.03°. Accuracy within 2.0° was achieved in 176 of 190 (93%) of readings (Table 1). The maximum error was 3.6° for internal rotation and 3.1° for adduction.
Conclusion
In a model pelvis the POD provided an accurate and reproducible method of achieving a horizontal sagittal plane. Applied clinically, this simple tool has the potential to reduce the high values of RI sometimes seen following THA in lateral decubitus.
For any figures and tables, please contact the authors directly.