header advert
Results 1 - 49 of 49
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 4 - 4
1 Mar 2013
Amiri S Masri B Garbuz D Anglin C Wilson D
Full Access

INTRODUCTION. Poor acetabular cup orientation in total hip arthroplasty (THA) can cause dislocation and impingement, and lead to osteolysis (Little et al., 2009) and inflammatory soft tissue reactions (Haan et al., 2008). While the intrinsic accuracy of cup positioning in navigation is reported as low as 1° (Parratte et al., 2009), a large anterior pelvic tilt may lead to an offset of the same magnitude in the final cup anteversion (Wolf et al., 2005). The objectives of this study are to demonstrate feasibility of a new, non-invasive radiographic tool for accurate preoperative determination of a patient's specific pelvis angle, and intraoperative and postoperative assessment of the acetabular cup orientation with respect to boney landmarks. METHODS. The methodology stitches multiple radiographic views around the pelvis using a multi-planar radiography setup (Amiri et al., 2011) and reconstructs the reference boney landmarks and the acetabular cup in three dimensions using previously developed algorithms and software (Amiri et al., 2012). To validate the methodology, a Sawbone model of the pelvis and femur was implanted with a standard cementless metal-on-polyethylene THA, and was tracked and digitized by an Optotrak motion tracking system. Five radiographic views were acquired at the pubic tubercle (PT) and anterior-superior iliac spine (ASIS) levels (Views 1 to 5 in Fig 1). Imaging and analysis were repeated 10 times. Custom software (Joint 3D) was used to reconstruct the right and left PT and ASIS by fitting spheres to the corresponding pairs of images (Fig 1). The three-dimensional pose of the acetabular cup was reconstructed in the software by solving a back-projection equation of the elliptical shadow of the cup opening. Accuracies were measured as mean differences from the digitized references. A sample of the reconstructed graphical output for the anterior pelvic plane (APP) and the cup, in comparison to the digitized reference, is shown in Fig 2. Repeatability was estimated as standard deviation of the measures for the reconstructed locations of the boney landmarks and the APP (known as a standard reference plane for cup placement). RESULTS. Accuracy for the pelvis pose angles was <1.6°, with SD <0.8° (Fig 3). Pelvic tilt was the most accurate with accuracy of 0.1° and SD=0.4°. For the acetabular cup, accuracy was 2.5° or better, with SD <0.2°. Accuracies in the cup operative anteversion and inclination were 2.4° and 0.6°, with SD=0.4° and 0.9°, respectively. DISCUSSION. The measured accuracies were within an acceptable range, according to previous studies that recommended a 5° cut-off error for acetabular anteversion. The method shows accuracy and radiation dose advantages over current radiographic, fluoroscopic and computed tomography methods. These results suggest that the proposed method is feasible for assessing cup placement with reference to the functional and anatomical references. CONCLUSION. Use of this technique could improve acetabular cup placement and reduce the incidence of instability, wear and loosening, by providing tools to incorporate the individual's pelvic pose in preoperative planning of the surgery, and by serving as an accurate and reliable tool for intraoperative and postoperative assessment of the acetabular cup position


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 31 - 31
1 May 2016
Pierrepont J McMahon R Miles B McMahon S
Full Access

Introduction. Appropriate acetabular cup orientation is an important factor in reducing instability and maximising the performance of the bearing after Total Hip Arthroplasty (THA). However, postoperative analyses of two large cohorts in the US have shown that more than half of cups are malorientated. In addition, there is no consensus as to what inclination and anteversion angles should be targeted, with contemporary literature suggesting that the orientation should be customised for each individual patient. The aim of this study was to measure the accuracy of a novel patient specific instrumentation system in a consecutive series of 22 acetabular cups, each with a customised orientation. Methodology. Twenty-two consecutive total hip replacement patients were sent for Trinity Optimized Positioning System (OPS) acetabular planning (Optimized Ortho, Sydney). The Trinity OPS planning is a preoperative, dynamic analysis of each patient performing a deep flexion and full extension activity. The software calculates the dynamic force at the hip to be replaced and plots the bearing contact patch as it traces across the articulating surface. The software modelled multiple cup orientations and the alignment which best centralised the load was chosen by the surgeon from the preoperative reports. Once the target orientations had been determined, a unique patient specific guide was 3D printed and used intra-operatively with a laser guided system to achieve the planned alignment, Fig 1. All patients received a post-operative CT scan at 3 months and the radiographic cup inclination and anteversion was measured. The study was ethically approved by The Avenue Hospital Human Research Ethics Committee, Trial Number 176. Results. The mean planned radiographic inclination, reference to the Anterior Pelvic Plane (APP), was 42.8° (range 36.2° – 50.1°). The mean planned radiographic anteversion, reference to the APP, was 28.3° (range 19.4° – 37.0°). Only 23% of the planned orientations fell within Lewinnek's “safe zone”, taking into consideration that that this safe zone is not comparable to the coronal plane of radiographs. However, all 22 cups were planned within a range of 40° ± 10° of inclination and 25° ± 10° of anteversion, when referenced to the coronal plane when supine. The mean inclination difference between the planned and achieved orientations was −1.3° (range −7.6° – 9.2°). The mean anteversion difference was 1.2° (range −5.3° – 7.0°). The mean absolute difference was 4.2° for inclination (range 0.4° – 9.2°) and 3.6° for anteversion (range 0.6° – 7.0°). All 22 cups were within ±10° of their intended target orientation, Fig 2. All 22 cups were within the range of 40° ± 10° of inclination and 25° ± 10° of anteversion, when reference to the coronal plane when supine, Fig 3. Conclusions. These are the early results of a new technology for planning and delivering a customised acetabular cup orientation. We expect further improvements in accuracy with current developments. However, the results suggest that Trinity OPS is a simple way to achieve a patient-specific cup orientation, with accuracy comparable to imageless navigation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 35 - 35
1 Oct 2014
Hananouchi T Giets E Ex J Delport H
Full Access

Optimal alignment of the acetabular cup component is crucial for good outcome of total hip arthroplasty [THA]. Increased accuracy of implant positioning may improve clinical outcome. To achieve this, patient specific instrumentation was developed. A patient-specific guide manufactured by 3D printing was designed to aid in positioning of the cup component with a pre-operatively defined anteversion and inclination angle. The guide fits perfectly on the acetabular rim. An alignment K-wire in a pre-operatively planned orientation is used as visual reference during cup implantation. Accuracy of the device was tested on 6 cadaveric specimens. During the experiment, cadavers were positioned for a THA procedure using a posterolateral approach. A normal-sized incision was made and approach used as in the conventional surgical procedure. The PSI was subsequently fitted onto the acetabular rim and secured into its unique position due to its patient specific design. The metallic pin was placed in a drill hole of the PSI. Post-operative CT image data of each acetabulum with the placed pin were transferred to Mimics and the 3D model was registered to the pre-operative one. The anteversion and inclination of the placed pin was calculated and compared to the pre-operatively planned orientation. The absolute difference in degrees was evaluated. A secondary test was carried out to assess the error during impaction while observing the alignment K-wire as a visual reference. In a laboratory setting, error during impaction with a visual reference of the K-wire was measured. Deviation from planning showed to be on average 1.04° for anteversion and 2.19° for inclination. By visually aligning the impactor with this alignment K-wire, the surgeon may achieve cup placement as pre-operatively planned. The effect of the visual alignment itself was also evaluated in a separate test-rig showing minimal deviations in the same range. The alignment validation test resulted in an average deviation of 1.2° for inclination and 1.4° for anteversion between the metallic alignment K-wire used as visual reference and the metallic K-wire impacted by the test subjects. The inter-user variability was 0.9° and 0.8° for anteversion and inclination respectively. The intra-user variability was 1.6° and 1.0° for anteversion and inclination respectively. Tests per test subject were conducted in a consecutive manner. We investigated the accuracy of two factors affecting accuracy in the cup insertion with PSI, i.e. accuracies of the errors of bony fitting and cup impaction. Since the accuracy of the major contributing factors to the overall accuracy of PSI for cup insertion with linear visual reference of a metallic K-wire was within the acceptable range of 2 to 3 degrees, we state that the PSI we have designed assists to achieve the preoperatively planned orientation of the cup and as such leads to the reduction of outliers in cup orientation. This acetabular cup orientation guide can transfer the pre-operative plan to the operating room


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 49 - 49
1 Mar 2006
Echeverrei S Leyvraz P Zambelli P Jolles B
Full Access

Obtaining consistently an optimal cup orientation in THA is vital to obtain adequate head coverage and maximum impingement free range of motion and thus reduce the incidence of polyethylene wear, cup loosening, and dislocation rates associated with a limited range of motion. It is clear that THA instability, the most frequent cause of early failure, is a complex problem related to a wide range of causes. However cup orientation is one of the surgeon dependant potentially modifiable variables that continue to have an important influence due to the lack of reliable means of assuring an adequate orientation of the components, particularly the cup anteversion. Standard mechanical guides like Muller’s have been shown to be inaccurate and imprecise. Not surprisingly, dislocation is the most frequent short term complication after a THA. Acetabular cup orientation is a key factor determining joint stability and one of the most important ones under the surgeons’ control. An in vitro study was used to determine the precision, reproducibility and ease of use of a new mechanical guide in comparison to a standard mechanical guide Müllers. The new guide (Gravity Assisted Navigation System) consists of a simple to use navigation tool. It uses the constant direction of the force of gravity identified by two bulls’ eye levels providing real time intraoperative augmented reality thus controlling the orientation of the pelvis. Visualisation of the guide from a single perspective is enough to determine in real time, the orientation of the cup in abduction and anteversion. By using anatomic repairs within the pelvis its flexion/extension is taken into consideration. As part of an invitro study, 310 press-fit acetabular cups were impacted into a plastic model of a pelvis by 5 surgeons (Power 90%, Type I error 5%), The orientation obtained was measured with respect to a fixed reference of 15° of anteversion and 45° of abduction. Results: an average of 10.4° anteversion ,(Range 3°to 21°, Standard of Deviation 5.0°) for Müller s guide and of 0.4° anteversion (Range 1° to 3°, Standard of Deviation 0.7°) for the new guide and an average of −4.7° abduction (Range 7° to −11°, Standard of Deviation 2.3°) for Müllers guide and 0.3° abduction (Range 0° to 3°, Standard of Deviation 0.5°) for the new guide. The average time required for the orientation of the cups was similar with both guides. (6 seconds for Mullers guide and 5 seconds for the new guide) The precision and reproducibility of the cup orientation obtained with the new guide were significantly better than those obtained with Müllers guide (p< 0.00001). The results obtained with with the new mechanical guide are encouraging. The in vitro results are encouraging, the high precision and accuracy are comparable to results obtained by computer assisted navigation systems in similar studies


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 19 - 19
1 Jan 2016
Marel E Walter L Solomon M Shimmin A Pierrepont J
Full Access

Achieving optimal acetabular cup orientation in Total Hip Replacement (THR) remains one of the most difficult challenges in THR surgery (AAOR 2013) but very little has been added to useful understanding since Lewinnek published recommendations in 1978. This is largely due to difficulties of analysis in functional positions. The pelvis is not a static reference but rotates especially in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic rotation have a substantial effect on the functional orientation of the acetabulum, not appreciated on standard radiographs [Fig1]. Studies of groups of individuals have found the mean pelvic rotation in the sagittal plane is small but large individual variations commonly occur. Posterior rotation, with sitting, increases the functional arc of the hip and is protective of a THR in regards to both edge loading and risk of dislocation. Conversely Anterior rotation, with sitting, is potentially hazardous. We developed a protocol using three functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography. Proprietary software (Optimized Ortho, Sydney) based on Rigid Body Dynamics then modelled the patients’ dynamics through their functional range producing a patient-specific simulation which also calculates the magnitude and direction of the dynamic force at the hip and traces the contact area between prosthetic head/liner onto a polar plot of the articulating surface, Fig 2. Given prosthesis specific information edge-loading can then be predicted based on the measured distance of the contact patch to the edge of the acetabular liner. Delivery of desired orientation at surgery is facilitated by use of a solid 3D printed model of the acetabulum along with a patient specific guide which fits the model and the intra-operative acetabulum (with cartilage but not osteophytes removed) - an incorporated laser pointer then marks a reference point for the reamer and cup inserter to replicate the chosen orientation. Results and conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. Spinal pathology is a potent “driver” of pelvic sagittal rotation, usually unrecognised on standard radiographs. Pre-operative patient assessment can identify potential orientation problems and even suitability for hard on hard bearings. Optimal cup orientation is likely patient-specific and requires an evaluation of functional pelvic dynamics to pre-operatively determine the target angles. Post-operatively this technique can identify patient and implant factors likely to be causing edge loading leading to early failure in metal on metal bearings or squeaking in ceramic on ceramic bearings


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 30 - 30
1 Jul 2020
Faizan A Zhang J Scholl L
Full Access

Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement.

Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. CT scans of each cadaver were imported in an imaging software. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. The offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs.

The CT analysis revealed that the original orientation (inclination/anteversion) of the shells implanted in 3 cadavers were as follows: Left1: 44.7°/23.3°, Right1: 41.7°/33.8°, Left2: 40/17, Right2: 31.7/23.5, Left3: 33/2908, Right3: 46.7/6.3. For the offset center shells, the shell to cable distance in all the above cases were positive indicating that there was clearance between the shells and psoas. For the hemispherical shells, in 3 out of 6 cases, the distance was negative indicating impingement of psoas. With the virtual implantation of both shell designs at orientations 40°/10°, 40°/20°, 40°/30° we found that greater anteversion helped decrease psoas impingement in both shell designs. When we analyzed the influence of inclination angle on psoas impingement by comparing wire distances for three orientations (30°/20°, 40°/20°, 50°/20°), we found that the effect was less pronounced. Further analysis comparing the offset head center shell to the conventional hemispherical shell revealed that the offset design was favored (greater clearance between the shell and the wire) in 17 out of 18 cases when the effect of anteversion was considered and in 15 out of 18 cases when the effect of inclinations was considered.

Our results indicate that psoas impingement is related to both cup position and implant geometry. For an oversized jumbo cup, psoas impingement is reduced by greater anteversion while cup inclination has little effect. An offset head center cup with an anterior recess was effective in reducing psoas impingement in comparison to a conventional hemispherical geometry. In conclusion, adequate anteversion is important to avoid psoas impingement with jumbo acetabular shells and an implant with an anterior recess may further mitigate the risk of psoas impingement.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 40 - 40
1 Oct 2018
Faizan A Scholl L Zhang J Ries MD
Full Access

Introduction

Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement.

Materials

Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. The relatively large shell sizes were chosen to simulate THA revision cases. At least one fixation screw was used with each shell. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. Following the procedure, CT scans were performed on each cadaver. The CT images were imported in an imaging software for further analysis. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. To compare the offset head center shell to a conventional hemispherical shell in the same orientation, the offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. enabled us to assess the relationship between the conventional shells and the cable. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 363 - 363
1 Mar 2004
Scholz R Bader R Steinhauser E Salis-Soglio GV
Full Access

Aims:Malpositioning of implant components plays a signiþcant role in instability of THR. Our aim was the determination of the inßuence of anteversion of the acetabular cup. Methods: The biomechanical study was performed on a model which enables different deþned implant positions. Rotation of the femoral stem are carried out in different anteversion positions of the acetabular cup with the hip joint in neutral position and in 90¡ ßexion, as well as inclination of the cup. The range of motion (ROM) is determined until impingement or dislocation is evident, as well as the recording of the resisting moment. Results: While the resisting moment shows minor deviation in several anteversion (AV) positions with the joint in neutral position, being almost independent from the inclination, a major difference is determined with minimal resisting moment with minor retroversion (RV) and with the hip joint in 90¡ ßexion (0,51 Nm/15¡ RV vs. 3,69 Nm/30¡ AV). Dislocation occurs very early due to low ROM at retroversion. Variation of inclination of 30¡ can only increase ROM until dislocation by 2,8¡. With same inclinations angles ROM is increased by 38,1¡ in the 30¡ AV. Conclusions: Correct anteversion of the acetabular component is a signiþcant factor in prevention of dislocation. Minor differences in anteversion are more important than inclination variation to improve stability of THR.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 49 - 49
1 Apr 2018
Morgan R Logishetty K Western L Cobb J Auvinet E
Full Access

Background. Trust in the validity of a measurement tool is critical to its function in both clinical and educational settings. Acetabular cup malposition within total hip arthroplasty (THA) can lead to increased dislocation rates, impingement and increased wear as a result of edge loading. We have developed a THA simulator incorporating a foam/Sawbone pelvis model with a modified Microsoft HoloLens® augmented reality (AR) headset. We aimed to measure the trueness, precision, reliability and reproducibility of this platform for translating spatial measurements of acetabular cup orientation to angular values before developing it as a training tool. Methods. A MicronTracker® stereoscopic camera was integrated onto a HoloLens® AR system. Trueness and precision values were obtained through comparison of the AR system measurements to a gold-standard motion capture system”s (OptiTrack®) measurements for acetabular cup orientation on a benchtop trainer, in six clinically relevant pairs of anteversion and inclination angles. Four surgeons performed these six orientations, and repeated each orientation twice. Pearson”s coefficients and Bland-Altman plots were computed to assess correlation and agreement between the AR and Motion Capture systems. Intraclass correlation coefficients (ICC) were calculated to evaluate the degree of repeatability and reproducibility of the AR system by comparing repeated tasks and between surgeons, respectively. Results. The trueness of the AR system was 0.24° (95% CI limit 0.92°) for inclination and 0.90° (95% CI limit 1.8°) for anteversion. Precision was 0.46° for inclination and 0.91° for anteversion. There was significant correlation between the two methods for both inclination (r = 0.996, p<0.001) and anteversion (r = 0.974, p<0.001). Repeatability for the AR system was 0.995 for inclination and 0.989 for anteversion. Reproducibility for the AR system was 0.999 for inclination and 0.995 for anteversion. Conclusion. Measurements obtained from the enhanced HoloLens® AR system were accurate and precise in regards to determining angular measurements of acetabular cup orientation. They exceeded those of currently used methods of cup angle determination such as CT and computer-assisted navigation. Measurements obtained were also highly repeatable and reproducible, therefore this platform is accurately validated for use in a THA training simulator


Background: The purpose of this prospective study was to asses the reliability of image-free navigated cup positioning and its correlation with biometrical parameters (age, sex, body mass index, soft tissue thickness overlying anterior superior iliac spine and symphysis pubis, and lumbar lordosis) and three different orientations of pelvis (tilt, obliquity, and rotation) in patients of Asian ethnicity.

Methods: Intraoperative data was obtained from 50 consecutive total hip arthroplasties in which acetabular cup implantation was done with a cementless cup (Plasma Cup SC®, Aesculap AG, Tuttlingen, Germany) using Orthopilot® image-free navigation system. The data was then compared with mathematically calculated synchronized anteversion and inclination obtained postoperatively through computed tomography and 3-dimensional processing.

Results: Mean navigated and synchronized inclination obtained were 40.1°±5.34° and 41.79°± 7.96° respectively (mean difference 1.69°±6.95°, range −20.72° ~ 18.47°), while the mean navigated and synchronized anteversion were 19.98°± 6.44° and 20.00°± 6.33° (mean difference 0.01°±6.35°, range −15.15° ~ 11.10°). A discrepancy of > 10° was observed in 5 hips in inclination and 5 hips in anteversion. No correlation was found between all of biometrical parameters and discrepancy of cup orientation. A statistically significant correlation was found between discrepancy of anteversion and pelvic tilt (1.78 + 0.55 x pelvic tilt°, r=0.493, p=0.0016).

Conclusion: In spite of variations in pelvic geometry, image-free navigation assisted acetabular cup positioning showed the significant reliability. The next generation of navigation systems must be combined with data on precision of pelvic orientation intraoperatively for complete validation.

*Index; Synchronized Inclination = arctan [tan (Operative AV) ÷ tan (Anatomic AV)] Synchronized AV = arctan[tan (Anatomic AV) x sin (synchronized Inclination)] or arctan[tan (Operative AV) x cos (Synchronized Inclination


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 42 - 42
1 Apr 2018
Western L Logishetty K Morgan R Cobb J Auvinet E
Full Access

Background. Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with acetabular cup implant malorientation. These errors are more common with low-volume centres or in novice hands. Currently, this skill is most commonly taught during real surgery with an expert trainer, but simulated training may offer a safer and more accessible solution. This study investigated if a novel MicronTracker® enhanced Microsoft HoloLens® augmented reality (EAR) headset was as effective as one-on-one expert surgeon (ES) training for teaching novice surgeons hip cup orientation skill. Methods. Twenty-four medical students were randomly assigned to EAR or ES training groups. Participants used a modified sawbone/foam pelvis model for hip cup orientation simulation. A validated EAR headset measured the orientation of acetabular cup implants and displayed this in the participant”s field of view. The system calculated the difference between planned and achieved orientation as a solid-angle error. Six different inclination and anteversion combinations, related to hypothetical patient-specific anatomy, were used as target orientations. Learning curves were measured over four sessions, each one week apart. Error in orientations of non-taught angles and during a concealed pelvic tilt were measured to assess translation of skills. A post-test questionnaire was used for qualitative analysis of procedure understanding and participant experience. Results. Novice surgeons of similar experience in both groups performed with a similar error prior to training (ES: 15.7°±6.9°, EAR: 14.2°±7.1°, p>0.05). During training, EAR participants were guided to significantly better orientation errors than ES (ES: 6.0°±3.4°, EAR: 1.1°±0.9°, p<0.001). After four training sessions, the orientation error in both groups significantly reduced (ES: 15.7°±6.9° to 8.2°±4.6°, p<0.001; EAR: 14.2°±7.0° to 9.6°±5.7°, p<0.001). Participants in both groups achieved the same levels of orientation accuracy in non-taught angles and when the pelvis was tilted (p>0.05). In post-training evaluation, participants expressed a preference towards ES rather than EAR for learning orientation skills and related visuospatial and procedure-specific skills. 79% of participants indicated EAR simulator training and ES in combination would be their preferred training method. Discussion. A novel head-mounted EAR platform delivered training to novice surgeons more accurately than an expert surgeon. Both EAR and ES enabled novices to acquire and retain skills on a learning curve to orientate the implant. These skills were translated to non-taught orientations and in the presence of a pelvic tilt. Conclusions. Augmented-reality simulators may be a feasible and valid method for teaching novice surgeon”s visuospatial skills for THA on a learning curve, to compliment traditional intraoperative training


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 37 - 43
1 Jan 2016
Beverland DE O’Neill CKJ Rutherford M Molloy D Hill JC

Ideal placement of the acetabular component remains elusive both in terms of defining and achieving a target. Our aim is to help restore original anatomy by using the transverse acetabular ligament (TAL) to control the height, depth and version of the component. In the normal hip the TAL and labrum extend beyond the equator of the femoral head and therefore, if the definitive acetabular component is positioned such that it is cradled by and just deep to the plane of the TAL and labrum and is no more than 4mm larger than the original femoral head, the centre of the hip should be restored. If the face of the component is positioned parallel to the TAL and psoas groove the patient specific version should be restored. We still use the TAL for controlling version in the dysplastic hip because we believe that the TAL and labrum compensate for any underlying bony abnormality.

The TAL should not be used as an aid to inclination. Worldwide, > 75% of surgeons operate with the patient in the lateral decubitus position and we have shown that errors in post-operative radiographic inclination (RI) of > 50° are generally caused by errors in patient positioning. Consequently, great care needs to be taken when positioning the patient. We also recommend 35° of apparent operative inclination (AOI) during surgery, as opposed to the traditional 45°.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):37–43.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 86 - 86
1 Sep 2012
Harvie P Fletcher T Sloan K Beaver R
Full Access

In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 155 - 155
1 May 2011
Harvie P Fletcher T Morrison D Day R Sloan K Beaver R
Full Access

Aim: In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. Methods: An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Results: Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). Conclusions: CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 60 - 60
1 Oct 2012
Zheng G von Recum J Nolte L Grützner P Franke J
Full Access

The goal of this study was to validate accuracy and reproducibility of a new 2D/3D reconstruction-based program called “HipRecon” for determining cup orientation after THA. “HipRecon” uses a statistical shape model based 2D/3D deformable registration technique that can reconstruct a patient-specific 3D model from a single standard AP pelvic X-ray radiograph. Required inputs include a digital radiograph, the pixel size, and the film-to-source distance. No specific calibration of the X-ray, or a CAD (computer-assisted design) model of the implant, or a CT-scan of the patient is required. Cup orientation is then calculated with respect to the anterior pelvic plane that is derived from the reconstructed 3D-model. The validation study was conducted on datasets of 29 patients (31 hips). Among them, there were 15 males and 14 females. Each dataset has one post-operative X-ray radiograph and one post-operative CT-scan. The post-operative CT scan for each patient was used to establish the ground truth for the cup orientation. Radiographs with deep centering (7 radiographs), or of pelvises with fractures (2 radiographs), or with both (1 radiograph), or of non-hemispherely shaped cup (1 radiograph) were assessed separately from the radiographs without above mentioned phenomena (18 radiographs) to estimate a potential influence on the 2D/3D reconstruction accuracy. To make the description easier, we denote those radiographs with above mentioned phenomena as non-normal cases and those without as normal cases. The cup anteversions and inclinations that were calculated by “HipRecon” were compared to the associated ground truth. To validate the reproducibility and the reliability, one observer conducted twice measurements for each dataset using “HipRecon”. The mean accuracy for the normal cases was 0.4° ± 1.8° (−2.6° to 3.3°) for inclination and 0.6° ± 1.5° (−2.0° to 3.9°) for anteversion, and the mean accuracy for the non-normal cases was 2.3° ± 2.4° (−2.1° to 6.3°) for inclination and 0.1° ± 2.8° (−4.6° to 5.1°) for anteversion. Comparing the measurement from the normal radiographs to those from the non-normal radiographs using the Mann-Whitney U-test, we found a significant difference in measuring cup inclination (p = 0.01) but not in measuring cup anteversion (p = 0.3). Bland-Altman analysis of those measurements from the normal cases indicated that no systematical error was detected for “HipRecon,” as the mean of the measurement pairs were spread evenly and randomly for both inclination and anteversion. “HipRecon” showed a very good reproducibility for both parameters with an intraclass correlation coefficient (ICC) for inclination of 0.98 (95% Confidence Limits (CL): 0.96–0.99) and for anteversion of 0.96 (95% CL: 0.91–0.98). Accurate assessment of the acetabular cup orientation is important for evaluation of outcome after THA, but the inability to measure acetabular cup orientation accurately limits one's ability to determine optimal cup orientations, to assess new treatment methods of improving acetabular cup orientation in surgery, and to correlate the acetabular cup orientation to osteolysis, wear, and instability. In this study, we showed that “HipRecon” was an accurate, consistent, and reproducible technique to measure cup orientation from post-operative X-ray radiographs. Furthermore, our experimental results indicated that the best results were achieved with the radiographs of non-fractured pelvises that included the anterior superior iliac spines and the cranial part of the non-fractured pelvis. Thus, it is recommended that these landmarks should be included in the radiograph whenever the 2D/3D reconstruction-based method will be used


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 132 - 132
1 May 2016
Pierrepont J Feyen H Baré J Young D Miles B Shimmin A
Full Access

Introduction. Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading. Methodology. Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard medical imaging to produce a patient-specific rigid body dynamics analysis of the subject performing a sit-to-stand task and a step-up with the contralateral leg, Fig 1. The software calculates the dynamic force at the replaced hip throughout the two activities and plots the bearing contact patch, using a Hertzian contact algorithm, as it traces across the articulating surface, Fig 2. As all the squeaking hips did so during deep flexion, the minimum posterior Contact Patch to Rim Distance (CPRD) can then be determined by calculating the smallest distance between the edge of the contact patch and the true rim of the ceramic liner, Fig 2. A negative posterior CPRD indicates posterior edge-loading. Results. The mean CPRD was significantly less in the squeaking group than the control group, −2.5mm and 2.9mm respectively, (p < 0.001), Fig 3. The mean pelvic tilt in the flexed seated position was 12.6° (range −13.5° to 30.3°) for the squeaking group and 5.1° (−9.8° to 26.4°) for the control group. Consequently, the mean functional cup anteversion at seat-off was significantly less in the squeaking group than the control group, 8.1° (−10.5° to 36.0°) and 21.1° (−1.9° to 38.4°) respectively (p < 0.001), Fig 3. There were 67% (12) of patients in the squeaking group that showed posterior edge-loading in the simulation compared to only 28% (10) in the control group that exhibited posterior edge-loading in the simulation. Conclusions. Acetabular cup orientation during activities associated with edge-loading are likely very different from those measured when supine. Patients with large anterior pelvic tilts during deep flexion activities might be more susceptible to posterior edge-loading and squeaking in ceramic-on-ceramic bearings, as a consequence of a significant decrease in cup anteversion. If these patients can be identified preoperatively, cup orientation and bearing choice could be customised accordingly to accommodate these individual motion patterns


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 75 - 75
1 Jan 2016
Jennings J Zheng G Green C Wellman S
Full Access

Background. Acetabular cup malpositioning during total hip arthroplasty (THA) is known to lead to impingement, instability, wear-induced osteolysis, and increased rates of revision surgery. The purpose of this study was to independently evaluate the accuracy of acetabular cup orientation using a novel mechanical navigation device. Methods. Postoperative acetabular cup orientation was reviewed in 47 primary THAs using the HipSextant mechanical navigation device. Angles were measured with a validated two-dimensional/three-dimensional matching application. An outlier was defined as +/− 10 degrees outside of the preoperative plan for inclination and anteversion. Results. Of the 47 THAs, 47 (100%) met our inclination target, 46 (98%) met our anteversion target, and 46 (98%) simultaneously met both targets. There were no outliers for inclination and one outlier (−12.7°) for anteversion (Figure 1). The absolute errors for both inclination and anteversion were significantly less than 10° (p<0.001). There were no intraoperative complications related to the use of this mechanical navigation system. Conclusions. The HipSextant reliably navigates acetabular cup inclination and anteversion according to a preoperative plan that is individualized for each patient. This should decrease the risk of postoperative complications related to acetabular component malposition during THA. Further research is warranted to assess the clinical impact of reducing outliers using this device


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 50 - 50
1 Feb 2016
Bendaya S Anglin C Lazennec J Allena R Thoumie P Skalli W
Full Access

Component placement and the individual's functional posture play key roles in mechanical complications and hip dysfunction after total hip arthroplasty (THA). The challenge is how to measure these. X-rays lack accuracy and CT scans increase radiation dose. A newer imaging modality, EOSTM, acquires low-dose, simultaneous, perpendicular anteroposterior and lateral views while providing a global view of the patient in a functional standing or sitting position, leading to a 3D reconstruction for parameter calculation. The purpose of the present study was to develop an approach using the EOS system to compare patients with good versus poor results after THA and to report our preliminary experiences using this technique. A total of 35 patients were studied: 17 with good results after THA (G-THA), 18 with poor results (P-THA). The patients were operated on or referred for follow-up to a single expert surgeon, between 2001 and 2011, with a minimum follow-up of at least two years. Acetabular cup orientation differed significantly between groups. Acetabular version relative to the coronal plane was lower in P-THA (32°±12°) compared to G-THA (40°±9°) (p=0.02). There was a strong trend towards acetabular cup inclination relative to the APP being higher in P-THA (45°±9°, compared to 39°±7°; p=0.07). Proportions of P-THA vs. G-THA patients with cup orientation values higher or lower than 1 SD from the overall mean differed significantly and substantially between groups. All revision cases had a least four values outside 1 SD, including acetabular cup orientation, sagittal pelvic tilt, sacral slope, femoral offset and neck-shaft angle. This is the first study to our knowledge to provide acetabular, pelvic and femoral parameters for these two groups and the first to provide evidence that a collection of high/low parameters may together contribute to a poor result. The results show the importance of acetabular component placement, in both inclination and version and the importance of looking at individuals, not just groups, to identify potential causes for pain and functional issues. With the EOS system, a large cohort of individuals can be studied in the functional position relatively quickly and at low dose. This could lead to patient-specific guidelines for THA planning and execution


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 40 - 40
1 May 2016
Meftah M Lipman J Ranawat A Ranawat C
Full Access

Introduction. Accurate and reproducible cup positioning is one the most important technical factors that affects outcomes of total hip arthroplasty (THA). Although Lewinnek's safe zone is the most accepted range for anteversion and abduction angles socket orientation, the effect of fixed lumbosacral spine on pelvic tilt and obliquity is not yet established. Questions:. What is the change in anteversion and abduction angle from standing to sitting in a consecutive cohort of patients undergoing THA?. What is the effect of fixed and flexible spinal deformities on acetabular cup orientation after THA?. Material and Methods. Between July 2011 and October 2011, 68 consecutive unilateral THAs were implanted in 68 patients with a mean age of 71 ± 6 years old. Radiographic evaluation included standing anteroposterior (AP) and lateral pelvic radiographs, and sitting lateral pelvic radiograph, measuring lumbosacral angle (LSA), sacral angle (SA), and sagittal pelvic tilt angle (SPTA). Computer generated 3D pelvis models were used to analyze the correlation between different pelvic tilts and acetabular cup orientation in abduction and anteversion. Results. The mean standing STPA was 3.7º of anterior tilt (range: −9º of anterior tilt to 25º of posterior tilt). The mean SPTA in sitting was −17.7º of posterior tilt (range: −38º of posterior tilt to 7º of anterior tilt). In a fixed spinal deformity (54%) the SPTA was significantly smaller compared to the flexible pelvis group (10º versus 30.9º, p=0.0001). Flexible pelvises (46%) had a posterior tilt from standing to sitting resulting in increased anteversion. Overall, mean change in LSA and SA from standing to sitting was 22.5º and 20.2º, respectively. The mean post-operative functional anteversion and abduction angles were 19.2º and 42.1º, respectively. In the virtual 3D pelvic models, when the abduction angle was between 40 and 45 degrees, anteversion changed of 0.75 degrees for 1 degree of change of pelvic tilt. Discussion. There is a significant change in pelvic tilt from standing to sitting, especially in patients with flexible spines, where the functional anteversion increases with sitting. Patients with a fixed pelvis have significantly less change in sagittal tilt and therefore less change in anteversion from standing to sitting position. Care should be taken to adjust cup positioning in fixed spinal deformity


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 23 - 23
1 Mar 2021
Howgate D Oliver M Stebbins J Garfjeld-Roberts P Kendrick B Rees J Taylor S
Full Access

Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the acetabular cup orientation (version and inclination). The acetabular cup was manually implanted across a range of orientations representative of those expected intra-operatively. Simultaneous readings from the Vicon® optical motion capture system were used as the ‘gold standard’ for comparison. Correlation and agreement between these two methods was determined using Bland-Altman plots, Pearson's correlation co-efficient, and linear regression modelling. Results. A total of 55 separate orientation readings were obtained. The mean average difference in acetabular cup version and inclination between the Vicon and VR systems was 3.4° (95% CI: −3–9.9°), and −0.005° (95% CI: −4.5–4.5°) respectively. Strong positive correlations were demonstrated between the Vicon and VR systems in both acetabular cup version (Pearson's R = 0.92, 99% CI: 0.84–0.96, p<0.001), and inclination (Pearson's R = 0.94, 99% CI: 0.88–0.97, p<0.001). Using linear regression modelling, the adjusted R. 2. for acetabular version was 0.84, and 0.88 for acetabular inclination. Conclusion. The results of this study indicate that the AescularVR platform is highly accurate and reliable in determining acetabular component orientation in a simulated environment. The AescularVR platform is an adaptable tracking system, which may be modified for use in a range of simulated surgical training and educational purposes, particularly in orthopaedic surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 6 - 6
1 Feb 2021
Madurawe C Vigdorchik J Lee G Jones T Dennis D Austin M Pierrepont J Huddleston J
Full Access

Introduction. Excessive standing posterior pelvic tilt (PT), lumbar spine stiffness, low pelvic Incidence (PI), and severe sagittal spinal deformity (SSD) have been linked to increased dislocation rates. We aimed to compare the prevalence of these 4 parameters in unstable and stable primary Total Hip Arthroplasty (THA) patients. Methods. In this retrospective cohort study, 40 patients with instability following primary THA for osteoarthritis were referred for functional analysis. All patients received lateral X-rays in standing and flexed seated positions to assess functional pelvic tilt and lumbar lordosis (LL). Computed tomography scans were used to measure pelvic incidence and acetabular cup orientation. Literature thresholds for “at risk” spinopelvic parameters were standing pelvic tilt ≤ −10°, lumbar flexion (LL. stand. – LL. seated. ) ≤ 20°, PI ≤ 41°, and sagittal spinal deformity (PI – LL. stand. mismatch) ≥ 10°. The prevalence of each risk factor in the dislocation cohort was calculated and compared to a previously published cohort of 4042 stable THA patients. Results. Median supine cup inclination for the dislocating cohort was 43° (range, 26°- 58°). Median cup anteversion was 23° (range, 7° − 40°) for the dislocating cohort. 65% of the dislocating patients had socket positions within the Lewinnek safe zone (Figure 1). Standing PT (-10° v −1°), lumbar flexion (20° v 45°), and PI-LL mismatch (12° v −1°) were all significantly different (p < 0.001) in the dislocating group compared to the stable THA population (Figure 2). There was no difference in PI between the dislocating group and the stable THA population (58° v 56° respectively, p = 0.33), with the numbers available. 80% of the dislocating patients had one or more of the 3 statistically significant risk factors, compared to only 24% of the stable THA population. Conclusion. Excessive standing posterior pelvic tilt, low lumbar flexion and a severe SSD are highly prevalent in unstable THAs. Pre-op screening for these parameters may reduce the prevalence of dislocation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 83 - 83
1 Feb 2020
Shimmin A Pierrepont J Bare J McMahon S
Full Access

Introduction & aims. Apparently well-orientated total hip replacements (THR) can still fail due to functional component malalignment. Previously defined “safe zones” are not appropriate for all patients as they do not consider an individual's spinopelvic mobility. The Optimized Positioning System, OPS. TM. (Corin, UK), comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. The aim of this study was to determine the early revision rate from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) for THRs implanted using OPS. TM. . Method. Between January 4. th. 2016 and December 20. st. 2017, a consecutive series of 841 OPS. TM. cementless total hip replacements were implanted using a Trinity acetabular cup (Corin, UK) with either a TriFit TS stem (98%) or a non-collared MetaFix stem (2%). 502 (59%) procedures were performed through a posterior approach, and 355 (41%) using the direct superior approach. Mean age was 64 (range; 27 to 92) and 51% were female. At a mean follow-up of 15 months (range; 3 to 27), the complete list of 857 patients was sent to the AOANJRR for analysis. Results. There were 5 revisions: . a periprosthetic femoral fracture at 1-month post-op in a 70F. a ceramic head fracture at 12-months post-op in a 59M. a femoral stem loosening at 7-months post-op in a 58M. a femoral stem loosening at 16-months post-op in a 64M. an anterior dislocation in a 53M, that was revised 9 days after the primary procedure. CT analysis, prior to revision surgery, revealed acetabular cup orientation of 46°/31° (inclination/anteversion) and femoral stem anteversion of 38°. Conclusions. These preliminary findings suggest the OPS. TM. dynamic planning and delivery system provides good early results, with a low rate of revision for dislocation. Limitations of the study will be discussed


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 52 - 52
1 Feb 2020
Lazennec J Kim Y Caron R Folinais D Pour AE
Full Access

Introduction. Most of studies on Total Hip Arthroplasty (THA) are focused on acetabular cup orientation. Even though the literature suggests that femoral anteversion and combined anteversion have a clinical impact on THA stability, there are not many reports on these parameters. Combined anteversion can be considered morphologically as the addition of anatomical acetabular and femoral anteversions (Anatomical Combined Anatomical Anteversion ACA). It is also possible to evaluate the Combined Functional Anteversion (CFA) generated by the relative functional position of femoral and acetabular implants while standing. This preliminary study is focused on the comparison of the anatomical and functional data in asymptomatic THA patients. Material and methods. 50 asymptomatic unilateral THA patients (21 short stems and 29 standard stems) have been enrolled. All patients underwent an EOS low dose evaluation in standing position. SterEOS software was used for the 3D measurements of cup and femur orientation. Cup anatomical anteversion (CAA) was computed as the cup anteversion in axial plane perpendicular to the Anterior Pelvic Plane. Femoral anatomical anteversion (FAA) was computed as the angle between the femoral neck axis and the posterior femoral condyles in a plane perpendicular to femoral mechanical axis. Functional anteversions for the cup (CFA) and femur (FFA) were measured in the horizontal axial patient plane in standing position. Both anatomical and functional cumulative anteversions were calculated as a sum. All 3D measures were evaluated and compared for the repeatability and reproducibility. Statistical analysis used Mann-Whitney U-test considering the non-normal distribution of data and the short number of patients (<30 for each group). Results. Functional cumulative anteversion was significantly higher than anatomical cumulative anteversion for all groups (p<0.05). No significant difference could be noted between the cases according to the use of short or standard stems. Conclusion. This study shows the difference of functional implant orientation as compared to the anatomical measurements. This preliminary study has limitations. First the limited sample of patients. Then this series only includes asymptomatic subjects. Nevertheless, this work focused on the feasibility of the measurements shows the potential interest of a functional analysis of cumulated anteversion. Standing position influences the relative position of THA implants according to the frontal and sagittal orientation of the pelvis. The relevance of these functional measurements in instability cases must be demonstrated, especially in patients with anterior subluxation in standing position which is potentially associated with pelvic adaptative extension. Further studies are needed for the feasibility of measurements on EOS images in sitting position and their analysis in case of instability. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 28 - 28
1 May 2019
Pryce G Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was influenced by stem design. The coxa vara stem was predicted to cause implant impingement less frequently across the range of activities and cup orientations investigated, compared to the standard stem [Fig. 1]. The cup orientations predicted to cause impingement the least frequently were at lower inclination and anteversion angles, relative to the standard stem [Fig. 1]. The coxa vara stem included a collar, while the standard stem was collarless; additional analysis indicated that differences were due to neck angle and not the presence of a collar. This study demonstrated that stem neck-shaft angle is an important variable in prosthetic impingement in THR and surgeons should be aware of this when choosing implants. Future work will consider further implant design and bone geometry variables. This tool has the potential for use in optimising stem design and position and could assist with patient specific stem selection based on an individual's activity profile. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 27 - 27
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Cobb J
Full Access

Background. Virtual Reality (VR) uses headsets and motion-tracked controllers so surgeons can perform simulated total hip arthroplasty (THA) in a fully-immersive, interactive 3D operating theatre. The aim of this study was to investigate the effect of laboratory-based VR training on the ability of surgical trainees to perform direct anterior approach THA on cadavers. Methods. Eighteen surgical trainees (CT1-ST4) with no prior experience of direct anterior approach (DAA) THA completed an intensive 1-day course (lectures, dry-bone workshops and technique demonstrations). They were randomised to either a 5-week protocol of VR simulator training or conventional preparation (operation manuals and observation of real surgery). Trainees performed DAA-THA on cadaveric hips, assisted by a passive scrub nurse and surgical assistant. Performance was measured on the Intercollegiate Surgical Curriculum Project (ISCP) procedure-based assessment (PBA), on a 9-point global summary score (Table 1). This was independently assessed by 2 hip surgeons blinded to group allocation. The secondary outcome measure was error in cup orientation from a predefined target (40° inclination and 20° anteversion). Results. Surgeons trained using VR performed a cadaveric DAA-THA significantly better than those using conventional preparation, as assessed by acetabular cup orientation (p<0.001) and using the ISCP-PBA. Two VR surgeons achieved Level 3b, 6 were graded at Level 3a, and 1 was graded at Level 2b. Six non-VR surgeons achieved Level 2a and 3 were graded at Level 1b. Discussion. These data demonstrate transfer of procedural knowledge and psychomotor skills learnt from VR to a real-world setting. Conventional preparation had limited value for novice surgeons learning arthroplasty. VR training advanced them further up the learning curve. Implications. Virtual reality can augment surgical training for open procedures in orthopaedics curve, so opportunities in real surgery can be maximised. This has implications for how surgical training is delivered for surgeons learning a new, complex procedure. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 62 - 62
1 Feb 2017
Kida D Ito T Kito Y Hattori Y Takahashi N Matsubara M
Full Access

Introduction. Accurate acetabular cup orientation could lead to successful surgical results in total hip arthroplasty (THA). We introduce a novel CT-based three-dimensional (3D) planning system, HipCOMPASS (Fig.1) and TARGET (Fig.2), which enable to design suitable alignment not only cup also surgical devices calculatingly, according to each pelvic inclination. Patients and Methods. We performed THA in 45 hips in 43 patients (female 37 and 6 men) between April 2014 and October 2015. Average age were 68 years old. THA operation was based on each parameter of the cup and device, providing a preoperative planning by ZedView system. HipCOMPASS and TARGET is linked with ZedView software, which is simultaneously calibrated adjustable parameters on this devices. Cup alignment was assessed by ZedView as well. Results. The differences of component alignment from the preoperative planning were shown in Tables. Conclusion. HipCOMPASS and TARGET might be more accurate than conventional method and more accessible system than navigation system in THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 95 - 95
1 May 2016
Kida D Ito T Kito Y Hattori Y Matsubara M
Full Access

Introduction. Accurate acetabular cup orientation could lead to successful surgical results in total hip arthroplasty (THA). We introduce a novel CT-based three-dimensional (3D) planning system, HipCOMPASS (Fg.1) and TARGET (Fig.2), which enable to design suitable alignment not only cup also surgical devices calculatingly, according to each pelvic inclination. Patients and methods. We performed THA in 13 patients (10 female and 3 men) between September 2014 and April 2014. Average age were 67 years old. THA operation was based on each parameter of the cup and device, providing a preoperative planning by ZedView system. HipCOMPASS and TARGET is linked with ZedView software, which is simultaneously calibrated adjustable parameters on this devices. Cup alignment was assessed by ZedView as well. Result. The differences of component alignment from the preoperative planning were shown in table. Conclusion. HipCOMPASS and TARGET might be more accurate than conventional method and more accessible system than navigation system in THA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 17 - 17
1 Aug 2013
Peters F Frey C Greeff R
Full Access

Acetabular cup placement in total hip replacement surgery is often difficult to assess, especially in the lateral position and using the posterior approach. On table control X-Rays are not always accessible, especially in the government sector. Conventional techniques and computer assisted surgery (CAS), are currently the two most popular methods for proper placement of the acetabular cup in Lewinnek's safe zone of orientation (anteversion 15°–10° and lateral inclination 40°±10°). We developed a simple way to get accurate cup placement using Smartphone technology. Methods:. A spirit level application was downloaded to the Smartphone. The acetabulum inclination was measured on the pre-operative X-Rays. The phone is placed in a sterile bag and then used intra-operatively, to measure and set our acetabular cup orientation to our pre-operative measurements. The inclination level was measured before and after final placement of the acetabular cup. This was compared to the acetabular cup inclination in our post-operative X-Rays. Results:. In our series of 50 cup placements we found high accuracy. The results show less than 5° deviation between our pre-, intra- and post-operative measurements. Conclusions:. Smartphone technology proves to be good alternative to conventional methods and CAS, to improve Acetabular Cup placement in Total Hip Arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 145 - 145
1 Feb 2017
McCarthy T Mont M Nevelos J Alipit V Elmallah R
Full Access

INTRODUCTION. Femoral stem impingement can damage an acetabular liner, create polyethylene wear, and potentially lead to dislocation. To avoid component-to-component impingement, many surgeons aim to align acetabular cups based on the “Safe Zone” proposed by Lewinnek. However, a recent study indicates that the historical target values for cup inclination and anteversion defined by Lewinnek et al. may be useful but should not be considered a safe zone. The purpose of this study was to determine the effect of altering femoral head size on hip range-of-motion (ROM) to impingement. METHODS. Ten healthy subjects were instrumented and asked to perform six motions commonly associated with hip dislocation, including picking up an object, squatting, and low-chair rising. Femur-to-pelvis relative motions were recorded throughout for flexion/extension, abduction/adduction, and internal/external rotation. A previously reported custom, validated hip ROM three-dimensional simulator was utilized. The user imports implant models, and sets parameters for pelvic tilt, stem version, and specific motions as defined by the subjects. Acetabular cup orientations for abduction and anteversion combinations were chosen. The software was then used to compute minimum clearances or impingement between the components for any hip position. Graphs for acetabular cup abduction vs. anteversion were generated using a tapered wedge stem with a 132º neck angle, a stem version of 15°, and a pelvic tilt of 0°. The only variable changed was femoral head size. Head sizes reviewed were 32mm, 36mm, and a Dual-Mobility liner with an effective head size of 42mm. All femoral head sizes can be used with a 50mm acetabular cup. RESULTS. We found that the “Safe Zone” varies considerably depending on the size of the femoral head used for all subjects. A typical plot illustrating the ROM to impingement is presented in Figures 1a-1c. The area to the left of each curve represents an impingement zone for that motion, and to the right, a non-impingement zone. In all cases the non-impingement area is smaller than the Lewinnek safe zone. Motions like picking up an object and squatting had the greatest influence on impingement. CONCLUSIONS. The true acetabular target for impingement-avoidance motion is much smaller than previously believed and identifies the need to take into account the size of the femoral head to be used. This may explain why approximately 70% of dislocations have been reported to be found even when cups were placed within the Lewinnek safe zone. Certain activities, such as picking up an object and squatting reduce the size of the safe zone. This study supports the need for better patient planning and intraoperative execution for placement of the acetabular component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 125 - 125
1 May 2016
Walter L McMahon S Pierrepont J Miles B
Full Access

Introduction. There is increasing interest in the functional positions the pelvis assumes with activities of daily living and its effect on acetabular cup orientation. A number of systems are commercially available to assess these movements, and attempt to position the acetabular component of a total hip replacement in a patient specific safe zone. However, these functional positions are assessed pre operatively when the patient still has the arthritis which may affect the range of movement of the hips, and thus affect the functional position of the pelvis. Obviously the planned acetabular position must take into account any changes in the functional movement of the pelvis as a result of the surgery. Ishida et al showed that a pelvis with more than a 10° anterior tilt when standing can be expected to correct towards neutral by 12 months post-surgery. However many of Ishida's cases were dysplastic. Hip arthritis in the Caucasian population is far less likely due to dysplasia and this may affect these pelvic tilt changes post-operatively. Methods. 120 patients who underwent total hip replacement by two surgeons through a posterior approach had had their acetabular planning based on functional imaging according to the Optimized Ortho Protocol (Optimized Ortho, Sydney Australia). They were re-assessed at 12 months post-surgery to determine the changes in their functional pelvic tilts. The Optimized Ortho protocol includes lateral radiographs with the patient standing, sitting forward about to lift off a seat, stepping up with the contralateral leg and a limited supine CT. The functional views are designed to display common functional activities. Results. There was minimal change in pelvic position post-operatively when supine. Patients with a significant anterior tilt when standing tended to revert to a more neutral position. Moreover, patients with a significant posterior tilt also tended to correct towards neutral when standing. The seated forward positions changed from pre to post surgery. Those patients who has a large seated posterior pelvic rotation, corrected significantly towards neutral post operation. Conclusions. These predicted standing changes are similar to those seen by Ishida and are important for planning patient specific positioning of acetabular components. There are no previous reports on the changes in forward sitting position. Confounding contra-lateral issues need to be taken into account when planning these predicted changes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2017
Pereira J Ramos A Completo A
Full Access

Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered. The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the acetabular cup orientation. A vertical load of 1700 N was applied on all cases, which have resulted in joint reaction force of 2.4 kN. The femur and iliac bone was instrumented with rosettes. 5 repetitions at each position were conducted. When the femur was instrumented with three rosettes in medial, anterior and posterior aspect, the maximum strain magnitude was observed in the medial aspect of femur with a minimum principal strain of −2070µε for 45° inclination and 20° of anterversion. The pubic region was found most critical region after instrumenting the Iliac bone with four rosettes, with a minimum principal strain around −2500µε (rosette 1), for the 45° inclination and 20° of anterversion. We have observed the great influence of the inclination on the strain distribution, changing its magnitude from compression to traction in different bone regions. The minimum principal strain is more critical in medial aspect of the femur and the influence of strain is about 7% when orientation and inclination change. The maximum influence was observed in the anterior aspect, where the anteversion presents a significant influence. The results show the interaction between inclination and anterversion in all aspects, being observed lower values in lower angles. The orientation of the acetabular cup significantly influences the strain distribution on the iliac surface. Besides, as anterversion increases, more strains are induced, mainly in the region of iliac body (rosette 3)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 20 - 20
1 Mar 2017
Milone M Vigdorchik J Schwarzkopf R Jerabek S
Full Access

INTRODUCTION. Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer navigation and robotic assistance have been shown to improve the precision of implant placement, most surgeons use mechanical and visual guides to place acetabular components. Authors have shown that, when using a bean bag positioner, mechanical guides are misleading as they are unable to account for the variability in pelvic orientation during positioning and surgery. However, more rigid patient positioning devices may allow for more accurate free hand cup placement. To our knowledge, no study has assessed the ability of rigid devices to afford surgeons with ideal pelvic positioning throughout surgery. The purpose of this study is to utilize robotic-arm assisted computer navigation to assess the reliability of pelvic position in total hip arthroplasty performed on patients positioned with rigid positioning devices. METHODS. 100 hips (94 patients) prospectively underwent total hip Makoplasty in the lateral decubitus position from the posterior approach; 77 stabilized by universal lateral positioner, and 23 by peg board. After dislocation but prior to reaming, one fellowship trained arthroplasty surgeon manually placed the robotic arm parallel to both the longitudinal axis of the patient and the horizontal surface of the operating table, which, if the pelvis were oriented perfectly, would represent 0 degrees of anteversion and 0 degrees of inclination. The CT-templated computer software then generated true values of this perceived zero degrees of anteversion and inclination based on the position of the robot arm registered to a preoperative pelvic CT. Therefore, variations in pelvic positioning are represented by these robotic navigation generated values. To assure the accuracy of robotic measurements, cup anteversion and inclination at times of impaction were recorded and compared to those calculated via the trigonometric ellipse method of Lewinnek on standardized 3 months postoperative X-rays. RESULTS. Mean alteration in anteversion and inclination values were 1.7 degrees (absolute value 5.3 degrees, range −20 – 20 degrees) and 1.6 degrees (absolute value 2.6 degrees, range −8 – 10 degrees) respectively. 22% of anteversion values were altered by >10 degrees; 41% by > 5 degrees. There was no difference between positioners (p=0.36) and regression analysis revealed that anteversion differences were correlated with BMI (p=0.02). Robotic navigation acetabular cup anteversion (mean 21.8 degrees) was not different from postoperative X-ray anteversion (mean 21.9 degrees)(p=0.50), nor was robotic navigation acetabular cup inclination (mean 40.6 degrees) different from postoperative X-ray inclination (mean 40.5 degrees)(p=0.34). DISCUSSION AND CONCLUSION. Rigid pelvic positioning devices present 5 to 20 degrees of variability in acetabular cup orientation, particularly with regards to anteversion. Compounding this with 20 degree safe zones and prior author demonstrations that human error is prone to 10 degrees of anteversion inaccuracy in a fixed pelvis model, there is a clear need to pay particular attention to anatomic landmarks or computer assisted techniques to assure accurate acetabular cup positioning. Patient positioning by itself should not be trusted


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 163 - 163
1 Jun 2012
Steppacher S Kowal JH Murphy S
Full Access

Acetabular component malpositioning is the most common reason for instability and wear resulting in revision total hip arthroplasty (THA). The current study aimed to assess a novel mechanical navigation device which was designed to simply and efficiently indicate appropriate cup orientation during surgery. The accuracy was compared to a series of hip arthroplasties performed using CT-based computer-assisted cup placement. The study group consisted of 70 THAs performed using the mechanical device. The control group consisted of 146 THAs performed using CT-based computer navigation. Postoperative cup positioning was measured using a validated 2D/3D-matching method. An outlier was defined outside a range of ± 10 degrees from the planned inclination or anteversion. In the study group the mean accuracy for inclination was 1.3 ± 3.4 (-6.6 – 8.2) and 1.0 ± 4.1 (-8.8 – 9.5) for anteversion with no outliers for either parameter. In the control group the accuracy for anteversion (3.0 ± 5.8 [-11.8 - 19.6]; p=0.6%) and the percentage of outliers (6.8%; p=3.3%) differed significantly. The accuracy for inclination (3.5 ± 4.1 [-12.7 - 9.5]; p=21.4%) and the percentage of ouliers (4.8%; p=9.9%) did not differ significantly. The use of this mechanical navigation device can result in similar accuracy of acetabular cup orientation compared with CT-based surgical navigation. All cups were placed within a zone of ± 10 degree range of inclination and anteversion. This mechanical navigation device allows accurate cup navigation with minimal additional time and equipment


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 388 - 388
1 Jul 2011
Davda K Iranpour F Hart A Cobb J
Full Access

A 10° deviation from the ideal cup orientation in Metal on Metal (MoM) bearing couples leads to increased wear and the subsequent risk of early revision surgery. We assessed the accuracy of orthopaedic trainees and consultants in achieving optimal acetabular cup orientation. 49 trainees and 18 consultants were asked to orientate an acetabular component to 40° inclination and 20° anteversion in 3 consecutive pelvic models:. osteoarthritic (OA),. OA with anterior pelvic tilt,. OA with soft tissue cladding, the task most realistic of a surgical scenario. The trainee group experience in performing hip arthroplasty procedures ranged from novice to expert (> 100 procedures performed). Performance was measured using an image based navigation system. Average angular error in all tasks was less than 10°, but the range in anteversion or inclination was up to 65°. Eighteen percent of trainees were +/− 10° of the target orientation in Station A, 29% in B and 2% in C. Forty four percent of consultants achieved the safe zone in A, 16% in B and 0% in C. There was no significant difference in accuracy between the two groups in any of the tasks (p> 0.01). There was no correlation between experience and angular accuracy. We have been unable to demonstrate trainees have the ability to achieve the optimal cup orientation in a clinically relevant safe zone. A similar range of error is found in experienced surgeons. Focused training or intra-operative computer assistance may provide the solution to improving accuracy in this core orthopaedic skill


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 38 - 38
1 Jan 2016
Miki H
Full Access

In total hip arthroplasty (THA), acetabular cup orientation is critical for avoiding edge-loading and implant-implant impingement, which may lead to serious complications such as dislocation, mechanical loosening, accelerated wear, or implant breakage. Many studies recommended to place the acetabular cup radiographically at an inclination of <50° to avoid edge-loading. Simultaneously, larger prosthetic ROMs than the patients’ ROM during daily activities are needed to minimize impingement related complications. Several three-dimensional computer simulation studies have been done for optimal cup orientation to avoid prosthetic impingement within possible hip ROMs in the late 1990s. However, the reference angles in the directions of flexion, extension, external rotation and internal rotation at 90 ° flexion as possible hip ROMs have not been consistent in previous simulation studies. Thus, different reference angles of hip ROMs resulted in different optimal cup orientation. Therefore, to give accurate information about the reference hip ROM, we measured passive hip ROMs intraoperatively using a navigation system in 91 patients. Pelvic and femoral coordinate systems referred a functional pelvic plane in the supine position and a retrocondylar plane, respectively. The neutral position of the hip ROM was defined as the position in which corresponding axes of the pelvic and femoral coordinate systems were parallel. Maximum flexion, extension, external rotation and abduction were 120°, 36 °, 43 ° and 55 °, respectively. Moreover, we investigated the hip ROM during five traditional Japanese hip positions which required large hip flexion and internal rotation angles in five healthy female volunteers by a 3D image matching technique using an open-configuration MRI. Maximum flexion was 122 ° and maximum internal rotation was 40 ° at more than 90 ° of flexion position. Therefore, we recommended using 120 ° for flexion, 40 ° for extension, 40 ° for external rotation and 40 ° for internal rotation at 90 ° flexion as the reference ROM when calculating an optimum cup orientation. We calculated radiographic cup anteversion, when radiographic cup inclination was 40 °, without prosthesis impingement in the reference hip ROMs using computer aided design models of prosthesis, which included a cementless CentPillar stem with a head 32mm in diameter and cementless Trident cup with a flat liner. The results showed the optimal cup target zone existed when the stem anteversion was between 20 ° and 45 °. The size of the target zone was widest when the stem anteversion was 30 °, and then it was plus or minus 5 ° of inclination and anteversion from the center of the zone. To eliminate outliers of cup orientation form the target zone, a computer assisted system such as navigation is recommended


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 2 - 2
1 Oct 2012
Taki N Mitsugi N Mochida Y Akamatsu Y Kobayashi H Saito T
Full Access

The efficacy of an imageless navigation system in acetabular cup orientation during total hip arthroplasty (THA) is well known. We evaluated the accuracy of placement of the cup and stem and leg extension length with the imageless navigation system. Radiographic evaluation was performed in 69 consecutive patients (75 joints) who underwent primary THA from January 2009 to December 2010. Evaluation of the cup inclination angle (CI), cup anteversion angle (CA), leg extension length (L) and stem anteversion angle (SA) was carried out. SA was evaluated in 21 patients who underwent CT scan after surgery. The accuracy of imageless navigation system was evaluated by comparison of the navigation values obtained during surgery with the radiographic or CT measured values. Good correlation was found between the navigation values and the radiographic or CT measured values in CI (P<0.001, r. 2. = 0.579), CA (P<0.001, r. 2. = 0.607), L (P<0.001, r. 2. = 0.775), and SA (P<0.001, r. 2. = 0.834). The mean absolute difference between navigation and radiograph or CT was 3.3 degrees (range 0.1 to 9.9 degrees) in CI, 4.6 degrees (0.1 to 11.4 degrees) in CA, 3.2mm (0.7 to 8.3) in L, and 3.6 degrees (0.1 to 10 degrees) in SA. The results of this study demonstrated that imageless navigation shows good accuracy not only in cup implantation angle but also in leg extension length and in stem anteversion angle according to radiographic and CT evaluation. We conclude that imageless navigation is a useful tool for performing accurate surgery for THA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 157 - 157
1 Dec 2013
Rathod P Deshmukh A Bhalla S Rodriguez J
Full Access

INTRODUCTION. Acetabular cup orientation is an important element of Total Hip arthroplasty (THA). The purpose of this retrospective case-control study was to compare variability of acetabular cup placement between THA performed via Direct Anterior Approach (DAA) with fluoroscopy in supine position and posterior approach (PA) in lateral position without use of fluoroscopy. METHODS. Radiographic and clinical records of THAs performed by a single, high volume arthroplasty surgeon at one institution were reviewed. Patients with similar design of uncemented acetabular cup, femoral component and bearing surface were included to form two groups. PA group consisted of 300 THAs performed from May 2006 to June 2009. DAA group consisted of 300 THAs performed from Oct 2009 to Oct 2011 excluding first 100 cases to eliminate the influence of learning curve. Radiographic analysis was done by two independent blinded observers to determine cup inclination and anteversion (Liaw et al) on standardized, 6 week postoperative, standing anteroposterior pelvic radiographs using Picture Archiving and Communication System software (PACS). RESULTS. Both groups were comparable in terms of age, sex and BMI. Mean inclination in both groups was similar; PA (41.2 degrees; range, 23 to 63) and DAA (40.36 degrees; range, 29 to 51). Mean anteversion was lower in DAA group (13.29 degrees; range, 6.2 to 32) as compared to PA group (24 degrees; range, 2.3 to 48.8). Variances for cup inclination (49.7 PA vs 19.1 DAA) and anteversion (75.1 PA vs 16.1 DAA) were significantly lower in the DAA group as compared to the PA group as per the F- test for equality of variances (p = 0.001). DISCUSSION. Acetabular cup placement in PA relies predominantly on internal landmarks. Utilization of fluoroscopy with supine position during DAA THA helps in intraoperative assessment of cup orientation and making adjustments for pelvic tilt, thus resulting in decreased variability


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 23 - 23
1 Oct 2014
Taki N Mitsugi N Mochida Y Aratake M Ota H Shinohara K Saito T
Full Access

Imageless navigation is useful in acetabular cup orientation during total hip arthroplasty (THA). There is a limitation of accuracy in the imageless navigation system because of the registration method, that is, to palpate bony landmarks over the skin. To improve this limitation, ultrasound-based navigation was introduced for more precise registration of bony landmarks. We evaluated the accuracy of placement of the implant, which was measured by CT in 66 patients. 22 patients underwent THA with imageless navigation, and 44 patients underwent THA with ultrasound-based navigation. The accuracy was evaluated by comparison of the navigation values obtained during surgery with the CT measured values. For the 44 patients with ultrasound-based navigation system, the mean CIA was 39.6+4.1 degrees (mean+SD) and the CAA was 18.5+6.1 degrees with CT evaluation. Ultrasound-based navigation showed 39.0+3.2 degrees in CIA and 18.8+5.9 degrees in CAA during surgery. The mean absolute difference in cup inclination angle (CIA) between ultrasound-based navigation and CT was 2.4+2.1 degrees (range 0.1–9.2 degrees). The mean absolute difference in cup anteversion angle (CAA) between navigation and CT was 2.2+2.7 degrees (0.04–12.2 degrees). The rasp ante-torsion angle was 28.6+10.0 degrees in the ultrasound-based navigation system. The mean SAA was 28.8+9.3 degrees in CT. Strong correlation was found between the rasp ante-torsion angle and SAA (r=0.858). The mean absolute difference between the rasp ante-torsion angle and SAA was 4.3+3.6 degrees (0.2-17.2 degrees). For the 22 patients with imageless navigation system, the mean absolute difference between imageless navigation and CT in CIA, CAA, and SAA were 2.5+1.8 degrees (0.1–5.8 degrees), 5.4+3.8 degrees (0.1–17.2 degrees), and 5.2+3.0 degrees (1.1-12 degrees) respectively. The thickness of subcutaneous tissue at the pubic symphysis was correlated to the difference in CAA between the imageless navigation and CT (r=0.456). Ultrasound-based navigation showed higher accuracy in CAA compare to imageless navigation. Moreover, ultrasound-based navigation showed almost the same accuracy of placement of the implant compare to the reported accuracy with CT-based navigation. Ultrasound-based navigation system improved the limitation of accuracy in the imageless navigation system


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 67 - 67
1 May 2016
Taki N Mitsugi N Mochida Y Aratake M Ota H Shinohara K Sasaki Y Saito T
Full Access

INTRODUCTION. Several papers have reported the efficacy of an imageless navigation system in acetabular cup orientation during total hip arthroplasty (THA). Also, an imageless navigation system is useful for recovering leg length discrepancy. However, no study has evaluated the accuracy of the stem antetorsion angle (SAA) with an imageless navigation system in THA. The purpose of this study was to evaluate the accuracy of the stem antetorsion angles, which were measured by CT with the CT-free navigation system. Also, we evaluate the factors that affect the inaccuracy. MATERIALS AND METHODS. CT evaluation was performed in 60 patients (60 joints) who underwent primary THA from December 2011 to March 2014. Fifty-nine patients were female. The mean age at surgery was 67 years. The mean BMI at surgery was 24.0 kg/m2. Fifty-four patients had osteoarthrosis, 5 patients had osteonecrosis, and 1 patient had femoral neck fracture. All surgeries were performed in the supine position with the direct anterior approach. The OrthoPilot imageless navigation system was used during surgery. An Excia stem was used in 47 patients and a Bicontact stem was used in the other 13. Evaluation of SAA was carried out. Instead of SAA, the navigation indicates the rasp antetorsion angle based on the hip-knee-ankle plane during surgery. SAA based on the posterior condylar plane was measured with CT by using 3D THA plannning software. The accuracy of the imageless navigation system was evaluated by comparison of the navigation values obtained during surgery with the CT measured values. Correlations were analyzed with Pearson correlation analysis. RESULTS. The rasp antetorsion angle was 28.1±9.6 degrees [range 7.7–49.2 degrees]. The mean SAA was 29.9±8.9 degrees [10.7–49.7 degrees] in CT. Strong correlation was found between the rasp antetorsion angle and SAA (p<0.001, r=0.858, Figure). The difference between SAA and the rasp antetorsion angle (SAA – rasp antetorsion angle) was 1.8±4.7 degrees [-6.7–11.9 degrees]. The mean absolute difference between the rasp antetorsion angle and SAA was 4.0±3.1 degrees [0.2–11.9 degrees]. Forty-five cases (75%) showed less than 5 degrees of difference between SAA and the rasp antetorsion angle. Five cases (8.3%) showed more than 10 degrees of difference. In these five cases, SAAs were greater than the rasp antetorsion angles. Patients’ age, height, weight, and BMI did not affect the difference. Deformity of the femoral head, osteoarthrosis of the hip with subluxation, and osteoarthrosis of the knee were found in the patients who showed more than 5 degrees of difference between SAA and the rasp antetorsion angle. DISCUSSION. This study demonstrated that imageless navigation showed good accuracy for determining SAA during operation. This helps surgeons to recognize combined anteversion during surgery, and to avoid impingement after THA. This navigation system determines rasp antetorsion angle based on the hip-knee-ankle plane. The hip center is defined by setting the trial cup on the acetabulum. The knee center and the ankle center are defined by pointing over the skin. Therefore, deformity of the acetabulum or femoral head may affect the accuracy of the rasp antetorsion angle


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 58 - 58
1 Aug 2013
Penenberg B Riley M Woehnl A
Full Access

Over the last few years low dose digital radiography (DR) has all but replaced traditional chemical image processing. This appears to have created a paradigm shift in the suitability of intraoperative radiographic guidance for total hip arthroplasty. It is the purpose of this publication to describe our preferred technique and assess its reliability in achieving the desired parameters of a successful total hip arthroplasty. A consecutive prospective evaluation of 150 primary total hip arthroplasties employing intraoperative digital radiography was carried out. An anteroposterior pelvic radiograph with the patient in the lateral decubitus position was obtained for all hips. The orientation of the intraoperative film was matched to that of the preoperative pelvic radiograph. The image was taken after placement of the acetabular component and best estimate of femoral trial size, position, and head and neck length. The DR system produced an image within 6 seconds of exposure. This trial radiograph was then used to make adjustments. Given that the cassette does not have to be moved for image processing, a precise anteroposterior film was obtained by simply adjusting the operating table. Two to three minutes were allotted for each radiograph. Corrections to stem size, cup position, screw length and position, limb length, and offset were made based on this intraoperative radiograph. The final intraoperative image was then compared to a postoperative standard radiograph in supine position at 2 weeks after total hip arthroplasty to verify the accuracy of intraoperative digital radiography. Abduction angle, limb length, offset, and canal fit and fill were assessed for confirmation of the validity of the intraoperative imaging technique. Acetabular abduction angle was determined with a mean of 43 degrees (range, 35 to 48 degrees). The intraoperative measurement was within 3 degrees of the postoperative measurement in all cases. Adjustment of acetabular cup orientation was performed 10% of the time based on the intraoperative radiograph. Apposition was within 2 mm 100% of the time. Re-seating of the cup was carried out in one hip only. Femoral component was neutral in 92% and between 3 and 5 degrees of varus in 8%. Femoral component was upsized 55% of the time. Intraoperatively measured limb length discrepancy and offset were within 3 mm of the postoperative measurement in all hips. Intraoperative digital imaging is a reliable tool for achieving the desired radiographic results in THA. The technique is efficient and affordable. The high rate of success in this series suggests that this technology should contribute to a paradigm shift in the standard of care in total hip arthroplasty


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 390 - 390
1 Jul 2010
Langton D Sprowson A Jameson S Joyce T Reed M Partington P Carluke I Nargol A
Full Access

Background: There are no large comparative metal ion studies of commercially available hip resurfacing devices which have taken into account the effects of femoral size and cup inclination and anteversion. Patients and methods: Metal ion analysis is carried out routinely at our independent centre. We present the metal ion results of 95 unilateral ASR patients and 70 unilateral BHR patients. For all patients, acetabular cup orientation was assessed using EBRA software. Patients with other metallic implants and those within 12 months of surgery were excluded. Results: Whole blood/serum chromium (Cr) and cobalt (Co) concentrations were inversely related to femoral component size in both the ASR and BHR group (p< 0.05). Cr and Co levels were only seen to increase in the BHR group when the cup was implanted with an inclination greater than 55°. A significant relationship was identifed between the anteversion of the BHR cup and Cr and Co (p< 0.05 for Co, Spearman Rank correlation), with an increase in ions observed at anteversion angles > 17°. Cr and Co were more strongly influenced by cup position in the case of the ASR, with an increase in metal ions observed at inclinations greater than 45° and anteversion angles of < 10° and > 20°. Discussion: The increased tolerance of the BHR cup to inclinations between 45–55° is likely due to the larger BHR cup providing greater protection against edge loading. When the cohort was divided by gender, the median Cr concentrations of the male ASR patients were significantly lower than those of the BHR males (p< 0.001). This suggests that in larger components positioned at more satisfactory angles of inclination and anteversion, the lower clearance of the ASR proves more significant than the extra coverage provided by the BHR cup. The BHR appears to be more sensitive to changes in anteversion than inclination


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 318 - 318
1 May 2006
Lash N Horne G Devane P Adams K
Full Access

The aim was to review patients that had single stage bilateral total hip joint replacements (SSBTHJR) of two surgeons in the Wellington area, to assess symptomatic relief and overall quality of life before and after surgery. To also review xrays of this population to assess acetabular component orientation. Fifty patients from two hospitals, with minimum follow up of two years, who had SSBTHJR, were reviewed for duration of stay, time to mobilisation, and complications (eg. wound infections, venous thrombus and embolism (VTE), gastrointestinal ileus, and cardiac events). Patient opinions on hip joint function (Oxford Hip Score) and overall quality of life (EQ-5D Score) were performed (37/50 patients could participate). Patient’s postoperative radiographs were analysed with Polyware Auto Version 6.00 to measure acetabular cup orientation for both sides. Oxford Hip Score mean was 20.5 (range 12 – 56), compared to the national mean 19.3. The median score was 14. Most patients (65%) had no symptoms of pain, difficulty in mobilising, or performing activities of daily living (ADL). 19% of patients had mild to moderate symptoms/difficulty, and 16% had significant pain/difficulty On average, using a visual analogue scale, patients felt their health was 42% better after having their surgery. Complication rates were minimal, and were primarily superficial wound infections. Hip acetabular cup positioning analysis was performed (statistical analysis pending). Patients undergoing SSBTHJR have comparable results for Oxford Hip Scores compared to unilateral THJR patients, improved lifestyle, but not increased complications


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 17 - 17
1 Jan 2004
Mor A Moody J LaBarca R Sell D Nikou C Omer A Jaramaz B DiGioia A
Full Access

Surgical navigation, coupled with preoperative plans, allows surgeons to plan and execute procedures to improve the likelihood of positive outcomes. In real life these navigation systems, which track both the patient and the surgical tools, are not absolutely accurate. Therefore, there is a need to know how much error there may be in the navigation system, so that the surgeon can assess the effects of possible errors in positioning. The methodology for assessing the accuracy of a surgical navigation system is similar across surgical specialties. We developed a framework for assessing the accuracy of the HipNav system, a computer assisted surgical system used for planning and intra-operative surgical navigation for total hip arthroplasty. This framework can be adapted to other systems and surgical procedures. To assess navigational accuracy, we compared acquired values to a ground-truth model: rigid plastic Sawbones pelvii with mounted fiducials and acetabular implants, whose positions were measured with a coordinate measuring machine. We then identified the individual components of the system that can contribute to overall accuracy, and characterised their contributions to the accuracy of the system. We also measured the end-to-end accuracy of the HipNav system, from initial CT scan through to acetabular cup orientation. This value is of direct importance to the practicing surgeon, and indicates how far off the final measured orientation of the cup may be from its actual location. For the HipNav system, we found that the end-to-end square root of the mean square error was 0.82° in abduction and 0.76° in version. The accuracy of a surgical navigation system is of vital importance to insure that a preoperative plan is executed properly. To measure the accuracy of a navigation system, accurate models that reflect the relevant anatomy are necessary, and allow true measurement of end-to-end and component accuracy. This example shows how the accuracy of HipNav was assessed, and that the final orientation of the acetabular implant was accurately guided


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 171 - 171
1 May 2011
Kwon Y Mellon S Murray D Gill H
Full Access

Introduction: Edge-loading, a phenomenon whereby the femoral component comes into contact with the edge of the acetabular component, has been suggested to increase wear in metal-on-metal hip resurfacing arthroplasty (MoMHRA). Pseudotumours (soft-tissue mass relating to the hip joint) have been associated with elevated serum and hip aspirate metal ion levels. This study aimed to investigate in vivo edge-loading in MoMHRA patients with pseudotumours by quantifying dynamic loci of the hip joint segment force relative to the acetabular component during functional activities. Materials and Methods: A total of 21 MoMHRA patients (30 hips) in two groups were investigated in this Ethics approved study:. 6 patients with pseudo-tumours detected using ultrasound/MRI;. 15 patients without pseudotumours. Three-dimensional lower limb motion analysis (12 camera Vicon System) was performed to estimate hip joint segment force during walking, chair-rising and stair-climbing. CT scans were used to determine each patient’s specific hip joint centre and acetabular component orientation. Edge-loading was defined to occur when a hip joint segment force vector/ cup intersection was located within 10% of the cup radius from the edge of the cup. Serum cobalt and chromium levels were analysed using Inductively-Coupled Plasma Spectrometer. Results: Edge-loading in the pseudotumour group occurred with significantly (p=0.02) longer (4-fold increase) duration as well as greater magnitude (7-fold increase) of force, compared to the non-pseudotumour group. The duration and force of the edge-loading were activity-dependent, with proportionally greater difference observed during stair climbing. The acetabular cup orientation values in the pseudotumour group were found within the safe zone of Lewinnek in one third of the hips with the remaining two thirds outside the safe zone. The presence of pseudotumour was associated with:. significantly higher median serum cobalt levels: 14.3ug/l (range 10.6–64.1) vs. 1.9ug/l (range 1.2–5.0), p< 0.001;. significantly higher median serum chromium levels: 21.2ug/l (range 13.8–45.2) vs. 1.8ug/l (range 0.7–7.6), p< 0.001. Discussion: Edge-loading in MoMHRA patients with pseudotumours occurred in vivo with significantly longer duration and greater magnitude of force impulse compared to the patients with a well functioning MoMHRA during activities of daily living. This suggests that edge-loading may be an important mechanism that leads to localised high wear, with subsequent elevation of metal ion levels in MoMHRA patients with pseudotumours. Although the acetabular component malposition, such as increase in both inclination and anteversion angles, appears to be an important factor in edge-loading, the aetiology of edge-loading is likely to be multi-factorial


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 111 - 111
1 Mar 2010
Jeffers JRT Latham J Williams P Taylor A Tuke MA
Full Access

Acetabular cup orientation in hip arthroplasty is critical to prevent edge loading and impingement. Aerial alignment guides position the cup at a specified angle to the orthogonal planes, but only if the pelvis is in strict lateral-decubitus. Computer navigation can also be used to position the acetabular cup, but there are limitations associated with defining the pelvic reference plane. It can also be postulated that a fixed angle of inclination and anteversion is not suitable for every patient and every cup design. This paper describes the development and testing of instrumentation that allows patient specific acetabular cup placement without knowing the exact pelvic orientation. Stage 1 determines the cup position during a trial reduction. A Judd nail retractor is left in the pelvis during the trial reduction. A single-use laser pointer is attached to the top of this nail, is free to move and can be locked in position. The trial acetabular cup has a handle protruding at a fixed angle from the face of the cup. At the end of this handle is another single-use laser pointer that projects a laser beam parallel to the axis of the cup onto the wall/ceiling. Keeping the handle parallel to the medio-lateral axis to control inclination angle, the leg is moved through a range of motion (ROM). The anteversion of the trial cup is adjusted until a position is found where flexion extension ROM is possible without impingement and satisfactory abduction-adduction is achieved with stability. Once this position is found, the Judd nail laser (fixed to the pelvis) is adjusted until its projected point, on the wall/ceiling, coincides with that from the trial handle. The Judd nail laser is then fixed in position, the hip dislocated and trial components removed. Stage 2 aligns the definitive acetabular cup. The introducer has a laser pointer pointing parallel to its axis (away from the patient) and is attached to the definitive cup. The definitive cup is placed in the acetabulum and the introducer adjusted until its projected laser coincides with that from the Judd nail. The cup is then in the same orientation as determined during the trial reduction and can be impacted. To demonstrate the accuracy of the laser alignment method, the position of the definitive cup was compared to that of the trial cup in polyurethane foam models. With the laser points projected onto an object > 2m away, the accuracy was ±2°. To compare the laser guided instrumentation with the conventional aerial device, the ROM of the definitive cup was assessed in Sawbones resurfaced pelvis/femur models. The pelvis orientation was rotated by ±10° about the medio-lateral axis and the superio-inferior axis to investigate the effect of the pelvis being unknowingly out of lateral-decubitus. In the worst case of pelvis position, the aerial halved the required flexion and allowed double the required extension. The laser guided instrumentation maintained the physiological range of flexion/extension regardless of pelvis position and is therefore considered an improvement on current technology and a viable alternative to computer navigation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 58 - 58
1 Oct 2012
Augustine A Deakin A Rowe P Picard F
Full Access

There is increasing interest in the use of image free computer assisted surgery (CAS) in total hip arthroplasty (THA). Many of these systems require the registration of the Anterior Pelvic Plane (APP) via the bony landmarks of the anterior superior iliac spines (ASIS) and pubic tubercles (PT) in order to accurately orient the acetabular cup in terms of anteversion and inclination. Given system accuracies are within 1mm and 1° and clinical validation studies have given accuracy by cup position. However, clinical outcomes contain not only system inaccuracies but also variations due to clinical practice. To understand the effects of variation in landmark acquisition on the identification of the acetabular cup orientation, independent bench testing is required. This requires a phantom model that can represent the range of pelvises, male and female, encountered during THA and introduce deliberate known errors to the acquisition to see the effect on anteversion and inclination angles. However, there is a paucity of information in the literature with regards to these specific pelvic dimensions (pelvic width and height). Therefore the aims of this work were to generate the normal expected range of sizes of the APP for both males and females and to use these to manufacture a phantom model that could be used to assess CT free navigation systems. In the first part of the study 35 human cadavers and 100 pelvic computed tomography (CT) scans were examined. All cadavers had no gross pelvic abnormalities or previous surgeries. Measurements were carried out with cadavers placed in a supine position. The first author made three sets of measurements using a millimeter ruler. Solid steel pins were used to identify the palpated ASISs and PTs. String was tied between the two ASIS pins and the pelvic width measured. The midpoint of the pubic tubercles was taken to be the midpoint of the pubic symphysis. Pelvic height was measured from the midpoint of the ASIS distance (marked on the string) to the midpoint of the PTs. One hundred pelvic CT scans with no bony abnormalities, previous surgery or metal prosthesis (due to artefacts) were obtained retrospectively from the hospital radiological online system (PACS, Kodak). Mimics software (Mimics12 Materialise, Leuven, Belgium) was used to automatically reconstruct three-dimensional (3D) models using the ‘Bone’ thresholding function. This eliminated any soft tissue from the 3D models. The most anterior ASIS and PT points were then identified on the 3D model surface and measurements of distances made. As the software did not allow identification of points not on the model surface it was not possible to directly obtain the midpoint of the ASIS distance. Therefore to obtain the pelvic height measurements the distance between each ASIS and the ipsilateral and contralateral PTs was also measured. The pelvic height was then calculated using trigonometric functions. The ratio of width to height was calculated (ratio > 1 indicating pelvis width greater than pelvis height). Student's t test was used analyse any differences between male and female pelvic measurements with a p<0.05 being statistically significant. Using the results from above an aluminium pelvic phantom model was designed and manufactured. It was machined from a billet of marine grade aluminium alloy using a vertical computer numerical controlled (CNC) milling machine. The top surface represented the APP and sides (which represented the acetabuli) were angled to give anteversion and inclination angles of 20° and 45° respectively. Co-ordinates for ASIS and PT points were given based on the 99% prediction intervals from the pelvic data and additional points were milled to give up to a 20 mm error mediolaterally and also in height. Each co-ordinate point was drilled with a 2.0mm diameter ball-nose cutter to a depth of 1.0mm, these holes designed to accommodate the ball-nosed pointer tip to ensure it remained at the same position in space at all orientations of the pointer. Further to this, known errors in height were introduced using accurately manufactured blocks with similar points milled on the surface to fit a ball-nosed pointer. These blocks could be secured to the top surface of the model using screws. A Perspex base unit with tracker attachments was made to hold the phantom and provide the reference frame. A further support that enables the phantom to also be used in the “lateral” position was manufactured. For the assessment of pelvic size there were 66 females and 69 males, mean age 62.3 years (range from 20 to 99 years). The mean width was 238 mm (SD 20 mm) and mean height was 93 mm (SD 11 mm) with a mean ratio of 2.6 (SD 0.3). There were no statistically significant differences in mean between males and females (p>0.4 in all cases). From this data set the range of APP sizes required to cover 99% of population (width 186 to 290 mm and height 66 to 120 mm) and therefore the measurements for the model were generated. The manufactured model can be used to give the range of pelvis sizes from 170mm to 290mm in width and 60mm to 120mm in height and also to add up to 20 mm of error in palpation of each of the ASISs and PT. This study generated APP sizes to cover 99% of the general population over a wide age range. It illustrated that a single pelvic model would fit both sexes. The model allows the determination of the effects of changes of the pelvic dimensions may have on the acetabular orientation measured on an image free CAS system including the assessment of point acquisition and deliberate errors. The model has been successfully used in preliminary testing and can be used to assess any CT free system


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 132 - 132
1 Dec 2013
Murphy S Murphy W Werner SD Kowal JH
Full Access

Introduction:. Wear, wear-associated osteolysis, and instability are the most common reasons for revision total hip arthroplasty. These failures have been shown to be associated with acetabular component malpositioning. However, optimal acetabular component orientation on a patient-specific basis is currently unknown. The current study uses CT to assess acetabular orientation in a group of unstable hips as compared to a control group of stable hips. Methods:. Our institutional database of CT studies performed in the region of the hip beginning in February of 1998 (41,975 CT studies) was compared against our institutional database of revision total hip arthroplasties beginning in August of 2003 (2262 Revision THA) to identify CT studies of any hip treated for recurrent instability by revision of the acetabular component. Twenty hips in 20 patients with suitable CT studies were identified for the study group. Our control group consisted of 99 hips in 93 patients who had CT studies either for computer-assisted surgery on the contralateral side or for assessment of osteolysis. Using the CT data, the AP plane (APP) was defined, supine pelvic tilt was measured, and cup orientation was calculated by fitting a best fit plane to 6 points on the rim of the acetabular component. Cup orientation was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Both absolute cup position relative to the APP and tilt-adjusted cup position. 1. were calculated. Results:. The study group of 20 hips treated for instability showed a mean operative anteversion of 30.3 degrees (SD 17.6, range 1.0 to 58.1), a mean operative inclination of 35.9 degrees (SD 8.4, range 25.1 to 55.9), and a mean tilt-adjusted operative anteversion of 29.7 (SD 14.2, range 1.8 to 53). The control group of 99 hips showed a mean operative anteversion of 30.5 degrees (SD 10.7, range −1.9 to 57.5), a mean operative inclination of 37.7 degrees (SD 8.0, range 18.4 to 68.1), and a mean tilt-adjusted operative anteversion of 26.7 (SD 10.8, range −0.2 to 47.3). Most interestingly. all of the hips treated for instability had an operative anteversion of either 22.9 degrees or less or 38.67 degrees or more of tilt-adjusted operative inclination of either 30.5 degrees or less or 55.9 degrees or more, or both. The center of the safe zone in this study is 30.7 of tilt-adjusted operative anteversion and 43.2 degrees of operative inclination (Figure 1). There was no discernable safe zone in the non tilt-adjusted group. Discussion and Conclusion:. Most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. The hip dislocation safe zone appears to be narrower in operative anteversion than in operative inclination. Improved methods of improving the accuracy and reliability of acetabular component placement may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 44 - 44
1 Aug 2013
Murphy W Werner S Kowal J Murphy S
Full Access

Introduction. The optimal acetabular component orientation in general or on a patient-specific basis is currently unknown. In order to answer this question, the current study uses CT to assess acetabular orientation in a group of unstable hips as compared to a control group of stable hips. Methods. Our institutional database of CT studies performed in the region of the hip beginning in February of 1998 (41,975 CT studies) was compared against our institutional database of revision total hip arthroplasties beginning in August of 2003 (2262 Revision THA) to identify CT studies of any hip treated for recurrent instability by revision of the acetabular component. Twenty hips in 20 patients with suitable CT studies were identified for the study group. Our control group consisted of 101 hips in patients who had CT studies either for computer-assisted surgery on the contralateral side or for assessment of osteolysis. Using the CT data, the AP plane (APP) was defined, supine pelvic tilt was measured, and cup orientation was calculated by fitting a best fit plane to 6 points on the rim of the acetabular component. Cup orientation was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Both absolute cup position relative to the APP and tilt-adjusted cup position were calculated. Results. The study group of 20 hips treated for instability showed a mean operative anteversion of 29.6 degrees (SD 14.3, range 1.8 to 58) and a mean operative inclination of 35.8 degrees (SD 8.3, range 25.1 to 55.9). The control group of 101 hips showed a mean operative anteversion of 26.7 degrees (SD 10.7, range 0.2 to 47.3) and a mean operative inclination of 37.7 degrees (SD 7.9, range 18.4 to 68.1). Most interestingly. all of the hips treated for instability had a tilt-adjusted operative anteversion of either 22.9 degrees or less or 38.6 degrees or more or operative inclination of either 28.9 degrees or less or 55.9 degrees or more, or both. The center of the safe zone in this study is 30.7 degrees of tilt-adjusted operative anteversion and 42.4 degrees of operative inclination. Discussion and Conclusion. Most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. The hip dislocation safe zone appears to be narrower in operative anteversion than in operative inclination and so the safe zone is better represented graphically as an oval as opposed to a box. The safe zone identified in the current study relates only to instability. Optimal positioning for reducing wear may narrow the safe zone further, particularly as it relates to the upper limit of operative inclination. Improved methods of achieving better accuracy and reliability of acetabular component placement may reduce the incidence of cup malposition and its associated complications