Abstract
In total hip arthroplasty (THA), acetabular cup orientation is critical for avoiding edge-loading and implant-implant impingement, which may lead to serious complications such as dislocation, mechanical loosening, accelerated wear, or implant breakage. Many studies recommended to place the acetabular cup radiographically at an inclination of <50° to avoid edge-loading. Simultaneously, larger prosthetic ROMs than the patients’ ROM during daily activities are needed to minimize impingement related complications. Several three-dimensional computer simulation studies have been done for optimal cup orientation to avoid prosthetic impingement within possible hip ROMs in the late 1990s. However, the reference angles in the directions of flexion, extension, external rotation and internal rotation at 90 ° flexion as possible hip ROMs have not been consistent in previous simulation studies. Thus, different reference angles of hip ROMs resulted in different optimal cup orientation. Therefore, to give accurate information about the reference hip ROM, we measured passive hip ROMs intraoperatively using a navigation system in 91 patients.
Pelvic and femoral coordinate systems referred a functional pelvic plane in the supine position and a retrocondylar plane, respectively. The neutral position of the hip ROM was defined as the position in which corresponding axes of the pelvic and femoral coordinate systems were parallel. Maximum flexion, extension, external rotation and abduction were 120°, 36 °, 43 ° and 55 °, respectively. Moreover, we investigated the hip ROM during five traditional Japanese hip positions which required large hip flexion and internal rotation angles in five healthy female volunteers by a 3D image matching technique using an open-configuration MRI. Maximum flexion was 122 ° and maximum internal rotation was 40 ° at more than 90 ° of flexion position. Therefore, we recommended using 120 ° for flexion, 40 ° for extension, 40 ° for external rotation and 40 ° for internal rotation at 90 ° flexion as the reference ROM when calculating an optimum cup orientation.
We calculated radiographic cup anteversion, when radiographic cup inclination was 40 °, without prosthesis impingement in the reference hip ROMs using computer aided design models of prosthesis, which included a cementless CentPillar stem with a head 32mm in diameter and cementless Trident cup with a flat liner. The results showed the optimal cup target zone existed when the stem anteversion was between 20 ° and 45 °. The size of the target zone was widest when the stem anteversion was 30 °, and then it was plus or minus 5 ° of inclination and anteversion from the center of the zone. To eliminate outliers of cup orientation form the target zone, a computer assisted system such as navigation is recommended.