Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

AN ENHANCED MICROSOFT HOLOLENS® AUGMENTED REALITY PLATFORM FOR TRAINING IN ACETABULAR CUP IMPLANT ORIENTATION: A RANDOMIZED CONTROLLED TRIAL

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 1 of 2.



Abstract

Background

Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with acetabular cup implant malorientation. These errors are more common with low-volume centres or in novice hands. Currently, this skill is most commonly taught during real surgery with an expert trainer, but simulated training may offer a safer and more accessible solution. This study investigated if a novel MicronTracker® enhanced Microsoft HoloLens® augmented reality (EAR) headset was as effective as one-on-one expert surgeon (ES) training for teaching novice surgeons hip cup orientation skill.

Methods

Twenty-four medical students were randomly assigned to EAR or ES training groups. Participants used a modified sawbone/foam pelvis model for hip cup orientation simulation. A validated EAR headset measured the orientation of acetabular cup implants and displayed this in the participant”s field of view. The system calculated the difference between planned and achieved orientation as a solid-angle error.

Six different inclination and anteversion combinations, related to hypothetical patient-specific anatomy, were used as target orientations. Learning curves were measured over four sessions, each one week apart. Error in orientations of non-taught angles and during a concealed pelvic tilt were measured to assess translation of skills. A post-test questionnaire was used for qualitative analysis of procedure understanding and participant experience.

Results

Novice surgeons of similar experience in both groups performed with a similar error prior to training (ES: 15.7°±6.9°, EAR: 14.2°±7.1°, p>0.05). During training, EAR participants were guided to significantly better orientation errors than ES (ES: 6.0°±3.4°, EAR: 1.1°±0.9°, p<0.001).

After four training sessions, the orientation error in both groups significantly reduced (ES: 15.7°±6.9° to 8.2°±4.6°, p<0.001; EAR: 14.2°±7.0° to 9.6°±5.7°, p<0.001). Participants in both groups achieved the same levels of orientation accuracy in non-taught angles and when the pelvis was tilted (p>0.05).

In post-training evaluation, participants expressed a preference towards ES rather than EAR for learning orientation skills and related visuospatial and procedure-specific skills. 79% of participants indicated EAR simulator training and ES in combination would be their preferred training method.

Discussion

A novel head-mounted EAR platform delivered training to novice surgeons more accurately than an expert surgeon. Both EAR and ES enabled novices to acquire and retain skills on a learning curve to orientate the implant. These skills were translated to non-taught orientations and in the presence of a pelvic tilt.

Conclusions

Augmented-reality simulators may be a feasible and valid method for teaching novice surgeon”s visuospatial skills for THA on a learning curve, to compliment traditional intraoperative training.


Email: