Abstract
Introduction
The optimal acetabular component orientation in general or on a patient-specific basis is currently unknown. In order to answer this question, the current study uses CT to assess acetabular orientation in a group of unstable hips as compared to a control group of stable hips.
Methods
Our institutional database of CT studies performed in the region of the hip beginning in February of 1998 (41,975 CT studies) was compared against our institutional database of revision total hip arthroplasties beginning in August of 2003 (2262 Revision THA) to identify CT studies of any hip treated for recurrent instability by revision of the acetabular component. Twenty hips in 20 patients with suitable CT studies were identified for the study group. Our control group consisted of 101 hips in patients who had CT studies either for computer-assisted surgery on the contralateral side or for assessment of osteolysis. Using the CT data, the AP plane (APP) was defined, supine pelvic tilt was measured, and cup orientation was calculated by fitting a best fit plane to 6 points on the rim of the acetabular component. Cup orientation was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Both absolute cup position relative to the APP and tilt-adjusted cup position were calculated.
Results
The study group of 20 hips treated for instability showed a mean operative anteversion of 29.6 degrees (SD 14.3, range 1.8 to 58) and a mean operative inclination of 35.8 degrees (SD 8.3, range 25.1 to 55.9). The control group of 101 hips showed a mean operative anteversion of 26.7 degrees (SD 10.7, range 0.2 to 47.3) and a mean operative inclination of 37.7 degrees (SD 7.9, range 18.4 to 68.1). Most interestingly. all of the hips treated for instability had a tilt-adjusted operative anteversion of either 22.9 degrees or less or 38.6 degrees or more or operative inclination of either 28.9 degrees or less or 55.9 degrees or more, or both. The center of the safe zone in this study is 30.7 degrees of tilt-adjusted operative anteversion and 42.4 degrees of operative inclination.
Discussion and Conclusion
Most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. The hip dislocation safe zone appears to be narrower in operative anteversion than in operative inclination and so the safe zone is better represented graphically as an oval as opposed to a box. The safe zone identified in the current study relates only to instability. Optimal positioning for reducing wear may narrow the safe zone further, particularly as it relates to the upper limit of operative inclination. Improved methods of achieving better accuracy and reliability of acetabular component placement may reduce the incidence of cup malposition and its associated complications.