header advert
Results 1 - 54 of 54
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 9 - 9
1 Jun 2021
Greene A Verstraete M Roche C Conditt M Youderian A Parsons M Jones R Flurin P Wright T Zuckerman J
Full Access

INTRODUCTION

Determining proper joint tension in reverse total shoulder arthroplasty (rTSA) can be a challenging task for shoulder surgeons. Often, this is a subjective metric learned by feel during fellowship training with no real quantitative measures of what proper tension encompasses. Tension too high can potentially lead to scapular stress fractures and limitation of range of motion (ROM), whereas tension too low may lead to instability. New technologies that detect joint load intraoperatively create the opportunity to observe rTSA joint reaction forces in a clinical setting for the first time. The purpose of this study was to observe the differences in rTSA loads in cases that utilized two different humeral liner sizes.

METHODS

Ten different surgeons performed a total of 37 rTSA cases with the same implant system. During the procedure, each surgeon reconstructed the rTSA implants to his or her own preferred tension. A wireless load sensing humeral liner trial (VERASENSE for Equinoxe, OrthoSensor, Dania Beach, FL) was used in lieu of a traditional plastic humeral liner trial to provide real-time load data to the operating surgeon during the procedure. Two humeral liner trial sizes were offered in 38mm and 42mm curvatures and were selected each case based on surgeon preference. To ensure consistent measurements between surgeons, a standardized ROM assessment consisting of four dynamic maneuvers (maximum internal to external rotation at 0°, 45°, and 90° of abduction, and a maximum flexion/extension maneuver) and three static maneuvers (arm overhead, across the body, and behind the back) was completed in each case. Deidentified load data in lbf was collected and sorted based on which size liner was selected. Differences in means for minimum and maximum load values for the four dynamic maneuvers and differences in means for the three static maneuvers were calculated using 2-tailed unpaired t-tests.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 110 - 110
1 Apr 2019
Verstraete M Conditt M Goodchild G
Full Access

Introduction & Aims

Patient recovery after total knee arthroplasty remains highly variable. Despite the growing interest in and implementation of patient reported outcome measures (e.g. Knee Society Score, Oxford Knee Score), the recovery process of the individual patient is poorly monitored. Unfortunately, patient reported outcomes represent a complex interaction of multiple physiological and psychological aspects, they are also limited by the discrete time intervals at which they are administered. The use of wearable sensors presents a potential alternative by continuously monitoring a patient's physical activity. These sensors however present their own challenges. This paper deals with the interpretation of the high frequency time signals acquired when using accelerometer-based wearable sensors.

Method

During a preliminary validation, five healthy subjects were equipped with two wireless inertial measurement units (IMUs). Using adhesive tape, these IMU sensors were attached to the thigh and shank respectively. All subjects performed a series of supervised activities of daily living (ADL) in their everyday environment (1: walking, 2: stair ascent, 3: stair descent, 4: sitting, 5: laying, 6: standing). The supervisor timestamped the performed activities, such that the raw IMU signals could be uniquely linked to the performed activities. Subsequently, the acquired signals were reduced in Python.

Each five second time window was characterized by the minimum, maximum and mean acceleration per sensor node. In addition, the frequency response was analyzed per sensor node as well as the correlation between both sensor nodes. Various machine learning approaches were subsequently implemented to predict the performed activities. Thereby, 60% of the acquired signals were used to train the mathematical models. These models were than used to predict the activity associated with the remaining 40% of the experimentally obtained data.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 111 - 111
1 Apr 2019
Verstraete M Conditt M Lieffort D Hazin W Trousdale J Roche M
Full Access

Introduction and Aims

Sensor technology is seeing increased utility in joint arthroplasty, guiding surgeons in assessing the soft tissue envelope intra-operatively (OrthoSensor, FL, USA). Meanwhile, surgical navigation systems are also transforming, with the recent introduction of inertial measurement unit (IMU) based systems no longer requiring optical trackers and infrared camera systems in the operating room (i.e. OrthAlign, CA, USA). Both approaches have now been combined by embedding an IMU into an intercompartmental load sensor. As a result, the alignment of the tibial varus/valgus cut is now measured concurrently with the mediolateral tibiofemoral contact load magnitudes and locations. The wireless sensor is geometrically identical to the tibial insert trial and is placed on the tibial cutting plane after completing the proximal tibial cut. Subsequently, the knee is moved through a simple calibration maneuver, rotating the tibia around the heel. As a result, the sensor provides a direct assessment of the obtained tibial varus/valgus alignment. This study presents the validation of this measurement.

Method

In an in-vitro setting, sensor-based alignment measurements were repeated for several simulated conditions. First, the tibia was cut in near-neutral alignment as guided by a traditional, marker-based surgical navigation system (Stryker, MI, USA). Subsequently, the sensor was inserted and a minimum of five repeated sensor measurements were performed.

Following these measurements, a 3D printed shim was inserted between the sensor and the tibial cutting plane, introducing an additional 2 or 4 degrees of varus or valgus, with the measurements then being repeated. Again, for each condition, a minimum of five sensor measurements were performed. Following completion of the tests, a computed tomography (CT) scan of the tibia was obtained and reconstructed using open source software (3DSlicer).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 115 - 115
1 Apr 2019
Verstraete M Conditt M Chow J Gordon A Geller J Wade B Ronning C
Full Access

Introduction

Close to 30% of the surgical causes of readmission within 90 days post-total knee arthroplasty (TKA) and nearly half of those occurring in the first 2 years are caused by instability, arthrofibrosis, and malalignment, all of which may be addressed by improving knee balance. Furthermore, the recently launched Comprehensive Care for Joint Replacement (CJR) initiative mandates that any increase in post-acute care costs through 90-days post-discharge will come directly from the bundle payment paid to providers. Post-discharge costs, including the cost of readmissions for complications are one of the largest drivers of the 90-day cost of care. It is hypothesized that balanced knees post-TKA will lower the true provider costs within the 90-day bundle.

Methods

Cost, outcomes and resource utilization data were collected from three independent surgeons pre- and post- adoption of intraoperative technology developed to provide real-time, quantitative load data within the knee. In addition, data were collected from Medicare claims, hospital records, electronic medical records (EMR), clinical, and specialty databases. The cohorts consisted of 932 patients in the pre-adoption group and 709 patients in the post-adoption group. These 2 groups were compared to the CMS national average data from 291,201 cases. The groups were controlled for age, sex, state, and BMI with no major differences between cohorts. The cost factors considered were the length of hospital stay, physician visits and physical therapy visits in addition to post-operative complications (e.g., manipulation under anesthesia (MUA) and aseptic revision).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 113 - 113
1 Apr 2019
Verstraete M Conditt M Wright T Zuckerman J Youderian A Parsons I Jones R Decerce J Goodchild G Greene A Roche C
Full Access

Introduction & Aims

Over the last decade, sensor technology has proven its benefits in total knee arthroplasty, allowing the quantitative assessment of tension in the medial and lateral compartment of the tibiofemoral joint through the range of motion (VERASENSE, OrthoSensor Inc, FL, USA). In reversal total shoulder arthroplasty, it is well understood that stability is primarily controlled by the active and passive structures surrounding the articulating surfaces. At current, assessing the tension in these stabilizing structures remains however highly subjective and relies on the surgeons’ feel and experience. In an attempt to quantify this feel and address instability as a dominant cause for revision surgery, this paper introduces an intra-articular load sensor for reverse total shoulder arthroplasty (RTSA).

Method

Using the capacitive load sensing technology embedded in instrumented tibial trays, a wireless, instrumented humeral trial has been developed. The wireless communication enables real-time display of the three-dimensional load vector and load magnitude in the glenohumeral joint during component trialing in RTSA. In an in-vitro setting, this sensor was used in two reverse total shoulder arthroplasties. The resulting load vectors were captured through the range of motion while the joint was artificially tightened by adding shims to the humeral tray.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 140 - 140
1 May 2016
Yildirim G Gopalakrishnan A Davignon R Zeller A Pearle A Conditt M
Full Access

Introduction

Cementless unicondylar knee implants are intended to offer surgeons the potential of a faster and less invasive surgery experience in comparison to cemented procedures. However, initial 8 week fixation with micromotion less than 150µm is crucial to their survivorship1 to avoid loosening2.

Methods

Test methods by Davignon et al3 for micromotion were used to assess fixation of the MAKO UKR Tritanium (MAKO) (Stryker, NJ) and the Oxford Cementless UKR (Biomet, IN). Data was analyzed to determine the activities of daily living (ADL) that generate the highest forces and displacements4, 5. Stair ascent with 3.2BW compressive posterior tibial load was identified to be an ADL which may cause the most micromotion5. Based on previous studies6, 10,000 cycles was set as the run-time. The AP and IE profiles were scaled back to 60% for the Oxford samples to prevent the congruent insert from dislocating. A four-axis test machine (MTS, MN) was used. The largest size UKRs were prepared per manufacturer's surgical technique. Baseplates were inserted into Sawbones (Pacific Research, WA) blocks1. Femoral components were cemented to arbors. The medial compartment was tested, and the lateral implants were attached to balance the loads.

Five tests were conducted for each implant with a new Sawbones and insert for each test per the test method3. The ARAMIS System (GOM, Germany) was used to measure relative motion between the baseplate and the Sawbones at three anteromedial locations (Fig. 1). Peak-Peak (P-P) micromotion was calculated in the compressive and A/P directions.

FEA studies replicating the most extreme static loading positions for MAKO micromotion were conducted to compare with the physical test results using ANSYS14.5 (ANSYS, PA).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 6 - 6
1 May 2016
Branch S Roche M Lightcap C Conditt M
Full Access

Introduction

Recent advances in 3D printing enable the use of custom patient-specific instruments to place drill guides and cutting slots for knee replacement surgery. However, such techniques limit the ability to intra-operatively adjust an implant plan based on soft-tissue tension and/or joint pathology observed in the operating room, e.g. cruciate ligament integrity. It is hypothesized that given the opportunity, a skilled surgeon will make intra-operative adjustments based on intra-operative information not captured by the hard tissue anatomy reconstructed from a pre-operative CT scan or standing x-ray. For example, tibiofemoral implant gaps measured intra-operatively are an indication of soft-tissue tension in the patient's knee, and may influence a surgeon to adjust implant position, orientation or size. This study investigates the frequency and magnitude of intra-operative adjustments from a single orthopedic surgeon during 38 unicondylar knee arthroplasty (UKA) cases.

Methods

For each patient, a pre-operative plan was created based on the bony anatomy reconstructed from the pre-operative CT. This plan is analogous to a plan created with patient-specific cutting blocks or customized implants. With robotic technology that utilizes pre-operative imaging, intra-operative navigation and robotic execution, this “anatomic” plan can be fine-tuned and adjusted based on the soft tissue envelop measured intra-operatively. The relative positions of the femur and the tibia are measured intra-operatively under a valgus load (for medial UKA, varus load for lateral UKA) for each patient from extension to deep knee flexion and used to compute the predicted space between the implants (gaps) throughout flexion. The planned position, orientation and size of the components can then be adjusted to achieve an optimal dynamic ligament balance prior to any bony cuts. This is the plan that is then executed under robotic guidance. Intra-operative adjustments are defined as any size, position or orientation changes occurring intra-operatively to the pre-operative anatomic plan.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 93 - 93
1 May 2016
Branch S Coon T Conditt M
Full Access

INTRODUCTION

Bicompartmental knee arthroplasty (BKA) is an alternative to total knee arthroplasty (TKA) for degenerative joint disease when present in only two compartments. BKA spares the cruciate ligaments and preserves bone in the healthy compartment, possibly leading to better knee kinematics and clinical outcomes when compared to TKA. While BKA is a technically demanding procedure when performed with manual instrumentation, robotic assistance allows for accurate implant placement and soft tissue balancing of the joint. Robotic unicompartmental knee arthroplasty (UKA) has shown favorable clinical outcomes and survivorship at short term (2 year) follow up compared to manual UKA. The purpose of this study is to evaluate the short term functional outcomes and survivorship of patients undergoing robotically assisted BKA.

METHODS

45 patients (48 knees) were identified in an initial and consecutive single surgeon series receiving robotically assisted BKA to correct disease in the medial and patellofemoral compartments. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and functional outcomes (using the patient portion of the Knee Society Score). 9 patients were lost to follow up and 1 patient was deceased. 35 patients (38 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 79%. There are 22 male patients and 13 female patients; the average age at time of surgery is 67.0 ± 6.8 and the average BMI is 29.5 ± 4.6. Five patients in this series also qualified for a 5 year follow up assessment.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 91 - 91
1 May 2016
Conditt M Gustke K Coon T Kreuzer S Branch S Bhowmik-Stoker M D'Alessio J Otto J Abassi A
Full Access

Introduction

Preoperative templating of femoral and tibial components can assist in choosing the appropriate implant size prior to TKA. While weight bearing long limb roentograms have been shown to provide benefit to the surgeon in assessing alignment, disease state, and previous pathology or trauma, their accuracy in size prediction is continually debated due to scaling factors and rotated views. Further, they represent a static time point, accounting for boney anatomy only. A perceived benefit of robotic-assisted surgery is the ability to pre-operatively select component sizes with greater accuracy based on 3D information, however, to allow for flexibility in refining based on additional data only available at the time of surgery.

Methods

The purpose of this study was to determine the difference of pre-operative plans in size prediction of the tibia, femur, and polyethylene insert. Eighty four cases were enrolled at three centers as part of an Investigational Device Exemption to evaluate a robotic-assisted TKA. All patients had a CT scan as part of a pre-operative planning protocol. Scans were segmented and implant sizes predicted based on the patients boney morphology and an estimated 2mm cartilage presence. Additional information such as actual cartilage presence and soft tissue effects on balance and kinematics were recorded intra-operatively. Utilizing this additional information, surgical plans were fine tuned if necessary to achieve minimal insert thickness and balance. Data from the Preoperative CT plan sizing and final size were compared to determine the percentage of size and within one size accuracy.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 49 - 49
1 May 2016
Conditt M Gustke K Coon T Kreuzer S Branch S Bhowmik-Stoker M
Full Access

Introduction

Total knee arthroplasty (TKA) using conventional instrumentation has been shown to be a safe and effective way of treating end stage osteoarthritis by restoring function and alleviating pain. As robotic technology is developed to assist surgeons with intra-operative decision making such as joint balancing and component positioning, the safety of these advancements must be established. Furthermore, functional recovery and clinical outcomes should achieve comparable results to the gold standard of conventional instrumentation TKA.

Methods

Eighty-seven subjects (89 knees) underwent robotic arm assisted TKA by one of three investigators as part of an FDA and IRB approved Investigational Device Exemption (IDE). To achieve the primary endpoint of intra-operative patient safety using a robotic arm assisted cutting tool, the investigators completed questionnaires to assess a series of complications related to soft tissue damage associated with conventional TKA. Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee Society Knee Scores (KSS) were collected pre-operatively and at three month follow-up.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 92 - 92
1 May 2016
Conditt M Gustke K Coon T Kreuzer S Branch S Bhowmik-Stoker M Abassi A
Full Access

Introduction

Total knee arthroplasty (TKA) is a well established treatment option for patients with end stage osteoarthritis. Conventional TKA with manual instruments has been shown to be a cost effective and time efficient surgery. While robotic-assisted operative systems have been shown to have benefits in surgical accuracy, they have also been reported to have longer surgical times. The purpose of this work was to determine surgical time and learning curve for a novel robotic-assisted TKA platform.

Methods

Eighty-five subjects underwent robotic-assisted TKA by one of three investigators as part of an FDA and IRB approved Investigational Device Exemption (IDE). All patients received a cruciate retaining total knee implant system. Intra-operative safety, Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee Society Scores (KSS) were collected pre-operatively and at three month follow-up. In addition, surgical times were collected as part of a TKA work flow. To identify activities related to surgical steps required for robotic procedures specific time stamps were determined from the system. Capture of the hip center to final bone cut was used to define case time and identify robotic learning curve. Descriptive statistics were used to analyze results.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 5 - 5
1 Feb 2016
Coon T Hernandez A Conditt M
Full Access

Introduction

Bi-compartmental knee arthroplasty (BKA) is an alternative to total knee arthroplasty (TKA) for degenerative joint disease when present in only two compartments. BKA spares the cruciate ligaments and preserves bone in the healthy compartment, possibly leading to better knee kinematics and clinical outcomes when compared to TKA. While BKA is a technically demanding procedure when performed with manual instrumentation, robotic assistance allows for accurate implant placement and soft tissue balancing of the joint. Robotic unicompartmental knee arthroplasty (UKA) has shown favourable clinical outcomes and survivorship at short term (2 year) follow up compared to manual UKA. The purpose of this study is to evaluate the short term functional outcomes and survivorship of patients undergoing robotically assisted BKA.

Methods

45 patients (48 knees) were identified in an initial and consecutive single surgeon series receiving robotically assisted BKA to correct disease in the medial and patellofemoral compartments. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and functional outcomes (using the patient portion of the Knee Society Score). 9 patients were lost to follow up and 1 patient was deceased. 35 patients (38 knees) at a minimum two year follow up enrolled in the study for an enrolment rate of 79%. There are 22 male patients and 13 female patients; the average age at time of surgery is 67.0 ± 6.8 and the average BMI is 29.5 ± 4.6. Five patients in this series also qualified for a 5 year follow up assessment.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 97 - 97
1 Jan 2016
Conditt M Franceschi G Bertolini D Khabbazè C Rovini A Nardaccione R
Full Access

Introduction

Isolated lateral compartment osteoarthritis (OA) occurs in 5–10% of knees with OA [1, 2]. Lateral unicompartmental knee arthroplasty (LUKA) emerged as a treatment to this disease in the early 80s but challenging surgical technique has limited the prevalence of this treatment option [1–3]. A robotic-arm assisted surgical technique (MAKO Surgical Corp.) has emerged as a way to achieve precise implant positioning which can potentially improve surgical outcomes.

Objectives

The purpose of this study was to evaluate short term outcomes for patients that received LUKA using a novel robotic-arm assisted surgical technique.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 98 - 98
1 Jan 2016
Conditt M Coon T Roche M Buechel F Borus T Dounchis J Pearle A
Full Access

Introduction

High BMI has been classically regarded as a contraindication for unicompartmental knee arthroplasty (UKA) as it can potentially lead to poor clinical outcomes and a higher risk of failure. In recent years, UKA has increased in popularity and, as a result, patient selection criteria are beginning to broaden. However, UKA performed manually continues to be technically challenging and surgical technique errors may result in suboptimal implant positioning. UKA performed with robotic assistance has been shown to improve component positioning, overall limb alignment, and ligament balancing, resulting in overall improved clinical outcomes. The purpose of this study is to examine the effect of high BMI in patients receiving UKA with robotic assistance.

Methods

1007 patients (1135 knees) were identified in an initial and consecutive multi-surgeon multi-center series receiving robotically assisted medial UKA, with a fixed bearing metal backed onlay tibial component. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and satisfaction. 160 patients were lost to follow up, 35 patients declined to participate, and 15 patients were deceased. 797 patients (909 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 80%. 45% of the patients were female. The average age at time of surgery was 69.0 ± 9.5 (range: 39–93). BMI data was available for 887 knees; the average BMI at time of surgery was 29.4 ± 4.9. Patients were stratified in to five categories based on their BMI: normal (< 25; 16%), overweight (25–30; 46%), obese class I (30–35; 25%), obese class II (35–40; 11%) and obese class III (>40; 2%).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 49 - 49
1 Jan 2016
Conditt M Coon T Hernandez A Branch S
Full Access

INTRODUCTION

Bicompartmental knee arthroplasty (BKA) is an alternative to total knee arthroplasty (TKA) for degenerative joint disease when present in only two compartments. BKA spares the cruciate ligaments and preserves bone in the healthy compartment, possibly leading to better knee kinematics and clinical outcomes when compared to TKA. While BKA is a technically demanding procedure when performed with manual instrumentation, robotic assistance allows for accurate implant placement and soft tissue balancing of the joint. Robotic unicompartmental knee arthroplasty (UKA) has shown favorable clinical outcomes and survivorship at short term (2 year) follow up compared to manual UKA. The purpose of this study is to evaluate the short term functional outcomes and survivorship of patients undergoing robotically assisted BKA.

METHODS

45 patients (48 knees) were identified in an initial and consecutive single surgeon series receiving robotically assisted BKA to correct disease in the medial and patellofemoral compartments. As part of an IRB approved study, every patient in the series was contacted at a minimum two year (±2 months) follow up and asked a series of questions to determine implant survivorship and functional outcomes (using the patient portion of the Knee Society Score). 9 patients were lost to follow up and 1 patient was deceased. 35 patients (38 knees) at a minimum two year follow up enrolled in the study for an enrollment rate of 79%. There are 22 male patients and 13 female patients; the average age at time of surgery is 67.0 ± 6.8 and the average BMI is 29.5 ± 4.6. Five patients in this series also qualified for a 5 year follow up assessment.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 96 - 96
1 Jan 2016
Domb B Redmond J Gupta A Hammarstedt J Petrakos A Stake C Conditt M
Full Access

Background

Component positioning in total hip arthroplasty (THA) is critical to achieve optimal patient outcomes. Recent literature has shown acetabular component positioning may be inaccurate using traditional techniques. Robotic-assisted THA is a recent platform introduced to decrease the risk of malpositioned components. However, to date, a paucity of data is available comparing the intra-operative component position generated by the navigation system to post-operative radiographs.

Purpose

The purpose of this study was to compare the component position measurements of a navigation system, used during robotic-assisted THA, to component position measurements obtained on post-operative radiographs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 50 - 50
1 Jan 2016
Borus T Roberts D Fairchild P Christopher J Conditt M Branch S Matthews J Pirtle K Baer M
Full Access

Introduction

Unicompartmental Knee Arthroplasty (UKA) has been offered as a tissue sparing alternative to total knee arthroplasty (TKA) for treatment of early to mid-stage osteoarthritis (OA). While the spared tissue and retention of cruciate ligaments may result in faster recovery, smaller incision, less bone resection, decreased pain and blood loss and more normal kinematics and function, UKA has shown unpredictable results in practice, which may be due to variations in surgical techniques1. Recently a robotic-assisted technique has been introduced as a means to provide more consistent and reproducible surgical results. In this study, the early return to function was measured to determine proposed benefits between UKA and TKA.

Methods

Patients requiring either UKA or TKA were prospectively enrolled in this IRB approved study. Each patient received pre-operative education regarding their expected physical therapy (PT) regimen, which was uniform for all patients. PT was determined to be concluded when each patient reached an achievable functional endpoint with each of the following 5 criteria: range of motion from 5 to 115 degrees, recovery of flexion and extension strength to 4/5 of pre-operative strength, gait with minimal limp and without an assistive device for 250 feet and ability to ascend and descend a flight of stairs with step over gait and good control. The number of PT visits to reach each functional goal was recorded.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2016
Domb B Redmond J Hammarstedt J Petrakos A Stake C Gupta A Conditt M
Full Access

Background

Several recent reports have documented high frequency of malpositioned acetabular components, even amongst high volume arthroplasty surgeons. Robotic assisted total hip arthroplasty (THA) has the potential to improve component positioning; however, to our knowledge there are no reports examining the learning curve during the adoption of robotic assisted THA.

Purpose

The purpose of this study was to examine the learning curve of robotic assisted THA as measured by component position, operative time, intra-operative technical problems, and complications.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 41 - 41
1 Oct 2014
Illgen RL Conditt M
Full Access

Component malposition in total hip arthroplasty (THA) contributes to wear, dislocation, and leg length discrepancy (LLD). Robotic assisted total hip arthroplasty (rTHA) utilises computer-assisted haptically guided bone preparation and implant insertion to improve accuracy. The goal of this study is to compare accuracy and clinical outcome with manual THA (mTHA) and rTHA at minimum 1 year follow-up interval.

Consecutive primary THA performed by one fellowship trained surgeon included: the first 100 mTHAs in his clinical practice (Group1- year 2000), the last 100 mTHAs before rTHA use (Group2- year 2010), and the first 100 rTHA (Group3- year 2011). All THAs utilised cementless implants, cross-linked polyethylene, and a posterior approach. Comparisons included age, sex, diagnosis, implant head size, blood loss (EBL), operative time, LLD, early dislocation and infection. Acetabular abduction (AAB), anteversion (AAV), and LLD were measured using validated software (Martell Hip Analysis Suite). The Lewinnek safe zone defined accuracy (AAB- 30°-50°, AAV- 5°-25°). Statistical analysis included ANOVA, Chi squared, and Fisher tests. Power analysis demonstrated adequate sample sizes.

No differences were noted regarding group demographics. Average operative times varied: Group 1, 2, and 3- (160, 129, and 143 minutes, respectively). No deep infections occurred in any group. LLD greater than 1.5 cm varied: Groups 1, 2, and 3 (9%, 1%, 1%, respectively). Dislocation rates varied: Groups 1, 2, and 3- (5%, 3%, and 0%, respectively). EBL was less with rTHA than mTHA (Groups 1, 2, 3: 533cc, 437cc, 357cc, respectively). Average implant head size increased comparing Groups 1, 2, and 3 (31mm, 34.6mm, and 35.2mm, respectively). AAB accuracy varied: Groups 1, 2, and 3 (66%, 91%, and 98%, respectively). AAB greater than 55 degrees varied: Groups 1, 2, and 3 (15%, 1%, and 0%, respectively). There was a 3% fractured acetabular liner rate in Group 1, all cases occurred with AAB > 55 degrees, and AAB greater than 55 degrees correlated with increased acetabular liner fracture rate (20% vs. 0%, P < 0.05). No cases of fractured acetabular liners occurred in Group 2 or 3. rTHA improved AAV accuracy compared with mTHA (Group 2- 48%, Group 3- 75%; p<0.0001). Improved acetabular component accuracy with rTHA correlated with lower dislocation rates compared with mTHA (p<0.001).

Total hip arthroplasty performed with traditional manual techniques has demonstrated excellent clinical outcomes in the majority of patients with many THA designs if components are placed accurately. Limitations in mTHA remain that alter results if accurate component placement is not achieved. In our study, clinical experience over 10 years improved AAB accuracy with mTHA, but AAV remained problematic. rTHA improved AAB and AAV accuracy compared with mTHA and demonstrated reduced early dislocation rates, improved rate of LLD, and reduced acetabular liner fracture risk compared with mTHA (p<0.05). Average rTHA operative times were 14 minutes longer than mTHA (Group 2), but this was not associated with increased EBL or infection rates. Further study is needed to evaluate whether the short term clinical and radiographic advantages noted with rTHA compared with mTHA will be maintained at longer follow up intervals.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 294 - 294
1 Dec 2013
Conditt M Coon T Roche M Pearle A Borus T Buechel F Dounchis J
Full Access

INTRODUCTION

Successful clinical outcomes following unicompartmental knee arthroplasty (UKA) depend on component positioning, soft tissue balance and overall limb alignment which can be difficult to achieve using manual instrumentation. Recently, robotically guided technology has been used to improve post-operative implant positioning, and limb alignment in UKA with the expectation that this will result in greater implant longevity. This multi-center study examines the survivorship of this robotically guided procedure coupled with a novel, anatomically designed UKA implant at two years follow up.

OBJECTIVES

This study examines the two year survivorship and patient satisfaction of an anatomically designed UKA implant using a new robotically guided technology that has been shown to improve implant positioning and alignment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 35 - 35
1 Dec 2013
Conditt M Illgen R
Full Access

While THA is regarded as one of the most successful surgeries in medicine, recent studies have revealed that ideal acetabular cup implantation is achieved as little as 50% of the time. Malalignment of the acetabular component in THA may result in dislocation, reduced range of motion, or accelerated wear. Recently, robotic-assisted surgery has been introduced to reduce the errors in component placement. The purpose of this study is to longitudinally assess the accuracy of cup placement of a single surgeon at three points in time: directly following a total joint fellowship, after 10 years of experience with manual instrumentation, and directly after adopting robotic technology.

Three hundred patients received THA at a single center by a single surgeon representing three series of 100 consecutive patients in each series. The first series A included the surgeon's first 100 THA patients following graduation from joint fellowship (2/2000–5/2002). The second series B included the surgeon's last 100 THA patients before adopting robotic technology (12/2010–1/2012) and the final series C included the surgeon's first 100 THA patients using robotic assistance (4/2012–4/2013). The post-operative abduction and version of the cup was measured using PACS imaging software from the AP and cross-table lateral radiographs. Abduction was measured using a transverse line at the level of the teardrop and the lateral opening angle of the cup relative to this reference line. Anteversion was measured using the ischial method described by Schmalzreid on the crosstable lateral view and accounts for pelvic flexion.

The average inclination for the groups A, B, and C was 48.6 ± 7.6°, 37.4 ± 6.2°, and 39.6 ± 47.6°, respectively and for anteversion was 29.3 ± 10.3°, 26.6 ± 8.4°, and 23.6 ± 5.7°, respectively. The cup placement in the original series A was within the Lewinnek safe zone only 31% of the time. This increased to 45% in series B and up to 74% in series C (p < 0.05). With the robotic series C, the three-dimensional pre-operative plan was obtained from the software. The average error (final placement–plan) was −0.7 ± 2.1° for inclination and 1.1 ± 2.0° for version. 93% of the inclination measurements and 94% of the version measurements were within 5° of the plan and 100% of both measurements were within 10° of the plan. Of note, 8% of the robotic cases were actually planned outside of the Lewinnek safe zone to accommodate for patient deformity and optimize correction to achieve the targeted combined anteversion of the acetabular and femoral components.

Robotic assistance in THA leads to significantly more precise acetabular cup placement. As measured by the Lewinnek safe zone, 10 years of experience resulted in a 45% increase in precision, while adding robotic assistance resulted in a 139% increase in precision compared to the surgeon's initial performance. With greater knowledge of ideal acetabular cup position, highly accurate techniques may allow surgeons to decrease the risk of dislocation, promote durability and improve the ability to restore appropriate leg length and offset.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 476 - 476
1 Dec 2013
Banks S Watanabe T Kreuzer SW Leffers K Conditt M Jones J Park B Dunbar N Iorgulescu A
Full Access

INTRODUCTION

There is strong current interest to provide reliable treatments for one- and two-compartment arthritis in the cruciate-ligament intact knee. An alternative to total knee arthroplasty is to resurface only the diseased compartments with discrete compartmental components. Placing multiple small implants into the knee presents a greater surgical challenge than total knee arthroplasty, and it is not certain natural knee mechanics can be maintained. The goal of this study was to compare functional kinematics in cruciate-intact knees with either medial unicondylar (mUKA), mUKA plus patellofemoral (mUKA+PF), or bi-unicondylar (biUNI) arthroplasty using discrete compartmental implants with preparation and placement assisted by haptic robotic technology.

METHODS

Nineteen patients with 21 knee arthroplasties consented to participate in an I.R.B. approved study of knee kinematics with a cruciate-retaining multicompartmental knee arthroplasty system. All subjects presented with knee OA, intact cruciate ligaments, and coronal deformity ranging from 7° varus to 4° valgus. All subjects received multicompartmental knee arthroplasty using haptic robotic-assisted bone preparation an average of 13 months (6–29 months) before the study. Eleven subjects received mUKA, five subjects received mUKA+PF, and five subjects received biUKA. Subjects averaged 62 years of age and had an average body mass index of 31. Combined Knee Society Pain/Function scores averaged 102 ± 28 preoperatively and 169 ± 26 at the time of study. Knee range of motion averaged −3° to 120° preoperatively and −1° to 129° at the time of the study.

Knee motions were recorded using video-fluoroscopy while subjects performed step-up/down, kneeling and lunging activities. The three-dimensional position and orientation of the implant components were determined using model-image registration techniques (Fig. 1). The AP locations of the medial and lateral condyles were determined by computing a distance map between the femoral condyles and the tibial articular surfaces.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 45 - 45
1 Mar 2013
Conditt M Branch SH Ballash M Granchi C
Full Access

INTRODUCTION

Adult reconstructive orthopedic surgery in the United States is facing an imminent logjam due to the increasing divergence of the demand for services and the ability for the community to supply those services. In combination with several other factors, a perfect storm is brewing that may leave the system overtaxed and the patient population suffering from either a lack of treatment, or treatment by less qualified providers. A key component to improving the overall efficiency of surgical care is to introduce enabling technologies that can effectively increase the throughput while simultaneously improving the quality of care. One such enabling technology that has proven itself in many industries is robotics, which has recently been introduced in surgery with even more recent applications in orthopedic surgery. A surgeon interactive robotic arm has been developed for partial knee arthroplasty (PKA) and total hip arthroplasty (THA). This study aims to analyse the efficiency of a new robotic technology for use in orthopaedic surgery.

METHODS

18 robotic arm assisted PKA's across 10 sites were recorded to accurately capture the timeline elemental tasks throughout the procedure. Two camera angles were set up to capture both surgical staff group dynamics and individual procedural steps. 17 tasks were identified and measured from video data. (Fig 1) The robotic arm specific tasks were analyzed for correlation to total surgical time (measured as first incision to last suture). The tasks for the surgeons with the shortest and longest total times were compared directly to determine areas of opportunity.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 46 - 46
1 Mar 2013
Domb B Finley Z Baise R Botser I Conditt M
Full Access

Introduction

Improper acetabular component orientation has been shown to negatively affect the outcome of total hip arthroplasty through increasing dislocation rates, component impingement, bearing surface wear, and the rate of revision surgeries. The “Safe Zone” was defined by Lewinnek et al. in 1978 as 5 to 25 degrees of cup version and 30 to 50 degrees of cup inclination. Later, the inclination “Safe Zone” values were modified to 30 to 45 degrees.

Objectives

The primary purpose of this study was to assess whether the use of Mako robotic hip system improves cup positioning when compared to traditional THR.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 104 - 104
1 Mar 2013
Conditt M Kreuzer S Jones J Dalal S
Full Access

Introduction

Traditional Total Knee Arthpolasty (TKA) replaces all 3 compartments of the knee for patients diagnosed with OA. There might be functional benefit to replacing only damaged compartments, and retaining the normal ligamentous structures. There is a long history of performing multi-compartment arthroplasty with discrete components. Laskin reported in 1976 that good pain relief and acceptable clinical results were achieved at two years in patients with bi-unicondylar knee replacement [Laskin 1976]. Other authors also have reported on bi-unicompartmental knee arthroplasty achieving successful clinical outcomes [Stockley 1990; Confalonieri 2005]. Banks et al. reported that kinematics of bi-unicompartmental arthroplasties during gait demonstrated some of the basic features of normal knee kinematics [Banks 2005]. These reports suggest that a modular approach to resurfacing the knee can be successful and achieve satisfactory clinical and functional results.

Objective

The primary objective of this study is to compare the functional outcomes of three patient groups treated for osteoarthritis.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 10 - 10
1 Oct 2012
Mofidi A Lu B Goddard M Conditt M Poehling G Jinnah R
Full Access

The knee is one of the most commonly affected joints in osteoarthritis. Unicompartmental knee replacement (UKA) was developed to address patients with this disease in only one compartment. The conventional knee arthroplasty jigs, while usually being accurate, may result in the prosthesis being inserted in an undesired alignment which may lead to poor post-operative outcomes. Common modes of failure in UKA include edge loading due to incorrect sizing or positioning, development of disease in the other compartment due to over-stuffing or over-correction and early loosening or stress fractures due to inaccurate bone cuts.

Computer navigation and robotically assisted unicompartmental knee replacement were introduced in order to improve the surgical accuracy of both the femoral and tibial bone cuts. The aim of this study was to assess accuracy and reliability of robotic assisted, unicondylar knee surgery in producing reported bony alignment.

Two hundred and twenty consecutive patients with a mean age of 64 + 11 years who underwent successful medial robotic assisted unicondylar knee surgery performed by two senior total joint arthroplasty surgeons were identified retrospectively. The mean body mass index of the cohort was 33.5 + 8 kg/m2 with a minimum follow-up of 6 months (range: 6–18 months). Femoral and tibial sagittal and coronal alignments as well as the posterior slope of the tibial component were measured in the post-operative radiographs. These measurements were compared with the equivalent measurements collected during intra-operative period by the navigation to study the reliability and accuracy of femoral and tibial cuts. Radiographic evaluation was independently conducted by two observers.

There was an average difference of 2.2 to 3.6 degrees between the intra-operatively planned and post-operative radiological equivalent measurements. For the femur, mean varus/valgus angulation was 2.8 + 2.5 degrees with 83% of those measured within 5% of planned. For the tibia mean varus/valgus angulation was 2.4 + 1.9 degrees with 93% within 5% of planned resection. There was minimal inter-observer variability between radiographic measurements. There were no infections in the evaluated group at the time of radiographic examination.

Alignment for unicondylar knee arthroplasty is important for implant survival and is a more difficult procedure to instrument as it is a minimally invasive surgery. Assuming appropriate planning, robotically assisted surgery in unicondylar knee replacement will result in reliably accurate positioning of component and reduce early component failures caused by malpositioning. A mismatch between pre-planning and post-operative radiography is often caused by poor cementing technique of the prosthesis rather than incorrect bony cuts. Addressing these factors can lead to greater success and improved outcomes for patients.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 74 - 74
1 Oct 2012
Goddard M Lang J Poehling G Conditt M Jinnah R
Full Access

Unicompartmental knee arthroplasty (UKA) was first described over 30 years ago and allows replacement of a single compartment in patients who have isolated osteoarthritis. However, UKA is more technically challenging than total knee arthroplasty due to limited exposure as a minimally invasive procedure. In addition to component alignment and fixation, ligament balancing plays an important role in implant survival. Some failures of early UKA systems were attributed to a failure to adequately balance the knee. The development of robots to aid in performing the procedure has lead to renewed interest in this surgical technique. The use of a robot-assisted system allows the orthopaedic surgeon to verify that balancing sought pre-operatively correlates with that obtained at surgery. Some studies have shown good post-operative mechanical alignment utilizing this method. The aim of this study was to examine the variation in pre-operative templated ligament balance and that obtained during the operation.

Data were prospectively collected on 51 patients (52 knees) undergoing robot-assisted unicompartmental knee arthroplasty by a single surgeon. For pre-operative planning, dynamic ligament balancing was obtained of the operative knee under valgus stress, prior to any bony cuts. Final intra-operative images with the prosthesis in place were taken without valgus stress. Positive values denoted loose ligamentous balancing while negative values indicated ligament tightness.

A small variation of less than 1 mm was measured between the pre-operative plan and the final image with the implant in place. At 0 degrees the mean change was −0.26 mm (range, −4.40 to 2.20 mm), at 30 degrees −0.53 mm (range, −5.30 to 1.80 mm), at 60 degrees −0.04 mm (range, −3.10 to 2.30 mm) and at 90 degrees 0.16 mm (range, −2.70 to 2.00 mm). These results show that planned dynamic ligament balancing is accurate to within 0.52 mm.

The technological advancements with robotic feedback in orthopaedic surgery can aid in the success of unicompartmental knee replacement surgery. Ensuring that pre-operative templated changes match those performed during surgery is an important predictor of outcome. With proper planning prior to surgery, the use of a robot in UKA can improve ligament balancing. This can be done at various angles, ensuring excellent ligament balancing throughout the entire range of motion. Correct component alignment reduces the risk of prosthetic failure and may increase the length of implant survival. Further fine-tuning of the accuracy of feedback between the robot and the anatomical points will improve the accuracy of UKA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 11 - 11
1 Sep 2012
Banks S Abbasi A Conditt M Dunbar N Jones J Kreuzer S Leffers K Otto J Watanabe T
Full Access

There is great interest to provide repeatable and durable treatments for arthritis localized to one or two compartments in the cruciate-ligament intact knee. We report a series of efforts to develop and characterize an implant system for partial knee resurfacing. We studied distal femoral morphology and found that the sagittal-plane relationships between the condylar and trochlear surfaces are highly variable (Figs 1 and 2). In response, we report the design of a multi-compartmental system of implants intended to anatomically resurface any combination of compartments (Fig 3). Finally, we report the results of a pilot fluoroscopic study of the in vivo knee kinematics in patients who received medial, medial plus patellofemoral and bi-condylar knee arthroplasty. The kinematic results suggest these treatments provide a stable knee with intact cruciate ligament function. This work shows various partial knee resurfacing treatments have the potential to provide excellent knee mechanics and clinical outcomes.

Note - A full paper was submitted for consideration of the Hap Paul Award. The figure legends and numbers in the attached figures correspond to those in the full paper.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 81 - 81
1 Sep 2012
Conditt M Goddard M Lang J Bircher S Lu B Poehling G Jinnah R
Full Access

INTRODUCTION

Unicompartmental knee arthroplasty (UKA) allows replacement of a single compartment in patients who have isolated osteoarthritis as a minimally invasive procedure. However, limited visualization of the surgical site provides challenges in ensuring accurate alignment and placement of the prosthesis.

With robot-assisted surgery, correct implant positioning and ligament balancing are obtainable with increased accuracy. To date, there has not been a large series reported in the literature of UKAs performed with robotic assistance. The aim of this study was to examine the clinical outcomes of robot-assisted UKA patients.

METHODS

510 patients who underwent robotic-assisted UKA between July 2008 and June 2010 were identified (average age 63.7 years, range: 22 to 28 years). Clinical outcomes were evaluated using the Oxford Knee Score (OKS) and patients without recent follow-up were phoned. Revision rate and time to revision were also examined.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 19 - 19
1 Sep 2012
Conditt M Padgett DE Thompson M Branch SH Jones J Dunbar N Banks S
Full Access

INTRODUCTION

Total hip arthroplasty (THA) is regarded as one of the most successful surgeries in medicine. However, recent studies have revealed that ideal acetabular cup implantation is achieved less frequently than previously thought, as little as 50% of the time. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion, or accelerated wear. This study reports accuracy of a tactile robotic arm system to ream the acetabulum and impact an acetabulur cup compared to manual instrumentation.

METHODS

12 fresh frozen cadaveric acetabulae were pre-operatively CT scanned and 3D templating was used to plan the center of rotation, and anteversion and inclination of the cup. Each specimen received THA, six prepared manually and six prepared with robotic arm guidance. Tactile, visual, and auditory feedback was provided through robotic guidance as well as navigated guided reaming and cup impaction. The robotic guidance constrained orientation of instruments thus constraining anteversion, inclination, and center of rotation for reaming, trialing, and final cup impaction. Post-operative CT scans were taken of each specimen to determine final cup placement for comparison to the pre-operative plans.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 33 - 33
1 Sep 2012
Kahn F Lipman J Pearle A Boland P Healey J Conditt M
Full Access

INTRODUCTION

Allograft reconstruction after resection of primary bone sarcomas has a non-union rate of approximately 20%. Achieving a wide surface area of contact between host and allograft bone is one of the most important factors to help reduce the non-union rate. We developed a novel technique of haptic robot-assisted surgery to reconstruct bone defects left after primary bone sarcoma resection with structural allograft.

METHODS

Using a sawbone distal femur joint-sparing hemimetaphyseal resection/reconstruction model, an identical bone defect was created in six sawbone distal femur specimens. A tumor-fellowship trained orthopedic surgeon reconstructed the defect using a simulated sawbone allograft femur. First, a standard, ‘all-manual’ technique was used to cut and prepare the allograft to best fit the defect. Then, using an identical sawbone copy of the allograft, the novel haptic-robot technique was used to prepare the allograft to best fit the defect. All specimens were scanned via CT. Using a separately validated technique, the surface area of contact between host and allograft was measured for both (1) the all-manual reconstruction and (2) the robot-assisted reconstruction. All contact surface areas were normalized by dividing absolute contact area by the available surface area on the exposed cut surface of host bone.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 12 - 12
1 Sep 2012
Conditt M Dunbar N Roche M Park B Branch S Banks S
Full Access

INTRODUCTION

Unicompartmental knee arthroplasty (UKA) can achieve excellent clinical and functional results for patients suffering from single compartment osteoarthritis. However, UKA is considered to be more technically challenging to perform, and malalignment of the implant components has been shown to significantly contribute to UKA failures. The purpose of this investigation was to determine the clinically realized accuracy of UKA component placement using surgical navigation and dynamically referenced tactile-robotics.

METHODS

Pre-op CT, post-op CT, and surgical plan were available for 22 knees out of the first 45 procedures performed using a new tactile-guided robotic system. 3D component placement accuracy was assessed by comparing the pre-operative plan with the post-operative implant placement (desired versus actual). Bone and implant models were obtained from postoperative CT scans taken immediately following the surgery. A 3D to 3D iterative closest point registration procedure was performed and the measured implant position was directly compared to the preoperative plan. Errors were assessed as single axis root-mean-square (RMS) entities.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 18 - 18
1 Sep 2012
Branch SH Goddard M Lang J Poehling G Conditt M Jinnah R
Full Access

Introduction

Unicompartmental knee arthroplasty (UKA) was first described over 30 years ago and allows replacement of a single compartment in patients who have isolated osteoarthritis.1 However, UKA is more technically challenging than total knee arthroplasty due to limited exposure as a minimally invasive procedure. In addition to component alignment and fixation, ligament balancing plays an important role in implant survival.2 Some failures of early UKA systems were attributed to a failure to adequately balance the knee. The development of robots to aid in performing the procedure has lead to renewed interest in this surgical technique.

The use of a robot-assisted system allows the orthopaedic surgeon to verify that balancing sought pre-operatively correlates with that obtained at surgery. Some studies have shown good post-operative mechanical alignment utilizing this method.3 The aim of this study was to examine the variation in pre-operative templated ligament balance and that obtained during the operation.

Methods

Data were prospectively collected on 52 patients (51 knees) undergoing robot-assisted unicompartmental knee arthroplasty by a single surgeon. For pre-operative planning, dynamic ligament balancing was obtained of the operative knee under valgus stress, prior to any bony cuts. Final intra-operative images with the prosthesis in place were taken without valgus stress. Positive values denoted loose ligamentous balancing while negative values indicated ligament tightness.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 32 - 32
1 Sep 2012
Conditt M Kang H Ranawat A Kasodekar S Nortman S Jones J
Full Access

INTRODUCTION

Symptomatic hip disorders associated with cam deformities are routinely treated with surgery, during which the deformity is resected in an effort to restore joint range of motion, reduce pain, and protect the joint from further degeneration. This is a technically demanding procedure and the amount of correction is potentially critical to the success of the procedure: under-resection could lead to continued progression of the OA disease process in the joint, while over-resection puts the joint at risk for fracture. This study compares the accuracy of a new robotically assisted technique to a standard open technique.

METHODS

Sixteen identical Sawbones models with a cam type impingement deformity were resected by a single surgeon simulating an open procedure. An ideal final resected shape was the surgical goal in all cases. 8 procedures were performed manually using a free-hand technique and 8 were performed using robotic assistance that created a 3-dimensional haptic volume defined by the desired post-operative morphology. All of 16 sawbones, including uncut one as well, were scanned by Roland LPX-600 Laser scanner with 1mm plane scanning pitch and 0.9 degree of rotary scanning. Post-resection measurements included arc of resection, volume of bone removed and resection depth and were compared to the pre-operative plan.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 30 - 30
1 Jul 2012
Mofidi A Lu B Conditt M Poehling G Jinnah R
Full Access

The conventional Knee arthroplasty jigs, while being usually accurate, often result in prostheses being inserted in an undesired alignment resulting in poor postoperative outcome. This is especially true about unicompartmental knee replacement. Computer navigation and roboticaly assisted unicompartmental knee replacement were introduced in order to improve surgical accuracy of the femoral and tibial bone cuts.

The aim of this study was to assess accuracy and reliability of robotic assisted, unicondylar knee surgery (Makoplasty) in producing reported bony alignment. Two hundred and twenty consecutive patients who underwent medial robotic assisted unicondylar knee surgery (Makoplasty) performed by two surgeons (RJ & GP) were retrospectively identified and included in the study. Femoral and tibial sagittal and coronal alignments and posterior slope of the tibial component were measured in the post-operative radiographs. These measurements were compared with the equivalent measurements collected during intra-operative period by the navigation to study the reliability and accuracy of femoral and tibial cuts.

Results

We found an average difference of 2.2 to 3.6 degrees between the intra-operatively planned and post-operative radiological equivalent measurements.

In conclusion

assuming appropriate planning, robotically assisted surgery in unicondylar knee replacement will result in reliably accurate positioning of component and reduce early component failures caused by malpositioning. Mismatch between preplanning and post-op radiography is caused by poor cementing technique of the prosthesis rather than wrong bony cuts.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 30 - 30
1 Jun 2012
Roche M Horowitz S Conditt M
Full Access

Introduction

Clinical outcomes of UKA procedures are sensitive to malalignment of the components, and thus show significant variability in the literature. A new robotic procedure addresses isolated medial compartment osteoarthritis with the classic indications of UKA. Using precision planning through patient specific 3D modeling and reconstruction, a robotic arm gives the surgeon control of resurfacing the knee joint, allowing for consistent precision according to the previously chosen plan. Through the precise preparation of bone surfaces and inter-component alignment, this procedure is designed to significantly increase accuracy and decrease mal-alignment, thus increasing post-operative physical and function outcomes. This paper evaluates four year clinical outcomes of this novel surgical procedure.

Methods

The first seventy-three (42 male, 31 female) patients (average age: 71 ±10yrs) to receive a robotically assisted UKA enrolled in an IRB approved outcomes registry. Eleven patients were four years post operative and sixty-two patients were three years post operative at the time of the study. The average follow ups were 45 months and 35 months, respectively (range: 30 to 47 months). The tibial component for all patients was an all-poly inlay design.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 174 - 174
1 Jun 2012
Noble P Conditt M Thompson M Usrey M Stocks G
Full Access

Introduction

Femoro-acetabular impingement (FAI) is a common source of impaired motion of the hip, often attributed to the presence of an aspherical femoral head. However, other types of femoral deformity, including posterior slip, retroversion, and neck enlargement, can also limit hip motion. This study was performed to establish whether the “cam” impinging femur has a single deformity of the head/neck junction or multiple abnormalities.

Materials and Methods

Computer models of 71 femora (28 normal and 43 “cam” impinging) were prepared from CT scans. Morphologic parameters describing the dimensions of the head, neck, and medullary canal were calculated for each specimen. The anteversion angle, alpha angle of Notzli, beta angle of Beaulé, and normalized anterior heads offset were also calculated. Average dimensions were compared between the normal and impinging femora.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 104 - 104
1 Jun 2012
Dorr L Pagnano M Trousdale R Thompson M Jamieson M Conditt M
Full Access

Introduction

Recent gains in knowledge reveal that the ideal acetabular cup position is in a narrower range than previously appreciated and that position is likely different based on femoral component anteversion. For that reason more accurate acetabular cup positioning techniques will be important for contemporary THA. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion or accelerated wear. Up to 8% of THA patients have cups malaligned in version by more than ±10° outside of the Lewinnek safe zone. This type of malalignment may result in dislocation of the femoral head and instability of the joint within the first year, requiring reoperation. Reported incidences of reoperation are 1-9% depending on surgical skills and technique. In addition, cup malalignment is becoming increasingly important as adoption of hard on hard bearings increases as the success of large head hard on hard bearings seems to be more sensitive to cup positioning. This study reports the accuracy of a haptic robotic system to ream the acetabulum and impact an acetabular cup compared to manual instrumentation.

Methods

Six fresh frozen cadaveric acetabula were CT scanned and three-dimensional templating of the center of rotation, anteversion and inclination of the cup was determined pre-operatively. Half of the specimens were prepared with manual instrumentation while half were prepared with robotic guidance. Haptic and visual feedback were provided through robotics and an associated navigation system to guide reaming and impaction of the cup. The robot constrained the orientation and position of the instruments thus constraining the inclination, anteversion and center of rotation of the reamer, trial and the final cup. Post-operative CT's were used to determine the achieved cup placement and compared to the pre-operative plans.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 259 - 259
1 Jun 2012
Yildirim G Walker P Conditt M Horowitz S Madrid I
Full Access

Introduction

The MAKO Surgical Rio Robotic Arm utilizes the pre-op CT images to plan positioning of the uni-condylar and patella-femoral components in order to achieve the most desirable kinematics for the knee joint. We hypothesize that the anatomic matching surfaces and the cruciate retaining design of the Restoris knee will best replicate normal knee kinematics. We tested the healthy cadaveric knee versus the MAKO knee and the most common TKR designs in order to evaluate and compare the kinematic properties.

Methods

Six healthy male left knees were dissected to leave only the knee capsule and the quadriceps tendon intact. The femur and the tibia were cut 20cm from the joint line and potted with cement into a metal housing. The knee was attached to a crouching machine capable of moving the knee joint though its normal human kinematics from extension to maximum flexion, validated in previous studies. Forces applied to the quadriceps tendon allowed the knee to flex and extend physiologically, and springs attached to the posterior were substituted as the hamstrings at a rate of half the force exerted by the quadriceps as shown in the literature. Three dimensional visual targets attached to the bones were tracked by computer software capable of recreating the positions of the bones in any given flexion angle. A cruciate retaining and posterior stabilized TKR design were chosen to represent the TKRs most commonly available in the market today. The intact knee, MAKO implanted knee, CR and PS TKR designs were tested in sequence on the same specimens. The computer software analyzed the normal distance between the bone surfaces and plotted the locations of contact which could then be quantitatively compared for each given scenario [Fig. 1].


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 150 - 150
1 Jun 2012
Mofidi A Lou B Conditt M Poehling G Jinnah R
Full Access

The conventional Knee arthroplasty jigs, while being usually accurate, often result in prostheses being inserted in an undesired alignment resulting in poor postoperative outcome. This is especially true about unicompartmental knee replacement. Computer navigation and roboticaly assisted unicompartmental knee replacement were introduced in order to improve surgical accuracy of the femoral and tibial bone cuts.

The aim of this study was to assess accuracy and reliability of robotic assisted, unicondylar knee surgery (Makoplasty) in producing reported bony alignment. Two hundred and twenty consecutive patients who underwent medial robotic assisted unicondylar knee surgery (Makoplasty) performed by two surgeons (RJ & GP) were retrospectively identified and included in the study. Femoral and tibial sagittal and coronal alignments and posterior slope of the tibial component were measured in the post-operative radiographs. These measurements were compared with the equivalent measurements collected during intra-operative period by the navigation to study the reliability and accuracy of femoral and tibial cuts.

Results

We found an average difference of 2.2 to 3.6 degrees between the intra-operatively planned and post-operative radiological equivalent measurements.

In conclusion: assuming appropriate planning, robotically assisted surgery in unicondylar knee replacement will result in reliably accurate positioning of component and reduce early component failures caused by malpositioning. Mismatch between preplanning and post-op radiography is caused by poor cementing technique of the prosthesis rather than wrong bony cuts.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 254 - 254
1 Jun 2012
Velyvis J Coon T Roche M Kreuzer S Horowitz S Jamieson M Conditt M
Full Access

Introduction

Bicompartmental osteoarthritis involving the medial tibiofemoral and the patellofemoral compartments is often treated with total knee replacement. Improved implants and surgical techniques have led to renewed interest in bicompartmental arthroplasty. This study evaluates the radiographic and early clinical results of bicompartmental arthroplasty with separate unlinked components implanted with the assistance of a robotic surgical arm. In addition, we examine the amount of bone resected using unlinked bicompartmental components compared to total knee replacement. Finally, a retrospective review of total knee cases examines the applicability of this early intervention procedure.

Methods

97 patients received simultaneous but geometrically separate medial tibiofemoral and patellofemoral arthroplasties with implants specifically designed to take advantage of a new bone and tissue sparing implantation technique using haptic robotics. These patients came from four surgeons at four different hospitals. The average follow-up was 9 months. Pre- and post-operative radiographs were taken. ROM, KSS and WOMAC scores were recorded. The patients had an average age of 67 yrs (range: 45-95), BMI of 29 ± 4kg/m2. 47% of the patients were male.

We retrospectively reviewed pre and post operative notes from 406 consecutive TKA patients from a single surgeon. Intraoperative data included the integrity of the three compartments and the ACL.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 435 - 435
1 Nov 2011
Goytia R McArthur B Noble P Ismaily S Irwin D Usrey M Conditt M Mathis K
Full Access

Several studies have suggested that, in TKR, gender specific-prostheses are needed to accommodate anatomic differences between males and females. This study was performed to examine whether gender is a factor contributing to the variability of the size, shape and orientation of the patellofemoral sulcus.

3D computer models of the femur were reconstructed from CT scans of 20 male and 20 female femora. The patellofemoral groove was quantified by measuring landmarks at 10 degree increments around the epicondylar axis. The orientation of the groove was defined by the tracking path generated by a sphere moving from the top of the groove to the intercondylar notch. To assess the influence of gender on the shape of the distal femur, all morphologic parameters were normalized for differences in bone size.

Overall, the distal femur was 15% larger in males compared to females. The male condyles were 4% wider than the female for constant AP depth (p=0.13). When normalized for bone size, there was no gender difference in most patello-femoral dimensions, including the length, width, angle or tilt of the sulcus. Female femora had a less prominent medial anterior ridge (p=0.07), and a larger normalized radius of curvature of the tracking path (p=0.03). In addition, the orientation of the sulcus differed by 1–2 degrees in both the coronal and axial planes. Overall, gender explained 4.7% of the anatomic variation of the parameters examined, varying from 0 to 15.9%.

The size, shape and orientation of the patello-femoral groove are highly variable.

While the patello-femoral morphology of male and female femora are very similar, some of the anatomic variability is related to gender, particularly the prominence of the medial ridge and the sulcus radius of curvature. The biomechanical and clinical significance of these differences after TKA have yet to be determined.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 428 - 429
1 Nov 2011
Dunbar N Pearle A Kendoff D Conditt M Banks S
Full Access

Unicompartmental knee arthroplasty (UKA) is an increasingly attractive and clinically successful treatment for individuals with isolated medial compartment disease who demand high levels of function. A major challenge with UKA is to place the components accurately so they are mechanically harmonious with the retained joint surfaces, ligaments and capsule. Misalignment of UKA components compromises clinical outcomes and implant longevity. Cobb et al. (JBJS-Br 2006) showed that robot-assisted placement of UKA components was more accurate than traditional techniques, and subsequently that the clinical outcomes were improved. Cobb’s method, however, employed rigid intraoperative stabilization of the bones in a stereotactic frame, which is impractical for routine clinical use. Robotic systems have now advanced to include dynamic bone tracking technologies so that rigid fixation is no longer required. The question is -Do these robotic systems with dynamic bone tracking provide the same accuracy advantages demonstrated with robotic systems with rigidly fixed bones? We compared robot-assisted and traditionally instrumented UKA in six bilateral pairs of cadaver specimens. In all knees, a CT-based preoperative plan was performed to determine the ideal positions and orientations for the implant components. Traditional manual instruments were utilized with a tissue-sparing approach to implant one knee of each pair. A haptic robotic system acting as a virtual cutting guide was used to perform the robot-assisted UKA, again with a tissue-sparing approach. Postoperative CT scans were obtained from all knees, and the 3D placement errors were quantified using 3D-to-3D registration of implant and bone models to the reconstructed CT volumes.

The magnitudes of femoral implant orientation error were significantly smaller for the robot-assisted implants compared to traditionally implanted components (4° vs 11°, p< 0.001), but the magnitudes of femoral placement error did not reach significance (3mm vs. 5mm, p=0.056). The magnitudes of tibial implant placement error were not significantly different (4mm vs. 5mm and 7° vs. 7°, p> 0.05).

Well-placed UKA implants can provide durable and excellent functional results, which is an increasingly attractive option for young and active patients with severe compartmental osteoarthritis who wish not to have or to delay a total knee replacement.

Previous studies have demonstrated significant improvement in implant placement accuracy and clinical results with robot-assisted surgery using rigid bone fixation. This study demonstrates it is possible to achieve significant accuracy improvements with robot-assisted techniques allowing free bone movement. Additional larger trials will be required to determine if these differences are realized in clinical populations.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 203 - 203
1 Mar 2010
Noble P Conditt M Thompson M Ismaily S Mathis K
Full Access

Introduction: Most surgeons agree on basic parameters defining a successful joint replacement procedure. However, the process of acquiring the skills to achieve this level of success on a reproducible basis is much less straightforward. In reality, it is generally not possible to impart surgical training without some level of risk to the patient, particularly if a particular trainee or procedure has a long learning curve. In an attempt to address these issues, we have developed a new computer-based training system to measure the technical results of hip and knee replacement surgery in both the operating room and the Bioskills Lab.

Description of the System: This system utilizes Surgical Navigation technology combined with data analysis and display routines to monitor the position and alignment of instruments and implants during the procedure in comparison with a preoperative plan. For bioskills training, the surgeon develops a preoperative plan on a computer workstation using accurate 3D computer models of the bones and appropriate implants. The surgeon then performs the entire procedure using the cadaver or sawbone model. During the procedure, the position and orientation of the bones, each surgical instrument, and the trial components are measured with a three-dimensional motion analysis system. Through analysis of this data, the surgeon is able to view each step of the surgical procedure, the placement of each instrument with respect to each bone, and the consequences of each surgical decision in terms of the final placement of the prosthetic components When errors are detected in the implementation of the preoperative plan, the surgeon is able to replay each step of the procedure to examine the precise placement of each instrument with respect to each bone and the consequences of each surgical decision in terms of leg length, alignment and range-of-motion.

Conclusions: This system allows us to measure the technical success of a surgical procedure in terms of quantifiable geometric, spatial, kinematic or kinetic parameters. It also provides postoperative feedback to the surgeon by demonstrating the specific contributions of each step of the surgical procedure to deviations in final alignment or soft tissue instability. This approach allows surgeons to be trained outside the operating room prior to patient exposure. Once these skills have been developed, the surgeon is able to operate freely in the operating room without the risks associated with traditional surgical training, or the expense associated with intraoperative Surgical Navigation. The value of this approach in the training and accreditation of orthopedic staff warrants further investigation.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 156 - 157
1 Mar 2010
Roche M Augustin D Conditt M
Full Access

Clinical outcomes of UKA procedures are sensitive to malalignment of the components, and thus show significant variability in the literature. This study evaluates the early clinical results of a new surgical procedure designed to significantly increase the accuracy and precision of the alignment of the components, and thus increase post-operative functional outcomes.

A new UKA technique has been developed, which combines tactile guided robotic technology with image guided surgery. Three-dimensional planning of the implant positioning is followed by precise resection of the bony surfaces. 223 patients have received a UKA from three clinical sites using this new technology. To date, 14 patients are 1 year and 84 patients are 6 months postoperative. Clinical data from all patients are included in an IRB approved registry.

From 223 UKAs, there have been no revisions and 6 reoperations; 2 for infection, 1 for arthrofibrotic band release, 1 for quad tendon arthrotomy separation, 1 for a femoral fracture at the navigation pin site and 1 for unexplained medial pain. Data for patients one year postoperative showed significant improvements, compared to pre-operative values, in range of motion (p< 0.02), Knee Society Scores (p< 0.0001) and WOMAC scores (p< 0.01), particularly pain (p< 0.01) and stiffness (p< 0.01).

This initial series of robotically guided UKA implantations provided significant improvement in the postoperative function of patients in every functional measurement with no revisions to date. The introduction of new procedures and technologies in medicine is routinely fraught with issues associated with learning curves and unanticipated pitfalls. Because the explicit objectives of this novel technology are to optimize surgical procedures to provide more safe and more reliable outcomes, these favorable results provide the potential for significant improvements in orthopedic surgery.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 173 - 173
1 Mar 2010
Banks S Abovitz R Quaid A Otto J Conditt M
Full Access

Total knee arthroplasty (TKA) has evolved over the past 40 years to a point where it now is a routine treatment with fairly predictable outcomes. However, TKA is an end-stage treatment which frequently is used when only one or two compartments in the knee are damaged. Ideally, treatments for earlier stage and isolated disease would be available to provide the same high level of outcome predictability, but provide for isolated treatment of the affected compartments, greater levels of postoperative physical activity and the shorter convalescence demanded by younger, more active, and often employed patients. One approach to a compartment-by-compartment treatment regime is the utilization of discrete condylar unicompartmental prostheses and a patellofemoral prosthesis in any combination. This approach has been practiced in some European clinics for decades with good reported outcomes. However, it remains a major surgical challenge to optimally place multiple discrete arthroplasty components using conventional tools and small incisions. This lecture will present a detailed overview of a unified approach to minimally invasive, modular knee arthroplasty using haptic robotic instrumentation and implants designed specifically for robotic installation in a customized modular treatment regime.

Haptic robotics provide a ‘virtual cutting guide’ capability permitting precise sculpturing of bone surfaces using near-zero-visibility minimally invasive incisions. The use of a single-multifunctional tool eliminates many of the instrument trays commonly needed for these procedures. The surgeon has complete control in manipulating the bone cutting tool within the desired bone-removal area, but the haptic robotics prohibit the cutting tool from removing bone outside the planned bone removal volume. Precise bone sculpturing has the potential to minimize bone removal and optimize the alignment and fixation of the prosthetic components.

Haptic robotic cutting tools obviously can be used with off-the-shelf prosthetic components, but this approach would fail to fully take advantage of the precision surfaces that can be achieved using robot assisted bone sculpting. Instead, a purpose built system of modular knee components can be defined that work in any combination (medial or lateral unicompartmental, bi-unicondylar, medial or lateral plus patellofemoral, or tricompartmental), require minimum bone removal, can be placed through very small incisions, give great flexibility to customize implant placement to fit the patient’s anatomy, and take advantage of the types of fixation features which easily are created with a robotically controlled bone cutting device.

The current treatment implementation and implant design will be presented. Clinical results for unicompartmental procedures and in vitro results for multiple-compartment procedures will be presented and discussed.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 117 - 117
1 Mar 2010
Kreuzer S Driscoll M Conditt M
Full Access

Renewed interest in UKA necessitates further investigation into the ramifications of conversion to TKA due to either implant failure or progressive joint disease. The purpose of this study was to compare the depth of tibial resection at UKA and the resulting implications for conversion to TKA using two different UKA techniques and implant designs.

A radiographic review of 42 UKA’s from a single surgeon was performed. Sixteen cases utilized a standard all-polyethylene tibial onlay UKA marketed as a minimally invasive resurfacing implant. The other 26 employed a novel robotically assisted technique and a tibial inlay implant design. Measurement techniques were developed to determine the depth of medial tibial plateau resection at initial UKA as well as potential tibial cuts and implant components required at conversion.

Average depth of bony medial plateau resection was significantly greater in the standard technique onlay design group (8.5 ± 2.26 mm) compared to the robotically assisted inlay group (4.4 ± 0.93 mm) (p< .0001). At conversion to a standard TKA, the proposed tibial osteotomy would require medial augmentation/revision components in 75% of the onlay group as compared to 4% of the robotically assisted inlay group (p< .0001).

Robotically assisted UKA using a tibial inlay design appears to be a truly resurfacing procedure with respect to the tibia, resulting in significantly less tibial bone resection at UKA as well as simpler conversion to TKA when compared to conventional onlay techniques.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 127 - 127
1 Mar 2010
Roche M Augustin D Conditt M
Full Access

Literature has shown that the outcomes of UKA are significantly improved by correct component alignment. With the desire to minimize the surgical exposure and the limitations of manual instrumentation, this goal has proven difficult to achieve consistently. This study evaluates the accuracy of a new technique that replaces manual instrumentation with a robotically guided cutting instrument designed to implement a three-dimensional pre-operative plan.

Forty-three UKAs were implanted using a robotically guided system that creates virtual boundaries defining the depth and volume of bone resection for a specific implant. The boundaries were based on a three-dimensional pre-operative plan. Post-operative lateral and AP radiographs were evaluated for four different aspects of component to host bone alignment for the tibia and four for the femur. Ten patients also underwent a post-operative CT to compare the resultant versus the planned three-dimensional component placements.

Radiographically, we identified an outlier as any specific measurement outside a particular range set by an independent clinical advisory board of orthopedic surgeons. Of the 344 radiographic measurements, only 4 (1%) were identified as outliers, with none of these deemed clinically significant. On average, the components were placed in 0.6° less varus (SD = 1.9°) and 0.1° less posterior slope (SD = 1.8°) compared with the pre-operative plan, with RMS errors of 1.9° in the coronal plane and 1.7° in the sagittal plane.

Robotically assisted implementation of a pre-operative plan for UKA is accurate and precise with very few outliers. This is particularly impressive as these patients were from the inaugural series of patients undergoing a technologically innovative procedure. This technology has great potential to improve accuracy and enhance safety for surgeons with procedures that are less forgiving and technically difficult.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 157 - 157
1 Mar 2010
Coon T Driscoll M Conditt M
Full Access

Successful clinical outcomes following unicompartmental knee arthroplasty (UKA) depend on accurate component alignment, which can be difficult to achieve using manual instrumentation. A new technology has been developed using haptic robotics that replaces traditional UKA instrumentation. This study compares the accuracy of UKA component placement with traditional jig-based instrumentation versus robotic guidance.

Forty-four UKAs performed using standard manual instrumentation were compared to 33 performed with a robotically guided implantation system without instrumentation. Each was performed using a minimally invasive surgical approach. The two groups were identical in terms of age (p=0.74), gender (p=0.65) and BMI (p=0.72). The coronal and sagittal alignment of the tibial components were measured on pre- and post-operative AP and lateral radiographs. Postoperative tibial component alignment was compared to the pre-operative plan.

For both techniques, the surgical objective was to match the natural tibial posterior slope. The RMS error of the tibial slope was 3.5° manually compared to 1.4° robotically. In addition, the variance using manual instruments was 2.8 times greater than the robotically guided implantations (p< 0.0001). In the coronal plane, the goal of the manual technique was to implant the tibial component perpendicular to the anatomic tibial axis, while the robotic implantations attempted to match the natural varus of the medial compartment. The average error was 3.3 ± 1.8° more varus using manual instruments compared to 0.1 ± 2.4° when implanted robotically (p< 0.0001).

Tibial component alignment in UKA is significantly more accurate and less variable using robotic guidance compared to manual, jig-based instrumentation. By enhancing component alignment, this novel technique provides a potential method for improving outcomes in UKA patients.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 157 - 157
1 Mar 2010
Coon T Driscoll M Conditt M
Full Access

Potential benefits of an inlay design of UKA compared to onlay components include less post-operative pain and quicker recovery due to a lower volume of bone removed, in particular preservation of the densely innervated periosteum and medial tibial plateau periphery. This study assesses the clinical consequences of removing less tibial bone in UKA.

Seventy-nine UKA patients from a single surgeon were included in this study, 45 patients receiving a standard onlay UKA and 34 receiving an inlay UKA implanted using a robotically guided system. A radiographic technique was developed to measure the depth of resection of tibial bone stock relative to the initial medial joint line. All patients received the same pain management and rehabilitation protocol and the length of hospital stay was measured.

The average depth of medial tibial plateau resection was significantly less with inlay tibial components (3.7 ± 0.8mm) relative to onlay tibial components (6.5 ± 0.8mm, p< 0.0001). While the average length of hospital stay was the same for both onlay (LOS = 1.0 ± 0.2days) and inlay (LOS = 0.9 ± 0.5days) UKA procedures, a significantly higher percentage of inlay patients went home the day of surgery (18% vs. 2%, p< 0.0001).

The depth of medial tibial plateau resection with a typical fixed bearing onlay UKA design is twice as much as an inlay tibial UKA. This has significant consequences for potentially using only primary components at future conversion to total TKA. Likely due to the less invasive (from a host bone perspective) nature of inlay UKA, a significantly higher percentage of these patients are able to be treated as outpatients.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 116 - 116
1 Mar 2010
Coon T Driscoll M Conditt M
Full Access

While novel surgical technologies offer potential for improved outcomes, the new techniques they require create concerns regarding the acquisition of new skills and clinical outcomes during the initial period of relative inexperience. The purpose of this study was to compare short-term clinical outcomes of medial unicompartmental knee arthroplasty (UKA) performed with a conventional technique versus a novel tactile-guided robotic technique.

Eighty-one medial UKA’s were performed by a single surgeon for isolated medial compartment osteoarthritis, 45 with a standard minimally invasive technique using an implant system with which the surgeon had significant prior experience. The other 36 were performed using a new haptic-guided technique with which the surgeon had no prior experience. Knee society scores (KSS) were collected preoperatively and at three, six, and twelve week follow-ups. Marmor ratings were also determined for each follow-up.

There was no significant difference in terms of average KSS, change in KSS, or Marmor rating between the two groups at any of the three follow-ups. At twelve weeks, for example, the average increase in the combined KSS was 83.6 in the conventional group and 79.7 in the haptic-guided group (p = 0.66). Furthermore, there were no significant differences in the measures that comprise these scores, such as range of motion, pain, and use of assist devices (p > 0.05).

Clinical results of an initial series of UKA’s using a new haptic-guided surgical technique are comparable to those using established techniques, thus alleviating concerns regarding the acquisition of a new skill set and inferior outcomes at the beginning of the learning curve.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 420 - 421
1 Apr 2004
Conditt M Noble P Stein J Kreuzer S
Full Access

Polyethylene wear debris in TKA arises from several sources, including the tibiofemoral articulation and the interface between the backside surface of the tibial insert and the metal tibial tray. In this study we identify a new source of abrasive damage to the polyethylene bearing surface: impingement of resected bony surfaces, osteophytes and overhanging acrylic cement on the tibial bearing surface during joint motion.

One hundred forty-eight tibial components of 24 different designs in a retrieval collection were examined. A digital image of the articular surface of each insert was recorded. The presence, location and projected area of abrasive wear to the non-articulating edges of the insert were assessed using image analysis software.

Significant abrasive wear was observed in 24% of the retrievals with cemented femoral components and 9% from non-cemented components. Of the retrievals exhibiting this abrasive wear mode, 46% experienced multiple site damage. The average damage area for each individual abrasive scar was 78±11mm^2. Within the group of worn inserts, the abrasive scars were seen with a frequency of 69% on the extreme medial edge, 19% on the extreme lateral edge, 38% on the posterior-medial edge and 23% on the posterior-lateral edge. In posterior stabilized components with an open femoral box design, scarring of the superior surface of the tibial post was also observed. This proposed mode of damage was confirmed with several retrieved femoral components containing either fixed cement protruding from the posterior condyles, from the medial and lateral edges or osteophytes embedded in the posterior capsule. The corresponding inserts exhibited significant abrasive scarring at those locations.

We have observed a previously unrecognized source of polyethylene damage resulting in gouging, abrasion and severe localized damage in cemented and uncemented total knee replacement. Clearly, acrylic cement, in bulk or particulate form, often contributes to severe damage of the tibial surface and improvements to instruments and techniques for cementing are needed to prevent this wear mechanism.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 421 - 421
1 Apr 2004
Conditt M Ismaily S Paravic V Noble P
Full Access

Wear of the underside of modular tibial inserts (“backside wear”) has been reported by several authors. However, the actual volume of material lost through wear of the backside surface has not been quantified. This study reports the results of computerized measurements of tibial inserts of one design known to have a high incidence of backside wear in situ.

A series of retrieved TKA components of one design (AMK, Depuy) with evidence of severe backside wear and extrusions of the polyethylene insert were examined. The three-dimensional surface profile of the backside of each insert was digitized and reconstructed with CAD software (UniGraphics). The volume of material removed was calculated from the volume between the worn backside surface and an “initial” surface defined by unworn areas.

Computer reconstructions showed that in all retrievals, the unworn surface of the remaining pegs, the rim of material extruded over the medial edge and unworn surfaces on the anterior-lateral edge all lie in a single plane. This demonstrates that the “pegs” present on the backside of these inserts correspond to residual, unworn protrusions remaining on each retrieved component and do not represent cold flow extrusions through the base plate holes. The average volume of material lost due to backside wear was 608mm^3 ± 339mm^3 (range:80–1599 mm^3). This corresponds to an average loss of 569mg and an average linear wear rate of 103mg/year, based on the time in situ for each implant.

The volume of material removed due to backside wear is significant and is of a magnitude large enough to generate osteolysis. Our results indicate that the appearance of pegs on the underside of components with screw holes on the baseplate are not due to creep, but instead are due to severe wear of the insert. The mechanisms of material removed due to pitting and burnishing actually produce debris of a size more damaging in terms of osteolysis than wear at the articulating surface making it clear that significant improvements in implant design are needed to prevent backside wear and osteolysis.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 17 - 17
1 Jan 2004
Conditt M
Full Access

In PCL-retaining TKA, tension in the PCL is sensitive to changes in the posterior slope of the tibia component. However, it is not understood how PCL tension, in combination with the absence of the ACL, affects knee kinematics. This study demonstrates the effects of varying posterior tibial slope on the tibiofemoral and patello-femoral kinematics after PCL-retaining TKA.

Eight fresh-frozen lower limb specimens were mounted in a kinematic knee simulator. External forces were applied to create a deep knee bend from 0–110 degrees of flexion, while the three-dimensional motions of the femur, patella and tibia were tracked in real time using a motion analysis system. A PCL-retaining TKA was implanted into each cadaver with the tibial component matching the natural posterior slope of the tibia. After testing, the tibial slope was reduced by four degrees compared to the natural slope, then increased by four degrees compared to the natural slope. With each change in slope, the kinematics of the knee were recorded.

A dramatic change in femoral rollback was observed with increasing slope of the tibial component. In full extension, matching the natural tibial slope displaced the femur 5.7 ± 1.5 mm posteriorly, while more anterior slope and more posterior slope displaced the femur 5.1 ± 2.6 mm and 8.7 ± 2.0 mm posteriorly, respectively. Paradoxically, increased posterior slope resulted in less rollback of the femur during flexion. At 100° a of flexion, total rollback was 11.8 ± 2.6 mm in the intact knee, 6.9 ± 2.4 mm with the natural slope, 9.0 ± 2.8 mm with the anterior slope, and 5.7 ± 2.3 mm with the posterior slope.

Preserving the PCL allows the femur to rollback on the tibial plateau with knee flexion. However, increasing the natural slope of the tibia causes a significant posterior shift of the femur in extension thus reducing rollback in flexion.