header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MICROMOTION EVALUATION OF CEMENTLESS UKR BASEPLATES

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress, 2015. PART 4.



Abstract

Introduction

Cementless unicondylar knee implants are intended to offer surgeons the potential of a faster and less invasive surgery experience in comparison to cemented procedures. However, initial 8 week fixation with micromotion less than 150µm is crucial to their survivorship1 to avoid loosening2.

Methods

Test methods by Davignon et al3 for micromotion were used to assess fixation of the MAKO UKR Tritanium (MAKO) (Stryker, NJ) and the Oxford Cementless UKR (Biomet, IN). Data was analyzed to determine the activities of daily living (ADL) that generate the highest forces and displacements4, 5. Stair ascent with 3.2BW compressive posterior tibial load was identified to be an ADL which may cause the most micromotion5. Based on previous studies6, 10,000 cycles was set as the run-time. The AP and IE profiles were scaled back to 60% for the Oxford samples to prevent the congruent insert from dislocating. A four-axis test machine (MTS, MN) was used. The largest size UKRs were prepared per manufacturer's surgical technique. Baseplates were inserted into Sawbones (Pacific Research, WA) blocks1. Femoral components were cemented to arbors. The medial compartment was tested, and the lateral implants were attached to balance the loads.

Five tests were conducted for each implant with a new Sawbones and insert for each test per the test method3. The ARAMIS System (GOM, Germany) was used to measure relative motion between the baseplate and the Sawbones at three anteromedial locations (Fig. 1). Peak-Peak (P-P) micromotion was calculated in the compressive and A/P directions.

FEA studies replicating the most extreme static loading positions for MAKO micromotion were conducted to compare with the physical test results using ANSYS14.5 (ANSYS, PA).

Results

MAKO had a maximum axial motion of 36µm (SD=5.28) at gage 2. Oxford had an average gage 1 axial and A/P motion of 109µm (SD=31.77) and 44mm (SD=28.62) respectively (Fig. 2A). FEA correlated well with the MAKO results (Fig. 2B).

Discussion

Oxford has been shown to have microseparation in lab testing conditions and the studies by Liddle et al7 under the same stair ascent activity. However, based on our results, MAKO and Oxford are both expected to allow interdigitation for long-term fixation. The Sawbones model does not allow plastic deformation in axial compression and subsequent stabilization, which could allow Oxford to achieve the fixation and clinical success shown in outcome studies. A/P prep for Oxford allows for 3mm gap between the keel and the bone which may explain the variability in the X direction. Distal flatness of the Oxford varied by 0.5mm as shown on Figure 3. The flatness of the boundary of the implant may explain the elevated micromotion observed for Oxford implant. Future studies will concentrate on FEA of manufactured Oxford components to take into account the geometric discrepancies from a perfectly flat model

Davignon et al3 and this study show that the MAKO is expected to achieve long-term fixation in the initial fixation stages similar to the clinically successful Oxford cementless UKR.


*Email: