Abstract
Clinical outcomes of UKA procedures are sensitive to malalignment of the components, and thus show significant variability in the literature. This study evaluates the early clinical results of a new surgical procedure designed to significantly increase the accuracy and precision of the alignment of the components, and thus increase post-operative functional outcomes.
A new UKA technique has been developed, which combines tactile guided robotic technology with image guided surgery. Three-dimensional planning of the implant positioning is followed by precise resection of the bony surfaces. 223 patients have received a UKA from three clinical sites using this new technology. To date, 14 patients are 1 year and 84 patients are 6 months postoperative. Clinical data from all patients are included in an IRB approved registry.
From 223 UKAs, there have been no revisions and 6 reoperations; 2 for infection, 1 for arthrofibrotic band release, 1 for quad tendon arthrotomy separation, 1 for a femoral fracture at the navigation pin site and 1 for unexplained medial pain. Data for patients one year postoperative showed significant improvements, compared to pre-operative values, in range of motion (p< 0.02), Knee Society Scores (p< 0.0001) and WOMAC scores (p< 0.01), particularly pain (p< 0.01) and stiffness (p< 0.01).
This initial series of robotically guided UKA implantations provided significant improvement in the postoperative function of patients in every functional measurement with no revisions to date. The introduction of new procedures and technologies in medicine is routinely fraught with issues associated with learning curves and unanticipated pitfalls. Because the explicit objectives of this novel technology are to optimize surgical procedures to provide more safe and more reliable outcomes, these favorable results provide the potential for significant improvements in orthopedic surgery.
Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net