header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Accuracy of Robotic Assisted Femoral Osteochondroplasty for Treatment of Fai

The International Society for Technology in Arthroplasty (ISTA)



Abstract

INTRODUCTION

Symptomatic hip disorders associated with cam deformities are routinely treated with surgery, during which the deformity is resected in an effort to restore joint range of motion, reduce pain, and protect the joint from further degeneration. This is a technically demanding procedure and the amount of correction is potentially critical to the success of the procedure: under-resection could lead to continued progression of the OA disease process in the joint, while over-resection puts the joint at risk for fracture. This study compares the accuracy of a new robotically assisted technique to a standard open technique.

METHODS

Sixteen identical Sawbones models with a cam type impingement deformity were resected by a single surgeon simulating an open procedure. An ideal final resected shape was the surgical goal in all cases. 8 procedures were performed manually using a free-hand technique and 8 were performed using robotic assistance that created a 3-dimensional haptic volume defined by the desired post-operative morphology. All of 16 sawbones, including uncut one as well, were scanned by Roland LPX-600 Laser scanner with 1mm plane scanning pitch and 0.9 degree of rotary scanning. Post-resection measurements included arc of resection, volume of bone removed and resection depth and were compared to the pre-operative plan.

RESULTS

The desired arc of resection was 117.7° starting at −1.8° and ending at 115.9°. Manual resection resulted in an average arc of resection error of 42.0 ± 8.5° with an average start error of −18.1 ± 5.6° and end error of 23.9 ± 9.9° compared to a robotic arc of resection error of 1.2 ± 0.7° (p<0.0001), an average start error of −1.1 ± 0.9° (p<0.0001) and end error of −0.1 ± 1.0° (p<0.0001). Over-resection occurred with every manual resection with an average volume error of 758.3 ± 477.1mm3 compared to an average robotic resection volume error of 31.3 ± 220.7mm3 (4 over- and 4 under-resected; p<0.01).

CONCLUSION

Even using an approach that maximizes visualization, robotic assistance proved to be significantly more accurate and less variable than manual techniques. This is critical as the success of the surgical treatment of FAI depends on accurate and precise boney resection. The benefits of this new technique may prove even more valuable with less invasive, arthroscopic treatments that can be even more technically demanding.


∗Email: mconditt@makosurgical.com