header advert
Results 1 - 100 of 229
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 969 - 975
1 Jul 2016
Theivendran K Varghese M Large R Bateman M Morgan M Tambe A Espag M Cresswell T Clark DI

Aim. We present the medium-term clinical results of a reverse total shoulder arthroplasty with a trabecular metal glenoid base plate. Patients and Methods. We reviewed 125 consecutive primary reverse total shoulder arthroplasties (RTSA) implanted in 124 patients for rotator cuff arthropathy. There were 100 women and 24 men in the study group with a mean age of 76 years (58 to 89). The mean follow-up was 32 months (24 to 60). No patient was lost to follow-up. Results. There were statistically significant improvements in the mean range of movement and Oxford Shoulder Score (p < 0.001). Kaplan-Meier survivorship at five years was 96.7% (95% confidence interval 91.5 to 98.7) with aseptic glenoid failure as the end point. . Radiologically, 63 shoulders (50.4%) showed no evidence of notching, 51 (40.8%) had grade 1 notching, ten (8.0%) had grade 2 notching and one (0.8%) had grade 4 notching. Radiolucency around the glenoid base plate was found in one patient (0.8%) and around the humeral stem in five (4.0%). In all, three RTSA (2.4%) underwent revision surgery for aseptic mechanical failure of the glenoid within 11 months of surgery due to malseating of the glenosphere. Conclusion. The clinical results of this large independent single unit series are comparable to those from previous series of RTSA reported in the literature. A trabecular metal base plate is safe and effective in the medium-term. Cite this article: Bone Joint J 2016;98-B:969–75


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 903 - 908
1 Jul 2018
Eachempati KK Malhotra R Pichai S Reddy AVG Podhili Subramani AK Gautam D Bollavaram VR Sheth NP

Aims. The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects. Patients and Methods. A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis. Results. There were 36 (87.8%) patients with a Paprosky IIIA defect and five (12.2%) patients with a Paprosky IIIB defect. The mean age was 56.7 years (28 to 94). There were 21 (51.2%) women and 20 (48.8%) men. The mean follow-up was 39.4 months (12 to 96). One (2%) patient died after eight years. No failures were noted in the series. The mean survivorship was 100% at the time of latest follow-up. Conclusion. The results of this multicentre study showed encouraging short- and mid-term results for the use of TM augments in the management of Paprosky grade IIIA and IIIB defects. Cite this article: Bone Joint J 2018;100-B:903–8


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option. Cite this article: Bone Joint J 2013;95-B:166–72


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 55 - 55
1 Sep 2012
Galatz L
Full Access

Shoulder arthroplasty has experienced exponential growth in the past 10–15 years, largely due to improvements in anatomical design, increased application of technology to address various clinical pathology, and improved access to experienced shoulder surgeons. Glenohumeral arthritis has historically been the most common indication for a shoulder replacement, and glenoid wear has been the main concern with regards to longevity of the prosthesis. Attempts to improve glenoid components involve alterations in peg or keel configuration, as well as the introduction of metal backed constructs. Early experience with metal backed components led to very poor results with often catastrophic loosening and destruction of glenoid bone. Proximal humerus fractures are another common indication for a shoulder arthroplasty, and in these cases, tuberosity fixation and healing are the challenge precluding a consistently successful result. More recently, base plate fixation in the setting of a reverse shoulder arthroplasty has come to the forefront as a significant factor. Trabecular metal technology has emerged as a compelling method of enabling powerful bone ingrowth to the surfaces of arthroplasty components. Trabecular metal is composed of tantalum. It is used to form a carbon scaffold which has a modulus between that of cancellous and cortical bone, thus has some flexibility when made into an independent construct. Vapor deposition onto arthroplasty surfaces provides a bone ingrowth surface. There is interest in utilizing trabecular metal for glenoid and tuberosity fixation in particular. Trabecular metal proximal coated stems provide an ingrowth surface for tuberosity fixation in the setting of proximal humerus fractures. Long term results are still pending. Because the metal is much less stiff then other metals, trabecular metal has recently been used along the back of polyethylene glenoids. The original design had a problem with fracture at the base of the pegs. A redesigned component instituting a cruciate design was implemented, and is currently available on a limited release basis with promising early results. The use of trabecular metal on the deep surface of the reverse arthroplasty baseplate and the proximal aspect of the reverse stem has led to successful fixation, allowing cementless fixation of both the humeral and glenoid components. Learning objectives of this presentation include:. Understand the mechanical characteristics of trabecular metal and its bone ingrowth characteristics. Familiarize with currently available prosthetics incorporating trabecular metal technology. Case presentations utilizing trabecular metal coated components


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 114 - 114
1 Nov 2016
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a trabecular metal cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 92 - 92
1 Feb 2020
Chun K Kwon H Kim K Chun C
Full Access

Purpose. The aim of this study was to compare the clinical outcomes of the revision TKA in which trabecular metal cones and femoral head allografts were used for large bone defect. Method. Total 53 patients who have undergone revision TKA from July 2013 to March 2017 were enrolled in this study. Among them, 24 patients used trabecular metal cones, and 29 patients used femoral head allografts for large bone defect. There were 3 males and 21 females in the metal cone group, while there were 4 males and 25 females in the allograft group. The mean age was 70.2 years (range, 51–80) in the femoral head allograft group, while it was 79.1 years (range, 73–85) in the metal cone group. Bone defect is classified according to the AORI classification and clinical outcomes were evaluated with Visual Analogue Scale (VAS), Hospital Special Surgery-score (HSS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS), and ROM. Operation time was also evaluated. We used radiographs to check complications such as migration or loosening. We took follow-up x-rays and 3D CT of the patients, to assess the mean bone union period. Shapiro-Wilk test was done to check normality and Student T-test and Mann Whitney U-test were done for comparison between two groups. Result. The mean follow-up period was 3 .75 years (Range; 2.1 ∼ 5.75). The pre-op scores did not show significant difference. The mean VAS in the allograft and trabecular metal cone groups was 2.1 ± 0.87 and 1.8 ± 0.53, respectively (p = 0.16). The mean HSS score were 76.3 ± 5.51 and 79.2 ± 4.12 respectively (p = 0.13) and the mean WOMAC scores were 15.1 ± 3.25 and 14.8 ± 3.31 respectively (p = 0.06), and the mean KOOS scores were 27.8 ± 4.77 and 25.5 ± 4.84, respectively (p = 0.07). The mean ROM ranges were 100.6 ± 17.54 and 101.3 ± 19.22, respectively (p = 0.09). But the mean operation time of the allograft and trabecular metal cone groups was 137 minutes (Range; 111–198) and 102minutes (Range; 93 −133) (p=0.02) respectively, which showed statistical significance. In follow-up x-rays, no migration or loosening of the implants, osteolysis and other complications were found in both groups. In follow-up 3D CT, osteointegration was seen at the trabecular metal cone site, host bone being interpreted to the host bone. The allograft group showed fibrous and stable union in follow-up 3D CT. Conclusion. According to this study, in case of revision TKA with large bone defect, using whether allograft or trabecular metal cones did not affect the clinical outcomes. However, operation time was significantly shorter in trabecular metal cone group, therefore, in patients with poor general condition along with severe underlying diseases, usage of trabecular metal cone would be a better choice to shorten operation time and ease postoperative care. Keywords. Revision TKA, metal cone, allograft, bone defect. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 103 - 103
1 Aug 2017
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a trabecular metal cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There have been 4 cup loosenings with 3 re-revisions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 127 - 127
1 Apr 2017
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a trabecular metal cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions. Our most up to date data is 101 cases with an average follow-up of 3 years. There has been one infection that underwent a two stage revision. There are 4 loose cups – 3 revised


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1585 - 1593
1 Dec 2008
Henricson A Linder L Nilsson KG

We compared the performance of uncemented trabecular metal tibial components in total knee replacement with that of cemented tibial components in patients younger than 60 years over two years using radiostereophotogrammetric analysis (RSA). A total of 22 consecutive patients (mean age 53 years, 33 to 59, 26 knees) received an uncemented NexGen trabecular metal cruciate-retaining monobloc tibial component and 19 (mean 53 years, 44 to 59, 21 knees) a cemented NexGen Option cruciate-retaining modular tibial component. All the trabecular metal components migrated during the initial three months and then stabilised. The exception was external rotation, which did not stabilise until 12 months. Unlike conventional metal-backed implants which displayed a tilting migration comprising subsidence and lift-off from the tibial tray, most of the trabecular metal components showed subsidence only, probably due to the elasticity of the implant. This pattern of subsidence is regarded as being beneficial for uncemented fixation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2015
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique:. The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a TM cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 425 - 425
1 Oct 2006
Trentani P Tigani D Trentani F Giunti A
Full Access

The authors studied the short-term results following patellar resurfacing using trabecular metal patella. Ten patients underwent primary (2 cases) or revision (8 cases) TKA with the use of a trabecular metal patella and were evaluated at a mean follow-up of 24 months. All patients had marked patellar bone deficiency or patellar absence precluding resurfacing with a standard cemented patellar button. The all polyethylene patella was cemented into the trabecular metal base and the remaining patella bone stock; additional fixation was provided by non-adsorbable sutures through the peripheral holes on the metal shell. No intraoperative complications occurred. There was no displacement of any trabecular metal patellar component and no patellar fractures. The fixation appeared excellent at three to six months radiographic evaluation with uniform bone contact in the peripheral regions in both lateral an Merchant radiographic views. The mean Knee Society scores improved in all patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 151 - 151
1 Jan 2016
Seki M Saito S Ishii T Suzuki G Kikuta S Oikawa N Lee H Kinoshita G Hasegawa T Tokuhashi Y
Full Access

Purpose. A Trabecular Metal Modular Acetabular System (Zimmer, Warsaw, Indiana, USA) is a peripheral rim expansion (elliptical) cup, i.e. a non-hemispherical cup. Radiologically a non-hemispherical cup may be deferent from other conventional hemispherical cups. We reviewed radiological findings of a Trabecular Metal Modular Acetabular System chronologically. Methods. Twenty six patients with osteoarthritis underwent primary total hip arthroplasty (THA) using a Trabecular Metal Modular Acetabular System from 2011 to April 2013. Twenty five patients (follow-up rate: 96.2%) 31 hips could be followed-up over a year were registered. In common, the diameter of every femoral head was 32 mm. We planned the acetabular cup inclination angle to be 45-degree, the cup coverage with host-bone (cup-CE angle) to be over 10-degree, and high hip center was allowed up to 20mm. In case of the cup-CE angle under 10-degree, an acetabular cup was placed medially using Dorr's medial protrusio technique. We established the medial protrusion angle indicating the degree of medial protrusion of an acetabular cup over the pelvic internal wall. The medial protrusion angle was defined by the center point of THA (C) and the 2 cross-points (X. 1. , X. 2. ) which the outline of an acetabular cup crosses the Kohler's line (Figure 1). The cup anteversion angle was measured by the method of Lewinnek, and the cup fixation was evaluated according to the Tompkin's classification. Results. The average follow-up period was 1 year and 3 months (1y1m to 2y8m). The mean diameter of the cup was 54 (48 to 56) mm. Seven high-hip center joints were recognized (2 to 11 mm). The average of cup inclination angle was 42 (32 to 52) degree, of cup anteversion angle was 14 (5 to 36) degree, and of cup CE angle was 25 (−14 to 45) degree. Dorr's medial protrusio technique was necessary in 18 hips. In these 18 hips, the average of medial protrusion angle was 57 (24 to 70) degree. In 4 hips of cup-CE angle less than 10 degree, acetabular bulky bone graft was added. All 31 hips showed the stable fixation, even in 18 hips undergone medial protrusio technique. There was none of hips with migration and/or rotation of an acetabular cup. Radiolucent zone was found in the zone-C of 8 hips. The width of radiolucent zone of all 8 hips was less than 2mm. In these 8 hips, medial protrusio technique was done in 5 hips, and high hip center was found in 3 hips. The radiolucency appeared at postoperatively 2–3 months and disappeared by postoperatively 12 months. Conclusions. All hips showed rigid fixation of a Trabecular Metal Modular Acetabular System in short-term observation. Even in the hips performed Dorr's medial protrusio technique, a Trabecular Metal Modular Acetabular System reached the stable fixation. Radiolucent zone was found transiently in the zone-C of 8 hips (25.8%) and disappeared by postoperatively 12 months. However our series was small and the observation period was short, our results implied that the fixation of a Trabecular Metal Modular Acetabular System was not affected adversely from Dorr's medial protrusio technique


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 8 - 8
10 May 2024
Sim K Schluter D Sharp R
Full Access

Introduction. Acetabular component loosening with associated bone loss is a challenge in revision hip arthroplasty. Trabecular Metal (TM) by Zimmer Biomet has been shown to have greater implant survivorship for all-cause acetabular revision in small cohort retrospective studies. Our study aims to review outcomes of acetabular TM implants locally. Method. This is a retrospective observational study using data from Auckland City and North Shore Hospitals from 1st of January 2010 to 31st of December 2020. Primary outcome is implant survivorship (re-revision acetabular surgery for any cause) demonstrated using Kaplan-Meier analysis. Secondary outcome is indication for index revision and re-revision surgery. Multivariate analysis used to identify statistically significant factors for re-revision surgery. Results. 225 cases used acetabular TM implants (shells and/or augments) over 10 years. Indications include aseptic loosening (63%), instability (15%) and infection (13%). Of these, 12% (n=28) had further re-revision for infection (54%) and instability (21%). Median time to re-revision was 156 days (range 11 – 2022). No cases of re-revision were due to failure of bony ingrowth or acetabular component loosening. Ethnicity, smoking status, and age were not risk factors for re-revision procedures. Additionally, previous prosthetic joint infection, ethnicity, sex and age were not significant risk factors for re-revision due to infection. Implant survivorship was 80% at 1 year, 71% at 5 years and 64% at 10 years. Discussion. Main indications for re-revision were infection and instability. Demographic factors and co-morbidities did not correlate with increased re-revision risk. Survivorship is poorer compared to cumulative survivorship reported by the New Zealand Joint Registry (NZJR). Explanations are multifactorial and possibly contributed by underestimation of true revision rates by registry data. Conclusions. We need to identify alternate causes for poorer survivorship and review the role of TM implants in acetabular revision within our specified population


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 150 - 150
1 Mar 2017
Shon W Dwivedi C Kim T Kim H
Full Access

Although total hip arthroplasty is highly successful for treatment of osteoarthrosis of hip joint, it is skill demanding surgery to perform and even more challenging in case of revision with bone defects. There are many options available for reconstruction of acetabular bony defects. Here, we evaluate the outcome of acetabular bony defect reconstructed with trabecular metal augments in short term. We performed, 22 revision total hip arthroplasties and 6 primary total hip arthroplasties (total 28 in 28 patients) using trabecular metal augments to reconstruct acetabular defect between 2011 to 2015. Out of these 28 patients, 18 were males and 10 were females. Mean age of these patients was 61.2 years (range: 46 years to 79 years). Pre-operative templating was done for all cases and need for trabecular metal augments was anticipated in all cases. All cases were classified according to Paprosky classification for acetabular bone defects. Out of 28 patients, 3 had type 2B, 1 had type 2C, 18 had type 3A and 6 had type 3B acetabular defects. Post operatively, all patients were followed at regular interval for their clinical and radiological outcome. An average follow up was 20.1 months (range: 6 months to 42.5 months). We assessed clinical outcome in the form of Herris hip score (HHS) and radiological outcomes in form of osteolysis in acetabular zones and osseointegration, according to the criteria of Moore. The average Harris hip score (HHS) was improved from 58.0 preoperatively to 87.2 postoperatively. The average degree of cup abduction at the final follow up was 44.29. The centre of rotation of the hip joint was corrected from average 38.90mm (range: 22.15mm to 66.35mm) above the inter-teardrop line preoperatively to average 23.85mm (range: 11.82mm to 37.69mm) above the inter-teardrop line postoperatively. Out of 28 patients, 18 patients had three or more signs of osseointegration, according to the criteria of Moore, at the time of final follow up. Rest of patients, had one or two signs of osseointegration (5 patients had one sign and 5 patients had two signs). We had no patient with migration or loosening of acetabular components. No patient has osteolysis of acetabulum in any zone. Trabecular metal augments provide good initial stability to acetabular cup as well as helpful to bring down the centre of rotation of the hip joint within limit of 35mm above the inter-teardrop line. They also facilitate osseointegration. Our study showed that the results of the trabecular metal augments in reconstruction of acetabular bony defects were successful even in short term. However, long term study is required for better evaluation


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 149 - 149
1 Feb 2004
Kim J Rowe K Moon J
Full Access

Introduction: It is desirable to delay or avoid total joint replacement in young patients who have osteonecrosis of femoral head. There are some head preserving surgical procedures that attempt this including osteotomy, core decompression, and bone grafting. The vascularized fibular graft has been reported to be a reliable procedure, but unfortunately it has donor site morbidity and is considered technically demanding. Therefore, materials have been developed to substitute for structural fibular graft. New trabecular metal has been developed to be used for osteonecrosis of femoral head. The purpose of this study was to review the clinical outcomes of trabecular metal as a treatment intervention method for osteonecrosis of the femoral head. Materials and Methods: Seven patients (8 hips) with osteonecrosis of femoral head received core decompression and a trabecular metal implant, beginning in March 2003. The stage of osteonecrosis was I or II according to Ficat and Arlet except for one case (stage III). The procedure consists of a core decompression and insertion of trabecular metal rod (porous tantalum, Zimmer Inc./ Implex Incorporation). A Harris Hip Score was obtained pre-operatively, and at three and at three and six months. Radiographic data was collected at the same time of clinical follow-up. Results: All 7 patients are doing well. Radiographic review shows no evidence of further femoral head collapse. Discussion: Even though this is short term follow-up, the authors propose that the use of trabecular metal in osteonecrosis patients is simple, safe, and effective for the salvage of the hip


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 188 - 188
1 Mar 2008
Trentani P Tigani D Trentani F Andreoli I Giunti A
Full Access

Compromised patellar bone stock poses significant the chnical problems in primary and revision knee arthroplasty. In these situations, traditional approaches have included: non resurfacing, patellectomy, patellar bone grafting, ‘Gull-Wing’ osteotomy. A new material (Trabecular Metal) fabricated using a tantalum metal and vapor deposition techhnique that create a metallic strut configuration with 80%porosity, and physical and mechanical properties similar to bone has been introduced. The authors studied the short-term results following patellar resurfacing using trabecular metal patella in primary and revision total knee arhroplasty (TKA). Nine patients undergoing primary (2 cases) or revision (7 cases) TKA with the use of a trabecular metal patella were evaluated at a mean of 16 months follow-up. All patients had marked patellar bone deficiency precluding resurfacing with a standard cemented patellar button. The all polyethylene patela was cemented into the trabecular metal base and the remaining patella bone stock; additional fixation was provided by # 2 non absorbable sutures through the peripheral holes on the metal shell. Revision TKA may be complicated by severe patellar bone loss that preclude implantantion of a standard cemented patellar component. Several options including patellectomy, non resurfacing and osteotomy or grafting of remaining bony shell have been proposed. It is rare in primary knee arthroplasty that the patella has been so eroded that resurfacing is not feasible. Trabecular metall patella may be indicate in the complex revision or even primary knee arthroplasty in which all that remains of the patella is a thin shell of anterior cortical. The short-term results of patellar resurfacing with trabecular metal have demonstrated favorable results


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 178 - 178
1 Sep 2012
Sinclair S Konz G Dawson J Bloebaum R
Full Access

Background. Synthetic interbody spinal fusion devices are used to restore and maintain disc height and ensure proper vertebral alignment. These devices are often filled with autograft bone to facilitate bone bridging through the device while providing mechanical stability. Nonporous polyetheretherketone (PEEK) devices are widely used clinically for such procedures. 1. Trabecular Metal devices are an alternative, fabricated from porous tantalum. It was hypothesized that the porous Trabecular Metal device would better maintain autograft viability through the center of the device, the ‘graft hole’ (GH). Methods. Twenty-five goats underwent anterior cervical discectomy and fusion using a Trabecular Metal or PEEK device for 6, 12 or 26 weeks. The GH of each device was filled with autograft bone morsels harvested from the animal at implantation. Fluorochrome labeling oxytetracycline was administered to the animals and used to determine bone viability in the device regions. Following necropsy, the vertebral segments were embedded in poly(methyl methacrylate) sectioned and analyzed using fluorescence and backscatter electron (BSE) imaging. The percent of bone tissue present within the GH was measured as a volume percent using BSE images (Fig. 1). Results. Bone percent analysis demonstrated that there was no significant difference (p<0.05) in volume of bone tissue within the GH of the two devices at 6 and 26 weeks (Fig. 2). At 12 weeks the animals implanted with the Trabecular Metal device had significantly greater volumes of bone within the GH region. Viable bone was observed in the host bone region and periprosthetic to the implant of all PEEK (n=12) and Trabecular Metal (n=12) animals within the study, determined by the presence of fluorescent labels (Fig. 3). Viable bone was also observed in the GH region of all animals with a Trabecular Metal device. However, only 5 of 12 PEEK animals showed bone viability within the GH (2 at 12 weeks and 3 at 26 weeks). A Fisher's exact comparison of the number of animals with viable bone in the GH showed a significant difference between the two devices, p<0.05. Conclusion. Autograft viability was better maintained within the GH for the porous Trabecular Metal device compared to the PEEK device. Although the amount of bone tissue within the GH of the PEEK devices was determined to have no significant difference compared to the Trabecular Metal devices at 6 and 26 weeks, the GH bone tissue was not viable in a number of the PEEK animals at each time point. The interconnected network and high volume porosity of the Trabecular Metal device may have allowed for fluid exchange, angiogenesis and increased blood supply to the autograft morsels. The viability of the autograft morsels also played an important role in the success of bone bridging through the GH between the vertebral endplates. In this animal model it was demonstrated that the autograft bone placed within the PEEK spinal fusion device did not always remain viable after implantation, but sometimes only filled the GH and did not necessarily facilitate fusion between the vertebrae as intended


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1333 - 1338
2 Aug 2021
Kankanalu P Borton ZM Morgan ML Cresswell T Espag MP Tambe AA Clark DI

Aims. Reverse total shoulder arthroplasty (RTSA) using trabecular metal (TM)-backed glenoid implants has been introduced with the aim to increase implant survival. Only short-term reports on the outcomes of TM-RTSA have been published to date. We aim to present the seven-year survival of TM-backed glenoid implants along with minimum five-year clinical and radiological outcomes. Methods. All consecutive elective RTSAs performed at a single centre between November 2008 and October 2014 were reviewed. Patients who had primary TM-RTSA for rotator cuff arthropathy and osteoarthritis with deficient cuff were included. A total of 190 shoulders in 168 patients (41 male, 127 female) were identified for inclusion at a mean of 7.27 years (SD 1.4) from surgery. The primary outcome was survival of the implant with all-cause revision and aseptic glenoid loosening as endpoints. Secondary outcomes were clinical, radiological, and patient-related outcomes with a five-year minimum follow-up. Results. The implant was revised in ten shoulders (5.2%) with a median time to revision of 21.2 months (interquartile range (IQR) 9.9 to 41.8). The Kaplan-Meier survivorship estimate at seven years was 95.9% (95% confidence interval (CI) 91.7 to 98; 35 RTSAs at risk) for aseptic mechanical failure of the glenoid and 94.8% (95% CI 77.5 to 96.3; 35 RTSAs at risk) for all-cause revision. Minimum five-year clinical and radiological outcomes were available for 103 and 98 RTSAs respectively with a median follow-up time of six years (IQR 5.2 to 7.0). Median postoperative Oxford Shoulder Score was 38 (IQR 31 to 45); median Constant and Murley score was 60 (IQR 47.5 to 70); median forward flexion 115° (IQR 100° to 125°); median abduction 95° (IQR 80° to 120°); and external rotation 25° (IQR 15° to 40°) Scapular notching was seen in 62 RTSAs (63.2%). Conclusion. We present the largest and longest-term series of TM-backed glenoid implants demonstrating 94.8% all-cause survivorship at seven years. Specifically pertaining to glenoid loosening, survival of the implant increased to 95.9%. In addition, we report satisfactory minimum five-year clinical and radiological outcomes. Cite this article: Bone Joint J 2021;103-B(8):1333–1338


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 151 - 152
1 Mar 2010
Inori F Minoda Y Kobayashi A Iwaki H Ikebuchi M Ohashi H Takaoka K
Full Access

The introduction of porous tantalum metal (Trabecular Metal; Zimmer, Warsaw, IN) for acetabular component fixation in total hip arthroplasty has shown optimum fixation qualities and “gap filling” effect. Recently, trabecular metal was introduced in tibial component for total knee prosthesis, however its effect on the bone mineral density (BMD) was not reported. The purpose of this study was to compare the BMD of proximal part of the tibia between trabecular metal and another cemented tibial component. 31 knees receiving trabecular metal tibial component and 33 knees receiving cemented tibial component (PFC Sigma RP, Depuy, Warsaw, IN) had dual energy x-ray absorptiometry (DEXA) scans at preoperatively and 3 weeks, 3, 6, 12, 18, 24 months post-operatively. To assess peri-prosthetic BMD, three regions of interest (ROI) were measured for each case. They were medial aspect (ROI 1), center aspect (ROI 2) and lateral aspect (ROI 3) of tibia. Average follow up period was 1.8 (range: 1.5 to 2) years. In both groups, BMD in tibia decrease postoperatively. Comparing postoperative decrease of BMD in lateral aspect of tibia (ROI 3) between both groups, it was significantly less in trabecular metal component (−0.09 g/cm2 +/−0.27) than cemented tibial component (−0.31 g/cm2 +/− 0.21) (p=0.0007). We conclude that trabecular metal tibial component showed a favorable effect on BMD of proximal part of the tibia after total knee arthroplsaty


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 310 - 310
1 Jul 2008
Southgate C Bankes M
Full Access

Introduction: Porous Tantalum has been used in a variety of clinical settings since 1997. The use of trabecular metal backed prostheses and augments in the revision hip scenario is attractive due to the higher propensity of bony ingrowth than traditional porous coatings, and also the high coefficient of friction with bone leads to excellent press fit. We describe the early results of twenty trabecular metal backed acetabular components in the revision setting. Methods: From 2004, 20 patients received trabecular metal backed acetabular components as a revision hip procedure. The average age of the patients was 69 (42–84) yrs at the time of surgery. 4 patients had trabecular metal shells with cemented liners, 16 patients had modular trabecular metal implants. Structural allograft was used in 2 cases, trabcular metal augment in 1. Revision was for aseptic loosening in 17 cases, infection in 3. Acetabular defects were graded according to Paprosky as 2A(10), 2B(1), 2C(1), 3A(6) and 3B(2). Fixation was augmented in all cups with at least one screw. Patients were evaluated with standard x-rays for osteolysis and migration, Harris hip score, SF 36 and Oxford hip score. Results: Average follow up was 12 months (24–5). 100% follow up was achieved. There were no complications directly related to the acetabular surgery. There were no revisions. There are no progressive radiolucencies or detectable migration in any of the cups. There were no dislocations. Conclusion: These early results suggest that trabecular metal backed acetabular components may be confidently used in the setting of hip revision surgery and show promise for the more severe defects for which a reliably reproducible solution has yet to be proven


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 93 - 93
1 Sep 2012
Wilson DA Dunbar MJ Richardson G Hennigar A
Full Access

Purpose. To evaluate the five year Radiostereometric Analysis (RSA) results of the NexGen LPS Trabecular Metal Tibial Monoblock component (TM) and the NexGen Option Stemmed cemented component (Cemented), (Zimmer, Warsaw IN). Method. 70 patients with osteoarthritis were included in a randomized series to receive either the TM implant or the cemented NG component. Surgery was performed by high volume arthoplasty specialists using standardized procedure. RSA exams were obtained postoperatively, at six months, one year, two years and five years. RSA outcomes were translations, rotations and maximum total point motion (MTPM) of the components. MTPM values were used to classify implants as ‘at risk’ or ‘stable’. Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scores were gathered at all follow-ups. An analysis of variance was used to test for differences in age, body mass index (BMI), and subjective measures between implant groups. The Kruskal-Wallis test was used to investigate differences in maximum total point motion between implant groups. An analysis of variance was used to test for differences in translations and rotations between groups. Fishers exact test was used to investigate differences in proportions of implants found to be at risk between groups. Results. At the five year follow-up, 43 patients were able to be reached and were willing to participate in the follow-up exam. There were 25 in the trabecular metal group and 18 in the cemented group. There were no differences in subjective measures (WOMAC) between implant groups at any follow-up. At the five year follow-up there was no difference in MTPM between the cemented and trabecular metal groups (p=0.94) Compared to the cemented components, the trabecular metal tibial components had significantly higher subsidence than the cemented components (p=0.001). There were no other significant differences. The proportion of at risk components at five years was 2 of 16 (0.11, 95% CI, 0.03–0.33) in the cemented group and was 0 of 25 (0.0, 95% CI, 0.0–0.13) in the trabecular metal group (p=0.17). Conclusion. In the two year report on this cohort of patients, we indicated our uncertainty concerning the long term stability of the Trabecular Metal tibial implant due to the high initial migration seen in some cases. In this report we have seen stability of this implant out to five years and migrations in this period below the level of detection of our system in all cases. Given these results it is with increased confidence that we can state that this implant appears to achieve solid fixation despite high initial levels of migration


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 57 - 57
1 Dec 2016
Laende E Dunbar M Richardson G Reardon G Amirault D
Full Access

The trabecular metal Monoblock TKR is comprised of a porous tantalum base plate with the polyethylene liner embedded directly in the porous metal. An alternative design, the trabecular metal Modular TKR, allows polyethylene liner insertion into the locking base plate after base plate implantation, but removes the low modulus of elasticity that was inherent in the Monoblock design. The purpose of this study was to compare the fixation of the Monoblock and Modular trabeucular metal base plates in a randomised controlled trial. Fifty subjects (30 female) were randomly assigned to receive the uncemented trabecular metal Monoblock or uncemented trabecular metal Modular knee replacement. A standard procedure of tantalum marker insertion in the proximal tibial and polyethylene liner was followed with uniplanar radiostereometric analysis (RSA) examinations immediately post-operatively and at 6 week, 3 month, 6 month, and 12 month follow-ups. The study was approved by the Research Ethics Board and all subjects signed an Informed Consent Form. Twenty-one subjects received Monoblock components and 20 received Modular components. An intra-operative decision to use cemented implants occurred in 5 cases and 4 subjects did not proceed to surgery after enrollment. The clinical precision of implant migration measured as maximum total point motion (MTPM) was 0.13 mm (upper limit of 95% confidence interval of double exams). Implant migration at 12 months was 0.88 ± 0.64 mm (mean and standard deviation; range 0.21 – 2.84 mm) for the Monoblock group and 1.60 ± 1.51 mm (mean and standard deviation; range 0.27 – 6.23 mm) for the Modular group. Group differences in 12 month migration approached clinical significance (p = 0.052, Mann Whitney U-test). High early implant migration is associated with an increased risk for late aseptic loosening. Although not statistically significant, the mean migration for the Modular component group was nearly twice that of the Monoblock, which places it at the 1.6 mm threshold for “unacceptable” early migration (Pijls et al 2012). This finding is concerning in light of the recent recall of a similar trabecular metal modular knee replacement and adds validity to the use of RSA in the introduction of new or modified implant designs. Reference: Pijls, B.G., et al., Early migration of tibial components is associated with late revision: a systematic review and meta-analysis of 21,000 knee arthroplasties. Acta Orthop, 2012. 83(6): p. 614–24


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 49 - 49
1 May 2019
Rajgopal A
Full Access

Management of severe bone loss in total knee arthroplasty presents a formidable challenge. This situation may arise in neglected primary knee arthroplasty with large deformities and attritional bone loss, in revision situations where osteolysis and loosening have caused large areas of bone loss and in tumor situations. Another area of large bone loss is frequently seen in periprosthetic fractures. Trabecular metal (TM) with its dodecahedron configuration and modulus of elasticity between cortical and cancellous bone offers an excellent bail out option in the management of these very difficult situations. Severe bone loss in the distal femur and proximal tibia lend themselves to receiving the TM cones. The host bone surfaces need to be prepared to receive these cones using a high speed burr. The cones acts as a filler with an interference fit through which the stemmed implant can be introduced and cemented. All areas of bone void is filled with morselised cancellous bone fragments. We present our experience of 64 TM cones (28 femoral, 36 tibial cones) over a 10-year period and our results and outcomes for the same. We have had to revise only one patient for recurrence of the tumor for which the cone was implanted in the first place. We also describe our technique of using two stacked cones for massive distal femoral bone loss and its outcomes. We found excellent osteointegration and new host bone formation around the TM construct. The purported role of possible resistance to infection in situations using the TM cones is also discussed. In summary we believe that the use of the TM cones offers an excellent alternative to massive allografts, custom and/or tumor implants in the management of massive bone loss situations


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 535 - 535
1 Aug 2008
Charnley G Putaswamiah R Yeung E
Full Access

Introduction: Trabecular Metal (Tantalum) has been successfully used in Neurosurgery for many years. Acetabular components have only been available in the UK since 2004. The metal’s properties of porosity and a high friction coefficient are attractive, particularly in complex primary and revision hip arthroplasty when surgical challenges include abnormal, deficient or limited bone. Methods: Two year results of 110 consecutive acetabular reconstructions are presented. The age range was between 27 and 95 years with a predominance of females. The indication in 75 primary hip replacements included, Destructive Osteoarthritis, Dysplasia, Rheumatoid Arthritis, Paget’s and AVN. 35 revisions were performed either two-component or single acetabular exchanges. Clinical results have been obtained using the Merle d’Aubigne score and bone deficiencies were classified according to the AAOS system. Results: There have been no failures and radiologically, serial X-rays demonstrate osseo-integration at an early stage. We have had no cases of deep infection but there have been 3 femoral peri-prosthetic fractures, (1 late) and 2 dislocations. All patients have been allowed early weight bearing and those patients with over 12 months follow up have an improved Merle d’Aubigne score. Discussion: The biomechanical properties of Trabecular metal and a modular design permit a press fit technique supplemented by dome screws combined with the possibility of using varying sizes of liner to minimise dislocation or to retain well fixed femoral stems in revision surgery. The ease of use of the implant has now led to us largely abandoning other reconstructive techniques such as impaction allo-grafting or cages in revision or complex primary hip surgery. We consider Trabecular metal to be a major advance in acetabular reconstruction on the basis of our initial experience


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 6 - 6
23 Jun 2023
Callary S Barends J Solomon LB Nelissen R Broekhuis D Kaptein B
Full Access

The best treatment method of large acetabular bone defects at revision THR remains controversial. Some of the factors that need consideration are the amount of residual pelvic bone removed during revision; the contact area between the residual pelvic bone and the new implant; and the influence of the new acetabular construct on the centre of rotation of the hip. The purpose of this study was to compare these variables in two of the most used surgical techniques used to reconstruct severe acetabular defects: the trabecular metal acetabular revision system (TMARS) and a custom triflanged acetabular component (CTAC). Pre- and post-operative CT-scans were acquired from 11 patients who underwent revision THR with a TMARS construct for a Paprosky IIIB defect, 10 with pelvic discontinuity, at Royal Adelaide Hospital. The CT scans were used to generate computer models to virtually compare the TMARS and CTAC constructs using a semi-automated method. The TMARS construct model was calculated using postoperative CT scans while the CTAC constructs using the preoperative CT scans. The bone contact, centre of rotation, inclination, anteversion and reamed bone differences were calculated for both models. There was a significant difference in the mean amount of bone reamed for the TMARS reconstructions (15,997 mm. 3. ) compared to the CTAC reconstructions (2292 mm. 3. , p>0.01). There was no significant difference between overall implant bone contact (TMARS 5760mm. 2. vs CTAC 5447mm. 2. , p=0.63). However, there was a significant difference for both cancellous (TMARS 4966mm. 2. vs CTAC 2887mm. 2. , p=0.008) and cortical bone contact (TMARS 795mm. 2. vs CTAC 2560mm. 2. , p=0.001). There was no difference in inclination and anteversion achieved. TMARS constructs resulted on average in a centre of rotations 7.4mm more lateral and 4.0mm more posterior. Modelling of two different reconstructions of Paprosky IIIB defects demonstrated potential important differences between all variables investigated


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 430 - 431
1 Sep 2009
Barnes M Ton L
Full Access

Introduction: Autologous bone graft is currently considered the gold standard for anterior cervical discectomy and fusion (ACDF). However, the harvesting of bone graft from the ilac crest is frequently associated with significant patient morbidity. We report on the safety and efficacy of trabecular metal blocks for achieving a stable interbody fusion for ACDF when compared to iliac crest bone graft for a small group of patients. Methods: This is a prospective trial of patients who underwent consecutive ACDFs between September 2004 and September 2007. Patients received one of two materials for their fusion, either trabecular metal blocks or autologous iliac crest bone graft. Each operation was performed by the same spinal surgeon (LT), and all patients had fixation with an anterior titanium plate to enhance interbody arthrodesis. Clinical outcome was assessed with a neck disability score (Vernon and Mior 1991) that was mailed to all participants; bone graft patients were also asked to complete a bone graft morbidity questionnaire (Silber et al. 2003). Radiological followup was assessed with computed tomography and flexion-extension radiographs. A minimum followup time of 3 months was required for inclusion into the study, and unpaired t-tests were used to evaluate statistical differences between relevant sets of data. Results: A total of 31 patients were included into the study, with 15 in the trabecular metal group (TM) and 16 in the iliac crest bone graft group (ICBG). The TM group included 10 males (67%) with a median age of 42 years (range 18–72). Median neck disability score was 18% (2–38) and stable bony ingrowth was observed in all patients (100%) on postoperative scans. Median followup time was 8 months (3–16) for TM patients and 20.3 months (7–36 months) for the ICBG group. In comparison, the ICBG group included 8 males (50%) with a median age of 53.3 years (43–70). Median neck disability score was worse at 30% (4–50), with a significant difference of 12% observed after t-test analysis (p value < 0.02). In addition, there was significant morbidity associated with the harvesting of autologous bone graft, with more than 50% of patients experiencing acute and/or chronic symptoms. Two radiological pseudoarthroses (8%) were observed postoperatively, of which one was manifested clinically. Discussion: These results confirm that, for our population group, trabecular metal implants are both safe and effective for use in ACDF when compared to the gold standard of autologous bone graft. Furthermore, trabecular metal implants avoid the morbidity associated with the harvesting of iliac crest bone graft. We believe the results so far are encouraging for our small group of patients but a larger, randomised control trial is needed to provide definitive results


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 138 - 138
1 Mar 2010
Kim JO Roh KJ Park HS Sohn H Kim TH Chung BJ
Full Access

To evaluate the effectiveness of core decompression using the tantalum trabecular metal system for treatment of an early stage osteonecrosis of femoral head in minimum 1 year to maximum 5 years follow-up. From January 2003 to August 2007, 36 patients in 46 cases underwent core decompression using the tantalum trabecular metal system. The ARCO classification system was used. Retrospective analysis was done. The conversion to total hip arthroplasty due to aggravating hip pain was defined as a clinical failure. With the higher stage of ARCO classification and more lateral location of lesion, the conversions to total hip arthroplasty would be increased. The better outcome was noted with lower stage of ARCO classification and more medial location of the lesion. The higher stage of ARCO classification and more lateral position of lesion, the failure rate of the tantalum trabecular metal system increases. The most important thing is to detect early stage of osteonecrosis of femoral head. The tantalum trabecular metal system is considered as a useful treatment of osteonecrosis of femoral head with lower stage of ARCO classification and medial location of lesion


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 395 - 395
1 Jul 2010
Periasamy K Spencer S Patil S Mohammed A Murray H Watson W Meek R
Full Access

Introduction: The ideal acetabular component has low wear, permanent fixation and physiological bone loading. Recently trabecular metal has been promoted as reproducing the modulus of trabecular bone with a cementless fixation. The aim of this trial was to see if a monobloc trabecular backed polyethylene acetabular component loaded the pelvis physiologically as a cemented polyethylene component. Method: Between 2004 and 2006 54 patients were ran-domised to a cemented polyethylene acetabular component versus a monobloc trabecular backed polyethylene acetabular component. The primary outcome measurement was bone density in peri-prosthetic acetabular regions of interest measured preoperatively and post operatively at 6 weeks and 1 year. Secondary outcomes measured were radiographic and functional outcomes (HHS and Oxford score). Results: Radiographically 8 patients in the trabecular group had a significant gap in zone II which resolved in 6 by 1 year. The cemented group had 3 patients with a radiolucent line (zone 1) at 1 year. HHS and OXFORD scores improved with no significant difference between the groups. Both groups had significant loss of bone density in the ilium and ischium. The trabecular group produced a significant increase in bone density in the superolateral region. The cemented group produced increased bone density in the superomedial region. Discussions and Conclusions: There is a significant reduction in BMD for both groups in the upper pelvis and ischium in keeping with finite element modelling predictions. The press-fit group relative to the cemented group resulted in decreased BMD in the superomedial peri-prosthetic region. The trabecular monobloc cup therefore behaves more like a rigid cementless shell despite the properties of trabecular metal


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 145 - 145
1 Apr 2005
Ghalayini SRA McLauchlan GJ
Full Access

Introduction We report the early results of a series of 80 primary total knee replacements (TKRs) using a trabecular metal tibial component (TMT). Methods Significant tibial bone loss and scarcity of kit were the only reasons for patients not receiving a TMT. Age, sex, diagnosis and body mass index (BMI) were recorded. Patients were scored pre-operatively using the Oxford Knee and SF-12 scores. These were repeated at subsequent clinical follow up where standard X-rays were also taken. Range of movement was estimated using a goniometer and stability assessed clinically. This regimen was identical to that in place for the standard knee previously used by the senior author with a cemented tibial component and this group is used in comparison as possible. Results To date there are 80 TMT knees in the series with 36 standard cemented TKRs in comparison. The mean age of the whole series is 70 years (20–90) with no difference between the groups. Sixty five per cent of the series were female. All bar three patients had osteoarthritis. The mean BMI was 30.3 (20.9–46.2). The mean pre-op Oxford score was 45.8 in the TMT group and 44.5 in the cemented group. At a mean follow up of 13.3 (9–17) months in the TMT group and 18.7 (9–19) months in the cemented group this fell to 22.5 and 20.5 respectively. The physical component of the SF-12 score improved from 27.3 to 40.7 in the TMT group and from 27.5 to 45.5 in the cemented group. There was no statistical difference between the groups using either score. The mean amount of flexion pre-operatively was 106 (65–135) degrees for the series. This was maintained postoperatively at 105 degrees (70–125) with no difference between the groups. There was one deep infection in the cemented group that underwent revision and one non-fatal pulmonary embolus in the cemented group. There were no worrying radiological signs in either group. Conclusion Trabecular metal is made from elemental tantalum. The TMT is an uncemented component with a truly porous structure for bone ingrowth and a modulus of elasticity equivalent to bone that allows physiological transfer of stresses. The early clinical and radiological results are equal to a cemented prosthesis. Further follow up is required to see whether this is maintained over time


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 79 - 79
1 Mar 2008
Mountney J Paice M Greidanus N Wilson D Masri B
Full Access

We have evaluated the function of a trabecular metal augmentation patella to restore knee kinetics and kinematics after revision total knee arthroplasty. An “Oxford type” rig was used with fresh frozen cadaveric knees, for an active model that maximally retained the soft tissue envelope. Investigating the force through the extensor mechanism, we found a statistically significant difference between the TKA before and after patelloplasty, which was abolished by the insertion of the augmentation patella. Investigation patella tracking, we found a statistically significant difference between the TKA before and after patelloplasty, that was rectified by the insertion of the augmentation patella. The purpose of this study is to evaluate the kinetic and kinematic function of a new trabecular metal augmentation patella. Investigating the force through the extensor mechanism, we found a statistically significant difference between the TKA before and after patelloplasty, which was abolished by the insertion of the augmentation patella. Investigation patella tracking, we found a statistically significant difference between the TKA before and after patelloplasty, that was rectified by the insertion of the augmentation patella. This study demonstrates that the augmentation patella restorers the abnormal tracking and higher extensor mechanism forces seen after patelloplasty in revision TKA to those normal after a TKA. The mean, maximum extensor mechanism force in extension for the TKA group as compared to the patelloplasty group (p=0.0000032), reduced to near normal with the augmentation patella (p=0.198). The mean, maximum patella maltracking in extension for the TKA group as compared to the patelloplasty group (p=0.025), reduced to near normal with the augmentation patella (p=0.301). Eight frozen human cadaveric knees (mean age sixty-eight years) were prepared for an “Oxford type” knee rig. Alignment ands offset were addressed and the soft tissue envelope kept as intact as possible. A load cell was introduced into the extensor mechanism. Femoral, patella and tibial motion were assessed using the Optotrak system. Patella bone loss at revision TKA remains an unsolved problem, with the patella often too thin to accept a new prosthesis. Leaving the patella shell to articulate against the femoral component can lead to disappointing results. Funding - Zimmer


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 75 - 75
1 Mar 2008
Mountney J Paice M Greidanus N Wilson D Masri B
Full Access

We have evaluated the function of a trabecular metal augmentation patella to restore knee kinetics and kinematics after revision total knee arthroplasty. An “Oxford type” rig was used with fresh frozen cadaveric knees, for an active model that maximally retained the soft tissue envelope. Investigating the force through the extensor mechanism, we found a statistically significant difference between the TKA before and after patelloplasty, which was abolished by the insertion of the augmentation patella. Investigation patella tracking, we found a statistically significant difference between the TKA before and after patelloplasty, that was rectified by the insertion of the augmentation patella. The purpose of this study is to evaluate the kinetic and kinematic function of a new trabecular metal augmentation patella. Investigating the force through the extensor mechanism, we found a statistically significant difference between the TKA before and after patelloplasty, which was abolished by the insertion of the augmentation patella. Investigation patella tracking, we found a statistically significant difference between the TKA before and after patelloplasty, that was rectified by the insertion of the augmentation patella. This study demonstrates that the augmentation patella restorers the abnormal tracking and higher extensor mechanism forces seen after patelloplasty in revision TKA to those normal after a TKA. The mean, maximum extensor mechanism force in extension for the TKA group as compared to the patelloplasty group (p=0.0000032), reduced to near normal with the augmentation patella (p=0.198). The mean, maximum patella maltracking in extension for the TKA group as compared to the patelloplasty group (p=0.025), reduced to near normal with the augmentation patella (p=0.301). Eight frozen human cadaveric knees (mean age sixty-eight years) were prepared for an “Oxford type” knee rig. Alignment ands offset were addressed and the soft tissue envelope kept as intact as possible. A load cell was introduced into the extensor mechanism. Femoral, patella and tibial motion were assessed using the Optotrak system. Patella bone loss at revision TKA remains an unsolved problem, with the patella often too thin to accept a new prosthesis. Leaving the patella shell to articulate against the femoral component can lead to disappointing results. Funding - Zimmer


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 94 - 94
1 Mar 2008
Benoit B Laflamme Y Zhim F
Full Access

We compared internal fixation augmented with a trabecular metal implant to internal fixation augmented with morcellized bone grafting for depressed lateral tibial plateau fractures. Six cadaveric tibia pairs were prepared and tested on a MTS machine for both cyclic loading and static load to failure. Results showed greater resistance in cyclic loading and load to failure in the trabecular metal group. We found half the loss of reduction of the tibial articular surface compared after cyclic loading over 10 000 cycles. These surprising results show the biomechanical superiority of our trabecular metal construct over the current standard of care. Restoration and maintenance of the plateau surface are the key points in the treatment of tibial plateau fractures. Any deformity of the articular surface jeopardises the future of the knee by causing osteoarthritis and axis deviation. The purpose of this study is to develop a more solid way to fix the Shatzker III fracture and to test a trabecular metal implant in the trauma setting for the first time. Six matched pairs of fresh frozen human cadaveric tibias were fractured and randomly assigned to be treated with either the standard of care (two 4,5mm cortical raft screws augmented with morcellized bone graft) or the new method (the same screws supporting a 2 cm diameter trabecular metal disc placed under the comminuted articular surface). The specimens were tested in cyclic loading and put at load to failure. The trabecular metal construct showed 40% less caudad displacement of the articular surface (1,43 mm vs 0,81 mm) in cyclic loading (p< 0.05). Its mechanical failure occurred at a mean of 3275 N compared to 2650 N for the standard of care construct (p< 0,05). The current study shows the biomechanical superiority of our trabecular metal construct compared to the current standard of treatment with regards to both its resistance to caudad displacement of the articular surface in cyclic loading and its strength at load to failure. Trabecular metal is a good metaphyseal void filler in the studied fracture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 39 - 39
1 Aug 2021
Rajan A Leong J Singhal R Siney P Shah N Board T
Full Access

Trabecular metal (TM) augments are designed to support an uncemented socket in revision surgery when adequate rim fit is not possible. We have used TM augments in an alternative arrangement, to contain segmental defects to facilitate impaction bone grafting (IBG) and cementation of a cemented socket. However, there is a paucity of literature supporting the use of this technique. We present one of the largest studies to date, reporting early outcomes of patients from a tertiary centre. A single-centre retrospective analytical study of prospectively collected data was performed on patients who had undergone complex acetabular reconstruction using TM augments, IBG and a cemented cup. All patients operated between 2015 and 2019 were included. We identified 105 patients with a mean age of 74yrs. The mean follow-up was 2.3 years(1–5.5yrs). Our primary outcome measure was all-cause revision of the construct. The secondary outcome measures were, Oxford hip score (OHS), radiographic evidence of cup migration/loosening and post-op complications. Eighty-four out of 105 patients belonged to Paprosky grade IIb, IIc or IIIa. Kaplan-Meier survivorship for all-cause revision was 96.36% (CI, 90.58–100.00) at 2 years with 3 failures. Two were due to early infection which required two-stage re-revision. The third was due to post-operative acetabular fracture which was then re-revised with TM augment, bone graft and large uncemented cup. Pre-op and post-op matched OHS scores were available for 60 hips(57%) with a mean improvement of 13 points. Radiographic analysis showed graft incorporation in all cases with no evidence of cup loosening. The mean vertical cup migration was 0.5mm (Range −5 to 7mm). No other complications were recorded. This study shows that reconstruction of large acetabular defects during revision THA using a combination of TM augments to contain the acetabulum along with IBG to preserve the bone stock and a cemented socket is a reliable and safe technique with low revision rates and satisfactory clinical and radiographic results. Long term studies are needed to assess the possibility of preservation and regeneration of bone stock


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 212 - 213
1 Mar 2010
Westh R Barnes M
Full Access

Introduction: Avascular Necrosis (AVN) of the femoral head is a complex disease that often leads to disabling hip pain and degenerative arthritis. Core decompression is currently the most common procedure used to treat the early stages of AVN but used alone may not provide adequate structural support. Trabecular metal may be a promising development by providing the support needed after a core decompression while minimizing the surgical complications of bone grafts. The important stiffness is similar to a fibular graft and the implant enables vascular healing via its porosity. This is a small series of patients who underwent this procedure which is minimally invasive. All patients had a non-traumatic aetiology for the AVN and were referred from a Rheumatology clinic closely linked to the orthopaedic clinic. Methodology: This is a retrospective review of consecutive patients who underwent core decompression and insertion of trabecular metal (tantalum) screw for AVN of the femoral head. Preoperatively the severity of the AVN was assessed with the help of a radiologist using a modified Ficat classification (Steinberg 1986) with magnetic resonance imaging. Postoperatively the progression was assessed with x-rays. Results: A total of nine trabecular screws were inserted into five patients with four receiving bilateral operations. Medium age was forty-five years (range 32–57) and 60% males (n=3). Steroids were thought to be the predisposing factor for AVN in all cases. Preoperative MRI studies showed Grade II disease in four hips (44.4%) Grade III in four hips (44.4%) and Grade IV disease in one hip (11.2%) Median follow up time was 14.4 months range (3–27 months). The hip with Grade IV disease went onto develop destruction of the joint and required a total hip replacement fifteen months later. This was a straightforward procedure with easy removal of the implant. The remaining hips have not required revision to date. There have been no implant failures, migration or loosening. This procedure may prove to be a clinically viable implant option for AVN and the study is ongoing. A major problem is the difficulty in seeing patients early enough with early stage disease. (stage 0, stage I and II.) There have been no implant failures migration or loosening to date


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 219 - 219
1 Dec 2013
Kurdziel M Ackerman J Salisbury M Baker E Verner JJ
Full Access

Purpose:. Acetabular bone loss during revision total hip arthroplasty (THA) poses a challenge for reconstruction as segmental and extensive cavitary defects require structural support to achieve prosthesis stability. Trabecular metal (TM) acetabular augments structurally support hemispherical cups. Positive short-term results have been encouraging, but mid- to long-term results are largely unknown. The purpose of this study was to determine the continued efficacy of TM augments in THA revisions with significant pelvic bone loss. Methods:. Radiographs and medical records of 51 patients who had undergone THA revision with the use of a TM augment were retrospectively reviewed. Acetabular defects were graded according to the Paprosky classification of acetabular deficiencies based on preoperative radiographs and operative findings. Loosening was defined radiographically as a gross change in cup position, change in the abduction angle (>5°), or change in the vertical position of the acetabular component (>8 mm) between initial postoperative and most recent follow-up radiographs (Figure 1). Results:. Eleven patients had incomplete radiographic follow-up and were excluded. The study population included 17 men and 23 women, averaging 68.1 ± 14.1 years of age (range, 37–91), with average radiographic follow-up of 19.0 months (range, 2.4–97.4). Reasons for revision included osteolysis (n = 20, 38.5%), component loosening (n = 18, 15.4%), and periprosthetic fracture (n = 6, 11.5%). All patients underwent revision THA using a TM multi-hole revision acetabular cup and TM acetabular augment(s) to fill bony defects. Morcellized allograft was used in 9 patients. There were 33 Paprosky Type IIIA and seven Paprosky Type IIIB defects. One patient with Paprosky Type IIIB had catastrophic failure of the reconstructive construct three months postoperatively. The remaining 39 acetabular revisions demonstrated signs of bony ingrowth at the latest follow-up. There were no radiolucent lines suggestive of loosening, and no significant differences in abduction angle (p = 0.78), vertical distance between the superolateral edge of the cup and the trans-ischial reference line (p = 0.96), or the vertical distance between the center of the femoral head and trans-ischial reference line (p = 0.75) between the initial postoperative and most recent follow-up radiographs (Figure 2). Discussion and Conclusion:. Achieving fixation and long-term stability in THA revisions with segmental and/or cavitary bone loss is challenging. TM augments provide a modular structural system to achieve bony ingrowth, while avoiding large structural allografts, cages, and custom implants. At latest follow-up, 39 revision hips remained well-fixed with no evidence of loosening. One patient with a significant surgical history of infection, periprosthetic femur fracture, and 2 prior revision surgeries before acetabular reconstruction had an early clinical failure. Trabecular metal augments can be used for reconstruction of acetabular bone loss with good mid-term results. Continued follow-up is warranted for radiographic evaluation of bony integration and implant stability to determine long-term survivorship of these implants


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 42 - 42
1 May 2018
Chou D Abrahams J Callary S Costi K Howie D Solomon B
Full Access

Introduction. Severely comminuted, displaced acetabular fractures with articular impaction in the elderly population present significant treatment challenges. To allow early post-operative rehabilitation and limit the sequelae of immobility, treatment with acute total hip replacement (THA) has been advocated in selected patients. Achieving primary stability of the acetabular cup without early migration is challenging and there is no current consensus on the optimum method of acetabular reconstruction. We present clinical results and radiostereometric analysis of trabecular metal (TM) cup cage construct reconstruction in immediate THA without acetabular fracture fixation. Methods. Between 2011 and 2016, twenty-one acetabular fractures underwent acute THA with a TM cup cage construct. Patient, fracture and surgical demographics were collected. They were followed up for a mean of 24months (range 12–42months). Clinical and patient reported outcome measures were collected at regular post-operative intervals. Radiosterometric analysis (RSA) was used to measure superior migration and sagittal rotation of the acetabular component. Results. Thirteen fractures were classified as anterior column posterior hemi-transverse, two anterior column, two transverse and four associated both column acetabular fractures. There was one case of trochanteric fracture and transient foot drop. Mean Harris Hip Scores at 12months was 79 (range 33–98). The mean proximal migration of the acetabular components at 12months was 0.91mm (range 0.09–5.12 and mean sagittal rotation was 0.52mm (range 0.03–7.35). Conclusion. The TM cup-cage technique requires a single approach and provides immediate cup stability allowing full weight bearing day one post-op. To our knowledge this is the first study to accurately measure cup stability following THA for an acetabular fracture. Our promising early clinical and radiological outcomes suggest this technique may be an alternative to a fix and replace construct for immediate THA for acute acetabular fractures in the elderly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 20 - 20
1 Apr 2017
Meijer M Boerboom A Stevens M Reininga I Janssen D Verdonschot N
Full Access

Background. Trabecular metal (TM) cones are designed to fill up major bone defects in total knee arthroplasty. Tibial components can be implanted in combination with a stem, but it is unclear if this is necessary after reconstruction with a TM cone. Implanting a stem may give extra stability, but may also have negative side-effects. Aim of this study was to investigate stability and strain distribution of a tibial plateau reconstruction with a TM cone while the tibal component is implanted with and without a stem, and whether prosthetic stability was influenced by bone mineral density (BMD). Methods. Tibial revision arthroplasties were performed after reconstruction of an AORI 2B bone defect with TM cones. Plateaus were implanted in seven pairs of cadaveric tibiae; of each pair, one was implanted with and the other without stem. All specimens were loaded to one bodyweight alternating between the medial and lateral tibia plateau. Implant-bone micro motions, bone strains, BMD and correlations were measured and/or calculated. Results. Tibial components without a stem showed only more varus tilt (difference in median 0.14 degrees (P<0.05), but this was not considered clinically relevant. Strain distribution did not differ. BMD had only an effect on the anterior/posterior tilt ρ:-0.72 (P<0.01). Conclusions. Tibial components, with or without a stem, which are implanted after reconstruction of major bone defects using TM cones produce very similar biomechanical conditions in terms of stability and strain distribution. Additional stem extension of the tibial component may not be required after reconstruction of major bone defects using TM cones. Level of evidence. IIb. Disclosures. The department of Orthopaedics, University of Groningen, University Medical Center Groningen has received direct funding from the Anna Fonds (Oegstgeest, NL). Zimmer (Warsaw, IN, USA) has provided the instrumentation and tools for this study. The department of Orthopaedics, University of Groningen, University Medical Center Groningen receives research institutional support from InSpine (Schiedam, NL) and Stryker (Kalamazoo, Mich. USA). One of the authors (ALB) will be and has been paid as a consultant by Zimmer (Warsaw, IN, USA) for purposes of education and training in knee arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 115 - 115
1 Feb 2017
Fineberg S Verma R Zelicof S
Full Access

INTRODUCTION. Total knee arthroplasty (TKA) is typically performed using cement to secure the prosthesis to bone. There are complications associated with cementing that include intra-operative hypotension, third-body abrasive wear, and loosening at the cement interfaces. A cementless prosthesis using a novel keeled trabecular metal tibial baseplate was developed to eliminate the need for cementing the tibial component in TKA. METHODS. A retrospective chart review was performed on patients who underwent TKA using cementless tibial and femoral components between August, 2013 and January, 2014. Patients with minimum two-year follow-up including radiographs were included in the analysis. Patient demographics as well as preoperative and postoperative range of motion (ROM) and function were measured using the Knee Society Scoring system (KSS). Post-operative radiographs were assessed for signs of osteolysis, loosening, or subsidence. Paired T-tests were used to identify differences in preoperative and postoperative ROM and KSS. RESULTS. Thirty-three patients underwent 48 TKAs in the study period. Of those, 20 patients (29 knees) completed two-year follow-up. The mean patient age was 69.0 ±8.4 years and mean BMI was 29.9 ±4.3. The average time of follow-up was 24.6 months (range 24–29). Preoperative ROM was on average 4.3–117.3°±6.7 and the preoperative KSS knee scores and functional scores were 43.8 ±8.6 and 49.8 ±12.6, respectively. Postoperatively, there were statistically significant improvements in ROM (0–130.7°±7.3), and postoperative KSS knee (98.4 ±3.2) and functional scores (99.3 ±2.6), at two years, respectively. None of the radiographs demonstrated evidence of osteolysis, loosening, migration, or subsidence. DISCUSSION and CONCLUSION. The two-year results of TKA utilizing a cementless tibial baseplate demonstrate excellent results in terms of knee ROM and function. The radiographic evidence of osteointegration without evidence of loosening, subsidence, or migration of the tibial components is promising. Further follow up is necessary to ensure that these implants will provide a satisfactory long-term alternative to cement fixation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 114 - 114
1 Jun 2012
Kendoff D Schmitz C Klauser W
Full Access

Introduction. Several options exist for the treatment of periprosthetic osteolysis in revision knee surgery. We describe our preliminary short-term experiences using trabecular metal (TM) technology in order to fill bony defects either on the femoral or on the tibial side. Material and Methods. 52 revision knee surgeries in which this TM technology had been used were retrospectively reviewed clinically and radiographically. Indication for revision included 51 cases with aseptic loosening of Total Knee Arthroplasty. In one case of periprostheti infection, a staged revision procedure was performed. Assessment of bone loss included the AORI classification (1989) and was performed pre- and intraoperatively. Clinical evaluation was performed using the HSS score. In 6 cases in addition to usng the TM cones, an impaction grafting technique was performed. Results. Average follow up was 22 months. So far, not loosening of a TM cone neither clinically nor radiographically was observed. In 74% of the cases, either a type FII-TII-FIII or TIII defect was seen. Average number of pre-existing surgeries was 4,6. Pre-operative Range of motion was 0-84 degrees and 0-98 degrees at time of latest follow up. Complications in this series included 2 periprosthetic fractures and 1 periprosthetic infection, later revised to a successful fusion. Upon explantation of the TM cone in this case, stable osteointegration was observed. HSS score increased from 34 to 62 points postoperatively (49-93). Discussion. Treatment of severe periprosthetic osteolysis in our eyes can be managed successfully in the short-term range using TM technology which requires a meticulous surgical technique and proper indication. This material might be successfully combined using homologous bone as an adjunct


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 161 - 161
1 Mar 2013
De Martino I De Santis V Fabbriciani C Gasparini G
Full Access

Pure tantalum has been proposed in orthopaedic surgery. Its chemical and physical properties have been widely studied in the past. From pure tantalum is obtained a spongy structure (Trabecular Metal Technology: TMT) that shows a full thickness porosity which is 2–3 times higher compared to other surfaces available for bone ingrowth with a three-dimensional porous arrangement in rough trabeculae. Pores (average diameter of 650 mm) are fully interconnected and represent 75–80% of the whole volume. TMT acetabular components have an elliptical shape and have an irregular external surface which both allow an optimal mechanical fit. We retrospectively reviewed 212 cases of monoblock porous tantalum acetabular cup (Hedrocel, Stratec) implanted between 1999 and 2003 in a single centre with a minimum follow-up of 9–10 years; There were 98 men and 114 women, with an average age of 65 years. They all underwent primary or revision total hip arthroplasty or to acetabular component revision alone. In all patients a monoblock porous tantalum acetabular component with polyethylene directly compression molded into cup, with or without peripheral holes for screws, was implanted. In all primary procedures the same femoral stem (Synergy, Smith and Nephew) was implanted. All patients were evaluated with a clinical examination (Harris Hip Score: HHS) and with standard radiographs of the pelvis preoperatively and 1, 3, 6 months and yearly postoperatively. The stability of the acetabular cup was determined by modified Engh's criteria. The HHS score improved from 42 preoperatively to 94 after one year; at 13 years follow-up it was 95. The subjective outcome was widely satisfying, with the majority of patients experimenting good functional recovery and return to daily activities. Osteointegration of the acetabular component was present in all X-rays controls at one year after surgery. All post-operative evidence of residual bone loss (geodes, bone defects in revisions and in displasia) were no more radiographically evident after 1 year postoperatively as the host bone quickly filled these gaps. We did not observe osteolysis nor progressive radiolucent lines at the latest follow-up. None of the cups was revised, except 3 cases, revised for infection. Both clinical and radiographic results are the same or even superior to those of coated implants. Our experience confirms that trabecular metal tantalum cups can avoid the formation of bone-implant interface membrane and consequently can avoid implant loosening. The most important advantages of TMT monoblock cups are: no potential for polyethylene backside wear, prevention of loosening and osteolysis, increased early fixation via friction, improved late biological stability, maximum bone-implant contact. High biocompatibility of porous tantalum and its elastic modulus very close to bone influence positively earlier and wider osteointegration of the implant. Larger series are needed to confirm the positive our preliminary results


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 558 - 558
1 Nov 2011
Angers M Belzile ÉL Malo M Vendittoli P Bouchard M
Full Access

Purpose: Bone stress transmission by an implant has been demonstrated to be inversely proportional to its rigidity. Since trabecular metal has a high elasticity modulus, it is hypothesised that it should have a preservative impact on bone mineral density (BMD) loss. No current studies prospectively compare BMD variations using such implants. Method: A randomized study recruiting 65 patients with osteoarthritis of the knee, were assigned to a cemented titanium or a non-cemented trabecular metal tibial base plate. Each patient had a DXA scan of the proximal tibia on the TKA side at two weeks, six months, one and two years follow-up. Analytic methods for DXA scans were standardized (Variation coefficient=0,59–0,84%), and BMD variation compared between groups using the Student t-Test. Results: Versus early post operative evaluation, BMD loss was found in the two groups. Fixed effects on BMD, such as patient’s height (p< 0.001) and tibial implant size (p=0.04) were demonstrated. Patella resurfacing and polyethylene thickness had no effect on BMD. BMD loss was more important under titanium implants (−30.9%) than trabecular metal implants (−6.3%). The most affected area was the metaphysis (p=0.002) compared to the diaphysis (p=0.054). Conclusion: Trabecular metal tibial base plate seems to diminish BMD loss under tibial implant compared to traditional titanium base plate. A long-term study will be necessary to determine the tibial trabecular metal component survival rate


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 156 - 157
1 Apr 2005
Mountney J Paice M Greidanus N Wilson D Masri B
Full Access

Purpose To evaluate the kinetic and kinematic function of a new trabecular metal augmentation patella. Method Eight frozen human cadaveric knees (mean age 68 years) were prepared for an “Oxford type” knee rig. Alignment ands offset were addressed and the soft tissue envelope kept as intact as possible. A load cell was introduced into the extensor mechanism. Femoral, patella and tibial motion were assessed using the Optotrak system. Summary of Results The mean, maximum extensor mechanism force in extension for the TKA group as compared to the patelloplasty group (p=0.0000032), reduced to near normal with the augmentation patella (p=0.198). The mean, maximum patella maltracking in extension for the TKA group as compared to the patelloplasty group (p=0.025), reduced to near normal with the augmentation patella (p=0.301). Conclusion Investigating the force through the extensor mechanism, we found a statistically significant difference between the TKA before and after patelloplasty, which was abolished by the insertion of the augmentation patella. Investigation patella tracking, we found a statistically significant difference between the TKA before and after patelloplasty, that was rectified by the insertion of the augmentation patella


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 8 - 8
1 Jan 2018
Eachempati K Malhotra R Guravareddy A Ashokkumar P Gowtam D Sheth N Suryanarayan P
Full Access

The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky 3A, 3B defects and defects associated with pelvic discontinuity. A retrospective study was conducted of the cases performed at four centers between August 2007 and January 2015. Patients treated with TM augments for Paprosky 3A, 3B or chronic pelvic discontinuity were included in the study. All surgeries were performed through a posterior approach. A total of 57 patients (Male 34 (69%), Female 23(31%)), mean age 54 years (range, 28–94 years), with minimum follow up of one-year were included and evaluated using intention to treat analysis. There were 44 (77%) patients with a 3A defect, 11(19%) patients with a 3B defect (6 had an associated pelvic discontinuity), and 2 (3.5%) with a 2C defect and associated pelvic discontinuity. The mean follow-up was 37 months (range, 12–96 months). One (2%) patient died after 8 years of unrelated causes. Three (5.5%) patients had acetabular component loosening requiring revision; Two failures were (3.5%) due to aseptic loosening and one (2%) due to septic loosening. Fifty-four patients had a radiologically stable integration of the components at latest follow-up - survivorship was 94.7%. The results of this multi-center study demonstrate encouraging short and mid-term results for the use of TM augments in the management of Grade 3A and 3B defects, and defects associated with a chronic pelvic discontinuity


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 870 - 876
1 Jul 2009
Kosashvili Y Backstein D Safir O Lakstein D Gross AE

Pelvic discontinuity with associated bone loss is a complex challenge in acetabular revision surgery. Reconstruction using ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment. We reviewed a consecutive series of 26 cases of acetabular revision reconstructions in 24 patients with pelvic discontinuity who had been treated by the component-cage technique. The mean follow-up was 44.6 months (24 to 68). Failure was defined as migration of a component of > 5 mm. In 23 hips (88.5%) there was no clinical or radiological evidence of loosening at the last follow-up. The mean Harris hip score improved significantly from 46.6 points (29.5 to 68.5) to 76.6 points (55.5 to 92.0) at two years (p < 0.001). In three hips (11.5%) the construct had migrated at one year after operation. The complications included two dislocations, one infection and one partial palsy of the peroneal nerve. Our findings indicate that treatment of pelvic discontinuity using the component-cage construct is a reliable option


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 52 - 52
1 Mar 2009
Bargiotas K Papatheodorou L Hantes M Karachalios T Malizos K
Full Access

Aim: We present the surgical technique and early functional and radiological results of cementless acetabular reconstruction with Monoblock Trabecular Metal (MTM) (Zimmer Warsaw, Indiana) cups in patients with Developmental Dysplasia of the Hip (DDH). Materials and Methods: From 1997 to 2004, 70 hips (57 patients) with DDH were received an MTM acetabular component. There where 7 men and 49 women. Average age was 50 years (range 35 to 77). According to the classification of Hartofilakidis et al there where 14 hips with high dislocation, 15 with low type I, 16 with low type II, 8 with low type III dislocation and 17 with hip dysplasia. In all patients a MTM cup was implanted in the true acetabulum through a standard posterior approach. Morselized graft was used in 6 cases and a structural graft only in one. Diameter of the cup was ranging from 42 to 56 mm with 54 out of 70 cups being smaller than 50 mm. Screws where used in 12 out of 70 cases A femoral shortening osteotomy was utilized in only two high dislocation cases. All patients where followed up prospectively and evaluated clinically and radiologicaly at three, six months at one year and yearly thereafter. The clinical outcome was assessed with the Harris Hip score (HHS) and Oxford Score (OS). Results: Average follow up was 50 months (range 103 to 24). There were no revisions for aseptic loosening, radiologic loosening or cup migration during last evaluation. Two patients developed non-progressive radiolucencies in zone one. There were four dislocations in this group. One required open reduction and head replacement while another one needed cup revision due to mal orientation. There were five femoral fractures treated intraoperatively with wires, two patients developed transient sciatic nerve palsy and two non fatal PE. Harris Hip Score was 91 (range 69 to 97) compared with 48 (range 24 to 58) before surgery. The outcome was excellent in 59 hips, very good in 8, good in two and fair in one. Leg length discrepancy more than 2 cm was evident in five unilateral cases (range 2 to 4.5). Trendelebourgh sign was evident in four patients. Conclusion: MTM acetabular component achieved adequate initial stability in this demanding group of patients and they have excellent radiological and clinical results. Posterior approach without femoral osteotomy provided adequate exposure in almost all cases


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_20 | Pages 20 - 20
1 Apr 2013
Hussain S Horey L Patil S Meek R
Full Access

Reconstruction of an acetabulum following severe bone loss can be challenging. The aim of this study was to determine the outcome of acetabular reconstruction performed using trabecular metal shell for severe bone loss. Between June 2003 and June 2006 a total of 29 patients with significant acetabular bone stock deficiency underwent revisions using trabacular metal shell. According to Paprosky classification, there were 18 patients with grade IIIA and 11 patients with grade IIIB defects. Nineteen patients required augments to supplement the defects. Functional clinical outcomes were measured by WOMAC and Oxford hip. Detailed radiological assessments were also made. At most recent follow up (average 5.5 years, range 3.5–8.5) the mean Oxford hip score improved from 12 preoperatively to 27.11 postoperatively and WOMAC score from 17.57 preoperatively to 34.14 postoperatively The osseointegration was 83% according to Moore's classification. There were two reoperations; one was for instability, and one for aseptic loosening. One patient has a chronic infection and one had a periprosthetic fracture, both treated conservatively. Despite challenges faced with severe preoperative acetabular defects the early results using this technique in Grade III A and B is encouraging


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1331 - 1332
1 Aug 2021
Kankanalu P Borton ZM Morgan ML Cresswell T Espag MP Tambe AA Clark DI


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 275 - 275
1 Jul 2011
Backstein D Kosashvili Y Safir O Lakstein D MacDonald M Gross AE
Full Access

Purpose: Pelvic discontinuity associated with bone loss is a complex challenge in acetabular revision surgery. Reconstruction with anti protrusion cages, Trabecular Metal (Zimmer, Warsaw, Indiana) cups and morselized bone (Cup-Cage) constructs is a relatively new technique used by the authors for the past 6 years. The purpose of the study was to examine the clinical outcome of these patients. Method: Thirty-two consecutive acetabular revision reconstructions in 30 patients with pelvic discontinuity and bone loss treated by cup cage technique between January 2003 and September 2007 were reviewed. Average clinical and radiological follow up was 38.5 ± 19 months (range 12 – 68, median 34.5). Failure was defined as component migration > 5mm. Results: In 29 (90.6%) patients there was no clinical or radiographic evidence indicative of loosening at latest follow up. Harris Hip Scores improved significantly (p< 0.001) from 46.6 ± 10.4 to 78.7 ± 10.4 at 2 year follow up. In 3 patients the construct migrated at 1 year post surgery. One construct was revised to anti protrusion cage with a structural graft while the other was revised to a large Trabecular Metal cup. The third patient is scheduled for revision. Complications included 2 dislocations, 1 infection and 1 partial peroneal nerve palsy. Two patients died due to unrelated reasons at 1 and 3 years post surgery, respectively. Conclusion: Treatment of pelvic discontinuity by Cup-Cage construct is a reliable option based on preliminary results which suggest restoration of the pelvic mechanical stability. However, patients should be followed closely in order to detect cup migration until satisfactory bony ingrowth into the cup takes place


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 275 - 275
1 Jul 2011
Backstein D Lakstein D Safir O Kosashvili Y Gross AE
Full Access

Purpose: Acetabular component revision in the context of large, contained bone defects with less than 50% host-bone-contact traditionally required roof reinforcement or antiprotrusio cages. Trabecular Metal (TM) cups (Zimmer, Warsaw, Indiana) may offer a viable treatment alternative. The objective of this study was to evaluate the clinical and radiological outcome of this mode of treatment. Method: Fifty-four hip revision acetabular arthroplasty procedures performed with TM cups for contained defects offering ≤50% contact with native bone were prospectively followed. Average follow-up was 45 months (range 24–71). All patients were clinically and radiographically evaluated for evidence of loosening or failure. Results: Contact with bleeding host bone ranged from 0 to 50% (average 23%). At latest follow up 43 (79.6%) arthroplasties had excellent or good results, 8 (14.8%) cases had medium or fair results and 3 cases (5.6%) had poor results. Two cups failed and had to be revised. Two additional cups had radiological evidence of probable loosening. Overall preliminary survivorship of the revision acetabulae was 96%. Complications included 4 dislocations and 1 sciatic nerve palsy. Conclusion: Treatment of cavitary defects with less than 50% host-bone contact with using TM cups, without structural support by augments or structural bone grafts, is a viable option


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 624 - 628
1 May 2010
Macheras GA Kateros K Koutsostathis SD Tsakotos G Galanakos S Papadakis SA

Between November 1997 and December 2000 we performed 27 total hip replacements in 22 patients with high congenital dislocation of the hip using porous tantalum monoblock acetabular components implanted in the true acetabular bed. Clinical and radiological evaluation was performed at regular intervals for a mean of 10.2 years (8.5 to 12). The mean Harris Hip Score improved from 48.3 (15 to 65) pre-operatively to 89.5 (56 to 100) at the final follow-up. The mean Oxford Hip Score was 49.5 (35 to 59) pre-operatively and decreased to 21.2 (12 to 48) at one year and 15.2 (10 to 28) at final follow-up. Migration of the acetabular component was assessed with the EBRA software system. There was a mean migration of 0.68 mm (0.49 to 0.8) in the first year and a mean 0.89 mm (0.6 to 0.98) in the second year, after excluding one initial excessive migration. No revision was necessary for any reason, no acetabular component became loose, and no radiolucent lines were observed at the final follow-up.

The porous tantalum monoblock acetabular component is an implant offering adequate initial stability in conjunction with a modulus of elasticity and porosity close to that of cancellous bone. It favours bone ingrowth, leading to good mid-term results.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives. We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Materials and Methods. Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically. Results. At 16 weeks post-operatively, histological scores amongst treatment groups were not statistically different (TMPG: overall 12.7, cartilage 8.6, bone 4.1; TM: overall 14.2, cartilage 9.5, bone 4.9; ED: overall 13.6, cartilage 9.1, bone 4.5). Metal scaffolds were incorporated into the surrounding bone, both in TM and TMPG. The sGAG yield was lower in the neo-cartilage regions compared with the articular cartilage (AC) controls (TMPG 20.8/AC 39.5, TM 25.6/AC 33.3, ED 32.2/AC 40.2 µg sGAG/1 mg respectively), with statistical significance being achieved for the TMPG group (p < 0.05). Hypercellularity of the neo-cartilage was found in TM and ED, as the dsDNA content was significantly higher (p < 0.05) compared with contralateral AC controls (TM 126.7/AC 71.1, ED 99.3/AC 62.8 ng dsDNA/1 mg). The highest type II collagen content was found in neo-cartilage after TM compared with TMPG and ED (TM 60%/TMPG 40%/ED 39%). Inter-treatment differences were not significant. Conclusions. TM is a highly suitable material for the reconstitution of osseous defects. TM enables excellent bony ingrowth and fast integration. However, combined with autologous periosteum, such a biocomposite failed to promote satisfactory neo-cartilage formation. Cite this article: E. H. Mrosek, H-W. Chung, J. S. Fitzsimmons, S. W. O’Driscoll, G. G. Reinholz, J. C. Schagemann. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model. Bone Joint J 2016;5:403–411. DOI: 10.1302/2046-3758.59.BJR-2016-0070.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 56 - 56
1 Jan 2018
Macheras G Lepetsos P Anastasopoulos P Tzefronis D Galanakos S Poultsides L
Full Access

Porous tantalum is a highly osteoinductive biomaterial, initially introduced in orthopedics in 1997, with a subsequent rapid evolution of orthopedic applications. The use of porous tantalum for the acetabular component in primary total hip arthroplasty (THA) has demonstrated excellent short-term and mid-term results. However, long term data are scarce. The purpose of this prospective study is to report the long-term clinical and radiological outcome following use of an uncemented porous tantalum acetabular component in primary THA with a minimum follow-up of 17.5 years, in a previously studied cohort of patients.

We prospectively followed 128 consecutive primary THAs in 140 patients, between November 1997 and June 1999. A press-fit porous tantalum monoblock acetabular component was used in all cases. The presence of initial gaps in the polar region, as sign of incomplete seating of the monoblock cup, was assessed on the immediate postoperative radiographs. All patients were followed clinically and radiographically at 6, 12, and 24 weeks and 12 months and then at 2, 5, 8, 10, and 19 years, for a mean of 18.1 years (range 17.5 – 19 years). Periacetabular dome gap filling, acetabular cup migration and polyethylene wear were assessed by the EBRA digital measurement system, until 2 years postoperatively.

Mean age of patients at the time of operation was 60.4 years old (range 24 – 72). Harris hip score, Oxford Hip Score and range of motion (ROM) were dramatically improved in all cases (p < 0.001). In the initial postoperative radiographs, periacetabular dome gaps were observed in the 15% of cases, and were progressively filled within 6 months. In 2 years postoperatively, the mean component migration, as shown in EBRA study, was 0.67 mm. At last follow-up, all cups were radiographically stable with no evidence of migration, gross polyethylene wear, progressive radiolucencies, osteolytic lesions or acetabular fractures. The survivorship with re-operation for any reason as end point was 92.8%, whereas the survivorship for aseptic loosening as an end point was 100%. Upon visual inspection, two removed acetabular components due to recurrent dislocation and infection, respectively, showed extensive bone osseointegration.

In our primary THA series, the porous tantalum monoblock cup demonstrated excellent clinical and radiographic outcomes with no failures because of aseptic loosening at a mean follow-up of 18.1 years. Porous tantalum acetabular components showed excellent initial stability, produced less wear debris and revealed a great potential for bone ingrowth. Due to its unique osteoinductive properties and elliptical shape, porous tantalum monoblock cups have demonstrated superior short and long-term survivorship compared to other press fit prostheses in the market.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 30 - 30
1 Aug 2012
Smith J Sengers B Aarvold A Tayton E Dunlop D Oreffo R
Full Access

The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous skeletal stem cells to treat orthopaedic conditions characterised by lost bone stock. There are however, multiple disadvantages to allograft, including cost, availability, consistency and potential for disease transmission, and trabecular tantalum represents a potential alternative. Tantalum is already in widespread orthopaedic use, although in applications where there is poor initial implant stability, or when tantalum is used in conjunction with bone grafting, loading may need to be limited until sound integration has occurred. Development of enhanced bone-implant integration strategies will improve patient outcomes, extending the clinical applications of tantalum as a substitute for allograft.

The aim of this study was to examine the osteoconductive potential of trabecular tantalum in comparison to human allograft to determine its potential as an alternative to allograft.

Human bone marrow stromal cells (500,000 cells per ml) were cultured on blocks of trabecular tantalum or allograft for 28 days in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy, as well as live-dead staining and biochemical assays were used to characterise cell adherence, proliferation and phenotype.

Cells displayed extensive adherence and proliferation throughout trabecular tantalum evidenced by CellTracker immunocytochemistry and SEM. Tantalum-cell constructs cultured in osteogenic conditions displayed extensive matrix production. Electron microscopy confirmed significant cellular growth through the tantalum to a depth of 5mm. In contrast to cells cultured with allograft in both basal and osteogenic conditions, cell proliferation assays showed significantly higher activity with tantalum than with allograft (P<0.01). Alkaline phosphatase (ALP) assay and molecular profiling confirmed no significant difference in expression of ALP, Runx-2, Col-1 and Sox-9 between cells cultured on tantalum and allograft.

These studies demonstrate the ability of trabecular tantalum to support skeletal cell growth and osteogenic differentiation comparable to allograft. Trabecular tantalum represents a good alternative to allograft for tissue engineering osteo-regenerative strategies in the context of lost bone stock. Such clinical scenarios will become increasingly common given the ageing demographic, the projected rates of revision arthroplasty requiring bone stock replacement and the limitations of allograft. Further mechanical testing and in vivo studies are on-going.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 163 - 163
1 Sep 2012
Smith J Sengers B Aarvold A Tayton E Dunlop D Oreffo R
Full Access

Recently, the osteoregenerative properties of allograft have been enhanced by addition of autogenous skeletal stem cells to treat orthopaedic conditions characterised by lost bone stock. There are multiple disadvantages to allograft, and trabecular tantalum represents a potential alternative. This metal is widely used, although in applications where there is poor initial stability, or when it is used in conjunction with bone grafting, loading may need to be limited until sound integration has occurred. Strategies to speed up implant incorporation to surrounding bone are therefore required. This may improve patient outcomes, extending the clinical applications of tantalum as a substitute for allograft.

Aim

To use tissue engineering strategies to enhance the reconstructive properties of tantalum, as an alternative to allograft.

Methods

Human bone marrow stromal cells (5×105 cells/ml) were cultured on blocks of trabecular tantalum or allograft for 28 days in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy, as well as live/dead staining and biochemical assays were used to detail cell adherence, proliferation and phenotype.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 472 - 478
1 Apr 2022
Maccario C Paoli T Romano F D’Ambrosi R Indino C Federico UG

Aims

This study reports updates the previously published two-year clinical, functional, and radiological results of a group of patients who underwent transfibular total ankle arthroplasty (TAA), with follow-up extended to a minimum of five years.

Methods

We prospectively evaluated 89 patients who underwent transfibular TAA for end-stage osteoarthritis. Patients’ clinical and radiological examinations were collected pre- and postoperatively at six months and then annually for up to five years of follow-up. Three patients were lost at the final follow-up with a total of 86 patients at the final follow-up.


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 880 - 886
1 Jul 2017
Mohaddes M Shareghi B Kärrholm J

Aims

The aim of this study was to compare the incidence of aseptic loosening after the use of a cemented acetabular component and a Trabecular Metal (TM) acetabular component (Zimmer Inc., Warsaw, Indiana) at acetabular revision with bone impaction grafting.

Patients and Methods

A total of 42 patients were included in the study. Patients were randomised to receive an all- polyethylene cemented acetabular component (n = 19) or a TM component (n = 23). Radiostereometric analysis and conventional radiographic examinations were performed regularly up to two years post-operatively or until further revision.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 767 - 771
1 Jun 2016
Konan S Duncan CP Masri BA Garbuz DS

Aims

Reconstruction of the acetabulum after failed total hip arthroplasty (THA) can be a surgical challenge in the presence of severe bone loss. We report the long-term survival of a porous tantalum revision acetabular component, its radiological appearance and quality of life outcomes.

Patients and Methods

We reviewed the results of 46 patients who had undergone revision of a failed acetabular component with a Paprosky II or III bone defect and reconstruction with a hemispherical, tantalum acetabular component, supplementary screws and a cemented polyethylene liner.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims. Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. Methods. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis. Results. Although there were differences in the number of males and females in each group, no significant sex bias was noted (p = 0.080). Furthermore, there was no significant difference in age (p = 0.910) or baseline lumbar bone mineral density (BMD) (p = 0.998) found between any of the groups (pressfit, cemented, or trabecular). The pressfit implant initially behaved like the trabecular component with an immediate fall in BMD in the inferior and medial regions, with preserved BMD laterally, suggesting lateral rim loading. However, the pressfit component subsequently showed a reversal in BMD medially with recovery back towards baseline, and a continued rise in lateral BMD. This would suggest that the pressfit component begins to reload the medial bone over time, more akin to the cemented component. Analysis of postoperative radiographs revealed no pressfit component subsidence or movement up to two years postoperatively (100% interobserver reliability). Medial defects seen immediately postoperatively in five cases had completely resolved by two years in four patients. Conclusion. Initially, the uncemented monoblock component behaved similarly to the rigid trabecular metal component with lateral rim loading; however, over two years this changed to more closely resemble the loading pattern of a cemented polyethylene component with increasing medial pelvic loading. This indicates that the uncemented monoblock acetabular component may result in optimized fixation and preservation of retroacetabular bone stock. Cite this article: Bone Joint J 2021;103-B(5):872–880


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


Bone & Joint Open
Vol. 5, Issue 4 | Pages 277 - 285
8 Apr 2024
Khetan V Baxter I Hampton M Spencer A Anderson A

Aims. The mean age of patients undergoing total knee arthroplasty (TKA) has reduced with time. Younger patients have increased expectations following TKA. Aseptic loosening of the tibial component is the most common cause of failure of TKA in the UK. Interest in cementless TKA has re-emerged due to its encouraging results in the younger patient population. We review a large series of tantalum trabecular metal cementless implants in patients who are at the highest risk of revision surgery. Methods. A total of 454 consecutive patients who underwent cementless TKA between August 2004 and December 2021 were reviewed. The mean follow-up was ten years. Plain radiographs were analyzed for radiolucent lines. Patients who underwent revision TKA were recorded, and the cause for revision was determined. Data from the National Joint Registry for England, Wales, Northern Island, the Isle of Man and the States of Guernsey (NJR) were compared with our series. Results. No patients in our series had evidence of radiolucent lines on their latest radiological assessment. Only eight patients out of 454 required revision arthroplasty, and none of these revisions were indicated for aseptic loosening of the tibial baseplate. When compared to data from the NJR annual report, Kaplan-Meier estimates from our series (2.94 (95% confidence interval (CI) 1.24 to 5.87)) show a significant reduction in cumulative estimates of revision compared to all cemented (4.82 (95% CI 4.69 to 4.96)) or cementless TKA (5.65 (95% CI 5.23 to 6.10)). Our data (2.94 (95% CI 1.24 to 5.87)) also show lower cumulative revision rates compared to the most popular implant (PFC Sigma Cemented Knee implant fixation, 4.03 (95% CI 3.75 to 4.33)). The prosthesis time revision rate (PTIR) estimates for our series (2.07 (95% CI 0.95 to 3.83)) were lower than those of cemented cases (4.53 (95% CI 4.49 to 4.57)) from NJR. Conclusion. The NexGen trabecular (tantalum) cementless implant has lower revision rates in our series compared to all cemented implants and other types of cementless implants, and its use in younger patients should be encouraged. Cite this article: Bone Jt Open 2024;5(4):277–285


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 66 - 73
1 May 2024
Chaudhry F Daud A Greenberg A Braunstein D Safir OA Gross AE Kuzyk PR

Aims. Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. Methods. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction. Results. The five-year all-cause survival for cup-cage reconstruction was 73.4% (95% confidence interval (CI) 61.4 to 85.4), while the ten- and 15-year survival was 63.7% (95% CI 46.8 to 80.6). Survival due to aseptic loosening was 93.4% (95% CI 86.2 to 100.0) at five, ten, and 15 years. The rate of revision for aseptic loosening, infection, and dislocation was 3/53 (5.7%), 7/53 (13.2%), and 6/53 (11.3%), respectively. The mean leg length discrepancy improved (p < 0.001) preoperatively from a mean of 18.2 mm (0 to 80; SD 15.8) to 7.0 mm (0 to 35; SD 9.8) at latest follow-up. The horizontal and vertical hip centres improved (p < 0.001) preoperatively from a mean of 9.2 cm (5.6 to 17.5; SD 2.3) to 10.1 cm (6.2 to 13.4; SD 2.1) and 9.3 cm (4.7 to 15.8; SD 2.5) to 8.0 cm (3.7 to 12.3; SD 1.7), respectively. Conclusion. Cup-cage reconstruction provides acceptable outcomes in the management of pelvic discontinuity. One in four constructs undergo revision within five years, most commonly for periprosthetic joint infection, dislocation, or aseptic loosening. Cite this article: Bone Joint J 2024;106-B(5 Supple B):66–73


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1033 - 1044
1 Aug 2011
Periasamy K Watson WS Mohammed A Murray H Walker B Patil S Meek RMD

The ideal acetabular component is characterised by reliable, long-term fixation with physiological loading of bone and a low rate of wear. Trabecular metal is a porous construct of tantalum which promotes bony ingrowth, has a modulus of elasticity similar to that of cancellous bone, and should be an excellent material for fixation. Between 2004 and 2006, 55 patients were randomised to receive either a cemented polyethylene or a monobloc trabecular metal acetabular component with a polyethylene articular surface. We measured the peri-prosthetic bone density around the acetabular components for up to two years using dual-energy x-ray absorptiometry. We found evidence that the cemented acetabular component loaded the acetabular bone centromedially whereas the trabecular metal monobloc loaded the lateral rim and behaved like a hemispherical rigid metal component with regard to loading of the acetabular bone. We suspect that this was due to the peripheral titanium rim used for the mechanism of insertion


Aims. To report early (two-year) postoperative findings from a randomized controlled trial (RCT) investigating disease-specific quality of life (QOL), clinical, patient-reported, and radiological outcomes in patients undergoing a total shoulder arthroplasty (TSA) with a second-generation uncemented trabecular metal (TM) glenoid versus a cemented polyethylene glenoid (POLY) component. Methods. Five fellowship-trained surgeons from three centres participated. Patients aged between 18 and 79 years with a primary diagnosis of glenohumeral osteoarthritis were screened for eligibility. Patients were randomized intraoperatively to either a TM or POLY glenoid component. Study intervals were: baseline, six weeks, six-, 12-, and 24 months postoperatively. The primary outcome was the Western Ontario Osteoarthritis Shoulder QOL score. Radiological images were reviewed for metal debris. Mixed effects repeated measures analysis of variance for within and between group comparisons were performed. Results. A total of 93 patients were randomized (46 TM; 47 POLY). No significant or clinically important differences were found with patient-reported outcomes at 24-month follow-up. Regarding the glenoid components, there were no complications or revision surgeries in either group. Grade 1 metal debris was observed in three (6.5%) patients with TM glenoids at 24 months but outcomes were not negatively impacted. Conclusion. Early results from this RCT showed no differences in disease-specific QOL, radiographs, complication rates, or shoulder function between uncemented second-generation TM and cemented POLY glenoids at 24 months postoperatively. Revision surgeries and reoperations were reported in both groups, but none attributed to glenoid implant failure. At 24 months postoperatively, Grade 1 metal debris was found in 6.5% of patients with a TM glenoid but did not negatively influence patient-reported outcomes. Longer-term follow-up is needed and is underway. Cite this article: Bone Jt Open 2021;2(9):728–736


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 304 - 309
1 Mar 2006
Macheras GA Papagelopoulos PJ Kateros K Kostakos AT Baltas D Karachalios TS

Between January 1998 and December 1998, 82 consecutive patients (86 hips) underwent total hip arthroplasty using a trabecular metal monoblock acetabular component. All patients had a clinical and radiological follow-up evaluation at six, 12 and 24 weeks, 12 months, and then annually thereafter. On the initial post-operative radiograph 25 hips had a gap between the outer surface of the component and the acetabular host bed which ranged from 1 to 5 mm. All patients were followed up clinically and radiologically for a mean of 7.3 years (7 to 7.5). The 25 hips with the 1 to 5 mm gaps were studied for component migration at two years using the Einzel-Bild-Roentgen-Analyse (EBRA) digital measurement method. At 24 weeks all the post-operative gaps were filled with bone and no acetabular component had migrated. The radiographic outcome of all 86 components showed no radiolucent lines and no evidence of lysis. No acetabular implant was revised. There were no dislocations or other complications. The bridging of the interface gaps (up to 5 mm) by the trabecular metal monoblock acetabular component indicates the strong osteoconductive, and possibly osteoinductive, properties of trabecular metal


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 155 - 155
1 Jul 2014
Hutchinson R Choudry Q McLauchlan G
Full Access

Summary. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component has performed well at minimum of 5 years’ follow-up. Introduction. Total Knee Arthroplasty prostheses most frequently used in today's practice have cemented components. These have shown excellent clinical results. The fixation can however weaken with time, and cement debris within the articulation can lead to accelerated wear. Cementless implants are less commonly used, but some have also shown good long-term clinical results. The potential advantages of cementless implants are retention of bone stock, less chance of third-body wear due to the absence of cement, shorter operative time, and easier treatment of periprosthetic fractures. The posterior stabilised knee replacement has been said to increase tangential shear stresses on the tibial component and increases contact stresses on the cam and post mechanism hence the great debate of cruciate retaining or cruciate sacrificing implants. Objectives. We report the results of a prospective cohort of consecutive primary total knee arthroplasties using an uncemented posterior stabilised prosthesis using a trabecular metal (tantalum) tibial component at a minimum 5-year follow-up. Methods. Prospective 5 year follow-up of patients undergone an uncemented posterior stabilised total knee replacement using a trabecular metal tibial component (NexgenLPS). Clinical examination, Oxford knee score, Knee society score, SF12 and radiological evaluation undertaken at review. Results. 81 patients, 45 female, 36 male. Left 31, Right 50. Mean age 74.3 yrs range (51–90). SF12, mean: 31.8 range (25–37). Oxford Knee Score Pre-op Mean 20.1 range (9–36) Post op: Mean 32.1 range (9–48). Knee Society score. Pain Mean 91.8; range (60–100). Functional score mean 76.2; range (30–100). Mean Range of movement 110.5 degrees range (90–125). No evidence of loosening at 5 yrs. No deep infection. No Revisions. Conclusion. Although there are a variety of methods of achieving satisfactory initial fixation in cementless components, trabecular metal has an advantage owing to its cellular structure resembling bone. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component used in this series has shown no evidence of loosening at a minimum of 5 years’ follow-up and the prosthesis as a whole has performed very well clinically. Its early results are comparable to those prostheses most commonly used as reported by the arthroplasty registers. The longer term results from this prosthesis are awaited with interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 2 - 2
23 Jun 2023
Hube R Zimmerer A Nonnenmacher L Najfeld M Fischer M Wassilew GI
Full Access

The use of trabecular metal (TM.) shells supported by two TM augments in the footing technique has been described as a potential option for the treatment of Paprosky 3B acetabular defects. The aim of this study was to assess the mid implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. We undertook a retrospective, double-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the footing technique using a TM shell supported by two TM augments, for severe acetabular bone loss between 2007 and 2020. The mean age at the time of surgery was 62,9 (28 to 86) years. The mean follow-up was 5,4 (1,5 to 15) years. The cumulative mid survivorship of the implant with revision for any cause was 89%. 3 hips (7,6%) required further revision due to aseptic loosening, and 1 (2,8%) required revision for infection. The mean Harris Hip Score improved significantly from 48 (29 to 65) preoperatively to 79 points (62 to 98) at the latest follow-up (p < 0.001). The reconstruction of Paprosky 3B acetabular defects with TM shells and two augments in footing-technique showed excellent mid-term results. This technique appears to be a viable option for treating these defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 38 - 38
10 Feb 2023
Batinica B Bolam S Zhu M D'Arcy M Peterson R Young S Monk A Munro J
Full Access

Little information exists regarding optimal tibial stem usage in revision total knee arthroplasty (rTKA) utilising a tibial trabecular metal (TM) cone. The purpose of this study was to compare 1) functional outcomes, 2) radiographic outcomes, and 3) implant survivorship in rTKA utilising TM cones combined with either short stems (SS) or long stems (LS) at minimum two-years clinical follow-up. In this retrospective, multi-centre study, patients undergoing TM cone utilising rTKA between 2008 and 2019 were included. Patients were divided into: SS group (no diaphyseal engagement), and LS group (diaphyseal engagement). All relevant clinical charts and post-operative radiographs were examined. Oxford Knee Score (OKS) and EuroQol-5D (EQ-5D-5L) data were collected at most recent follow-up. In total, 44 patients were included: 18 in the SS group and 26 in the LS group. The mean time of follow-up was 4.0 years. Failure free survival was 94.5% for the SS group and 92.3% for the LS group. All failures were for prosthetic joint infections managed with debridement, antibiotics, and implant retention. At most recent follow-up, 3 patients demonstrated radiographic signs of lucency (1 SS 2 LS, p = 1) and the mean OKS were 37 ± 4 and 36 ± 6 (p = 0.73) in the SS and LS groups, respectively. Tibial SS combined with TM cones performed as well as LS in rTKA at minimum two-years follow-up. A tibial SS in combination with a TM cone is a reliable technique to achieve stable and durable fixation in rTKA


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1025 - 1032
1 Aug 2020
Hampton M Mansoor J Getty J Sutton PM

Aims. Total knee arthroplasty is an established treatment for knee osteoarthritis with excellent long-term results, but there remains controversy about the role of uncemented prostheses. We present the long-term results of a randomized trial comparing an uncemented tantalum metal tibial component with a conventional cemented component of the same implant design. Methods. Patients under the age of 70 years with symptomatic osteoarthritis of the knee were randomized to receive either an uncemented tantalum metal tibial monoblock component or a standard cemented modular component. The mean age at time of recruitment to the study was 63 years (50 to 70), 46 (51.1%) knees were in male patients, and the mean body mass index was 30.4 kg/m. 2. (21 to 36). The same cruciate retaining total knee system was used in both groups. All patients received an uncemented femoral component and no patients had their patella resurfaced. Patient outcomes were assessed preoperatively and postoperatively using the modified Oxford Knee Score, Knee Society Score, and 12-Item Short-Form Health Survey questionnaire (SF-12) score. Radiographs were analyzed using the American Knee Society Radiograph Evaluation score. Operative complications, reoperations, or revision surgery were recorded. A total of 90 knees were randomized and at last review 77 knees were assessed. In all, 11 patients had died and two were lost to follow-up. Results. At final review all patients were between 11 and 15 years following surgery. In total, 41 of the knees were cemented and 36 uncemented. There were no revisions in the cemented group and one revision in the uncemented group for fracture. The uncemented group reported better outcomes with both statistically and clinically significant (p = 0.001) improvements in knee-specific Oxford and Knee Society scores compared with the cemented group. The global SF-12 scores demonstrated no statistical difference (p = 0.812). Uncemented knees had better radiological analysis compared with the cemented group (p < 0.001). Conclusion. Use of an uncemented trabecular metal tibial implant can afford better long-term clinical outcomes when compared to cemented tibial components of a matched design. However, both have excellent survivorship up to 15 years after implantation. Cite this article: Bone Joint J 2020;102-B(8):1025–1032


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 110 - 110
1 Nov 2015
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. The acetabular bed is prepared. If there is less than 2 mm medial bone stock, then morsellised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal (TM) cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a TM cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions. We still feel there is a role for structurally acceptable allografts in young patients who are likely going to require another revision. Our long term results have demonstrated that bone stock is restored facilitating the re-revision


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 129 - 129
1 Jun 2018
Lachiewicz P
Full Access

Metaphyseal bone loss, due to loosening, osteolysis or infection, is common with revision total knee arthroplasty (TKA). Small defects can be treated with screws and cement, bone graft, and non-porous metal wedges or blocks. Large defects can be treated with bulk structural allograft, impaction grafting, or highly porous metal cones. The AORI classification of bone loss in revision TKA is very helpful with pre-operative planning. Type 1 defects do not require augments or graft—use revision components with stems. Type 2A defects should be treated with non-porous metal wedges or blocks. Type 2B and 3 defects require a bulk structural allograft or porous metal cone. Highly-porous metal metaphyseal cones are a unique solution for large bone defects. Both femoral (full or partial) and tibial (full, stepped, or cone+plate) cones are available. These cones substitute for bone loss, improve metaphyseal fixation, help correct malalignment, restore joint line, and permit use of a short cemented stem. The technique for these cones involve preparing the remaining bone with a high speed burr and rasp, followed by press-fit of the cone into the remaining metaphysis. The interface is sealed with bone graft and putty. The fixation and osteoconductive properties of the outer surface allow ingrowth and biologic fixation. The revision knee component is then implanted, with antibiotic-cement, into the porous cone inner surface, which provides superior fixation compared to cementing into deficient metaphyseal bone. There are several manufacturers that provide porous cones for knee revision, but the tantalum-“trabecular metal” cones have the largest and longest clinical follow-up. The advantages of the trabecular metal cone compared to allograft include: technically easier; biologic fixation; no resorption; and lower risk of infection. The disadvantages include: difficult extraction and intermediate-term follow-up. The author has reported the results of 33 trabecular metal cones (9 femoral, 24 tibial) implanted in 27 revision cases at 2–5.7 years follow-up. One knee (2 cones) was removed for infection. All but one cone showed osseointegration. Multiple other studies have confirmed these results. Trabecular metal cones are now the author's preferred method for the reconstruction of large bone defects in revision TKA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 4 - 4
23 Jun 2023
Gross A Safir O Kuzyk P
Full Access

Pelvic discontinuity is a separation through the acetabulum with the ilium displacing superiorly and the ischium/pubis displacing inferiorly. This is a biomechanically challenging environment with a high rate of failure for standard acetabular components. The cup-cage reconstruction involves the use of a highly porous metal cup to achieve biological bone ingrowth on both sides of the pelvic discontinuity and an ilioischial cage to provide secure fixation across the discontinuity and bring the articulating hip center to the correct level. The purpose of this study was to report long term follow up of the use of the cup-cage to treat pelvic discontinuity. All hip revision procedures between January 2003 and January 2022 where a cup-cage was used for a hip with a pelvic discontinuity were included in this retrospective review. All patients received a Trabecular Metal Revision Shell with either a ZCA cage or TMARS cage (Zimmer-Biomet Inc.). Pelvic discontinuity was diagnosed on pre-operative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed with failure defined as revision of the cup-cage reconstruction. Fifty-seven cup-cages in 56 patients were included with an average follow-up of 6.25 years (0.10 to 19.98 years). The average age of patients was 72.09 years (43 to 92 years) and 70.2% of patients were female. The five year Kaplan-Meier survival was 92.0% (95% CI 84.55 to 99.45) and the ten year survival was 80.5% (95% CI 58.35 to 102.65). There were 5 major complications that required revision of the cup-cage reconstruction (3 infections and 2 mechanical failures). There were 9 complications that required re-operation without revision of the cup-cage reconstruction (5 dislocations, 3 washouts for infection and one femoral revision for aseptic loosening). In our hands the cup-cage reconstruction has provided a reliable tool to address pelvic discontinuity with an acceptable complication rate


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 18 - 18
23 Feb 2023
Grant M Zeng N Lin M Farrington W Walker M Bayan A Elliot R Van Rooyen R Sharp R Young S
Full Access

Joint registries suggest a downward trend in the use of uncemented Total Knee Replacements (TKR) since 2003, largely related to reports of early failures of uncemented tibial and patella components. Advancements in uncemented design such as trabecular metal may improve outcomes, but there is a scarcity of high-quality data from randomised trials. 319 patients <75 years of age were randomised to either cemented or uncemented TKR implanted using computer navigation. Patellae were resurfaced in all patients. Patient outcome scores, re-operations and radiographic analysis of radiolucent lines were compared. Two year follow up was available for 287 patients (144 cemented vs 143 uncemented). There was no difference in operative time between groups, 73.7 v 71.1 mins (p= 0.08). There were no statistical differences in outcome scores at 2 years, Oxford knee score 42.5 vs 41.8 (p=0.35), International Knee Society 84.6 vs 84.0 (p=0.76), Forgotten Joint Score 66.7 vs 66.4 (p=0.91). There were two revisions, both for infection one in each group (0.33%). 13 cemented and 8 uncemented knees underwent re-operation, the majority of these being manipulation under anaesthetic (85.7%), with no difference (8.3% vs 5.3%, 95% CI -2.81% to 8.89%, p = 0.31). No difference was found in radiographic analysis at 2 years, 1 lucent line was seen in the cemented group and 3 in the uncemented group (0.67% v 2.09%, 95%CI -4.1% to 1.24%, p = 0.29). We found no difference in clinical or radiographic outcomes between cemented and uncemented TKR including routine patella resurfacing at two years. Early results suggest there is no difference between cemented and uncemented TKR at 2 years with reference to survivorship, patient outcomes and radiological parameters


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 62 - 62
1 May 2013
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique:. The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morsellised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a TM cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 311 - 316
1 Mar 2019
Löchel J Janz V Hipfl C Perka C Wassilew GI

Aims. The use of trabecular metal (TM) shells supported by augments has provided good mid-term results after revision total hip arthroplasty (THA) in patients with a bony defect of the acetabulum. The aim of this study was to assess the long-term implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. Patients and Methods. Between 2006 and 2010, 60 patients (62 hips) underwent acetabular revision using a combination of a TM shell and augment. A total of 51 patients (53 hips) had complete follow-up at a minimum of seven years and were included in the study. Of these patients, 15 were men (29.4%) and 36 were women (70.6%). Their mean age at the time of revision THA was 64.6 years (28 to 85). Three patients (5.2%) had a Paprosky IIA defect, 13 (24.5%) had a type IIB defect, six (11.3%) had a type IIC defect, 22 (41.5%) had a type IIIA defect, and nine (17%) had a type IIIB defect. Five patients (9.4%) also had pelvic discontinuity. Results. The overall survival of the acetabular component at a mean of ten years postoperatively was 92.5%. Three hips (5.6%) required further revision due to aseptic loosening, and one (1.9%) required revision for infection. Three hips with aseptic loosening failed, due to insufficient screw fixation of the shell in two and pelvic discontinuity in one. The mean Harris Hip Score improved significantly from 55 (35 to 68) preoperatively to 81 points (68 to 99) at the latest follow-up (p < 0.001). Conclusion. The reconstruction of acetabular defects with TM shells and augments showed excellent long-term results. Supplementary screw fixation of the shell should be performed in every patient. Alternative techniques should be considered to address pelvic disconinuity. Cite this article: Bone Joint J 2019;101-B:311–316


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 8 - 8
1 Mar 2009
Rouleau D Benoit B Laflamme Y Yahia L
Full Access

Purpose: Restoration and maintenance of the plateau surface are the key points in the treatment of tibial plateau fractures. Any deformity of the articular surface jeopardizes the future of the knee by causing osteoarthritis and axis deviation. The purpose of this study is to evaluate the effect of trabecular metal (porous tantalum metal) on stability and strength of fracture repair in the central depression tibial plateau fracture. Method: Six matched pairs of fresh frozen human cadaveric tibias were fractured and randomly assigned to be treated with either the standard of treatment (impacted cancellous bone graft stabilized by two 4.5mm screws under the comminuted articular surface) or the experimental method (the same screws supporting a 2 cm diameter Trabecular Metal (TM) disc placed under the comminuted articular surface). Each tibia was tested on a MTS machine simulating immediate postoperative load transmission with 500 Newton for 10000 cycles and then loaded to failure to determine the ultimate strength of the construct. Results: The trabecular metal construct showed 40% less caudad displacement of the articular surface (1, 32 ±0.1 mm vs. 0, 80 ±0.1 mm) in cyclic loading (p< 0.05). Its mechanical failure occurred at a mean of 3275 N compared to 2650 N for the standard of care construct (p< 0, 05). Conclusion: The current study shows the biomechanical superiority of the trabecular metal construct compared to the current standard of treatment with regards to both its resistance to caudad displacement of the articular surface in cyclic loading and its strength at load to failure


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 99 - 99
1 Jul 2014
Garbuz D
Full Access

Segmental defects of the acetabulum are often encountered in revision surgery. Many times these can be handled with hemispherical cups. However when larger defects are encountered particularly involving the dome and/or posterior wall structural support for the cup is often needed. In the past structural allograft was used but for the last 12 years at our institution trabecular metal augments have been used in the place of structural allograft in all cases. This talk will focus on technique and mid-term results using augments in association with an uncemented revision shell. The technique can be broken down into 6 steps outlined below: 1. Exposure, 2. Reaming, 3. Trialing, 4. Augment Inserted, 5. Cup Insertion/Stabilization, 6. Trial Reduction/Liner Cementation. A recent study was undertaken to assess the mid-term results of this technique. We prospectively followed the first 56 patients in whom these augments were utilised in combination with a trabecular metal acetabular component in our unit. Details of this study will be presented. The median follow up of the surviving patients was 110 months (range 88–128 months). Survivorship of the augments at 10 years was 92.2% (95% CI: 97.0–80.5%). In one case the augment was revised for infection and in 3 for loosening. In 1 of the revised cases there was a pre-operative pelvic discontinuity, the other 2 discontinuities in the series were not revised and remain asymptomatic. Conclusions. The results of the acetabular trabecular metal augments continue to be encouraging in the medium to long term with low rates of revision or loosening in this complex group of patients


Bone & Joint 360
Vol. 4, Issue 6 | Pages 20 - 21
1 Dec 2015

The December 2015 Spine Roundup360 looks at: Ketamine in scoliosis surgery; Teriparatide in osteoporotic spinal fractures; Trabecular metal in the spine?; Revision surgery a SPORTing chance?; The course of degenerative lumbar spondylolisthesis; Hip or lumbar spine: a common conundrum


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 63 - 63
1 May 2013
Haidukewych G
Full Access

Pelvic discontinuity remains one of the most difficult reconstructive challenges during acetabular revision. Bony defects are extremely variable and remaining bone quality may be extremely poor. Careful pre-operative imaging with plain radiographs, oblique views, and CT scanning is recommended to improve understanding of the remaining bone stock. It is wise to have several options available intra-operatively including metal augments, jumbo cups, and cages. Various treatment options have been used with variable success. The principles of management include restoration of acetabular stability by “connecting” the ilium to the ischium, and by (hopefully) allowing some bony ingrowth into a porous surface to allow longer-term construct stability. Posterior column plates can be useful to stabilise the pelvis, and can supplement a trabecular metal uncemented acetabular component. Screws into the dome and into the ischium are used to span the discontinuity. More severe defects may require so-called “cup-cage” constructs or trabecular metal augmentation distraction techniques. The most severe defects typically necessitate custom triflange components. Triflange constructs allow broad based contact with remaining bone stock, and can span surprisingly large defects. Recent cost analyses have shown that custom triflange constructs are comparable to cup-cage-augment reconstructions. The results of these various solutions to manage pelvic discontinuity is extremely variable, however, it is fair to conclude that constructs that allow some bony ingrowth have demonstrated improved survivorship when compared to historical treatments such as bulk allografts protected by cages. The author prefers a posterior column plate and a trabecular metal cup for simple discontinuities, a cup-cage for larger defects, and a custom triflange for the most severe defects. Pre-operative imaging is critical to guide this decision-making, and careful attention to detail is important to obtain a stable, durable construct


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1153 - 1156
1 Sep 2017
Harrison PL Harrison T Stockley I Smith TJ

Aims. Tantalum (Ta) trabecular metal components are increasingly used to reconstruct major bone defects in revision arthroplasty surgery. It is known that some metals such as silver have antibacterial properties. Recent reports have raised the question regarding whether Ta components are protective against infection in revision surgery. This laboratory study aimed to establish whether Ta has intrinsic antibacterial properties against planktonic bacteria, or the ability to inhibit biofilm formation. Materials and Methods. Equal-sized pieces of Ta and titanium (Ti) acetabular components were sterilised and incubated with a low dose inoculum of either Staphylococcus (S.) aureus or S. epidermidis for 24 hours. After serial dilution, colony forming units (cfu) were quantified on Mueller-Hinton agar plates. In order to establish whether biofilms formed to a greater extent on one material than the other, these Ta and Ti pieces were then washed twice, sonicated and washed again to remove loosely adhered planktonic bacteria. They were then re-incubated for 24 hours prior to quantifying the number of cfu. All experiments were performed in triplicate. Results. More than 1x10. 8. cfu/ml were observed in both the Ta and Ti experiments. After washing and sonication, more than 2x10. 7. cfu/ml were observed for both Ta and Ti groups. The results were the same for both S. aureus and S. epidermidis. Conclusion. Compared with Ti controls, Ta did not demonstrate any intrinsic antibacterial activity or ability to inhibit biofilm formation. Hence, intrinsic antimicrobial properties of Ta do not account for the previously observed reduction in the frequency of subsequent infections when Ta was used in revision procedures. . Cite this article: Bone Joint J 2017;99-B:1153–6


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1442 - 1448
1 Nov 2018
Hipfl C Janz V Löchel J Perka C Wassilew GI

Aims. Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. Patients and Methods. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84). Results. The cumulative five-year survivorship of the implant with revision for any cause was 89% (95% confidence interval (CI) 72 to 96) with eight hips at risk. No revision was required for aseptic loosening; however, one patient with one hip (3%) required removal of the ischial flange of the cage due to sciatic nerve irritation. Two patients (6%; two hips) suffered from hip dislocation, whereas one patient (one hip) required revision surgery with cement fixation of a dual-mobility acetababular component into a well-fixed cup-cage construct. Two patients (6%; two hips) developed periprosthetic infection. One patient was successfully controlled with a two-stage revision surgery, while the other patient underwent excision arthroplasty due to severe medical comorbidities. For the whole series, the Harris Hip Score significantly improved from a mean of 30 (15 to 51) preoperatively to 71 (40 to 89) at the latest follow-up (p < 0.001). Conclusion. Our findings suggest that cup-cage reconstruction is a viable option for major segmental bone defects involving the posterior column and PD. It allows adequate restoration of the acetabulum centre with generally good stability and satisfactory postoperative function. Instability and infection remain drawbacks in these challenging revision cases. Cite this article: Bone Joint J 2018;100-B:1442–48


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 101 - 101
1 Nov 2016
Gehrke T
Full Access

Revision of total hip arthroplasty (THA) is being performed with increasing frequency. However, outcomes of repeated revisions have been rarely reported in the literature, especially for severe defects. Cup revision can be a highly complex operation depending on the bone defect. In acetabular defects like Paprosky types 1 and 2 porous cementless cups fixed with screws give good results. Modern trabecular metal designs improve these good results. Allografts are useful for filling cavitary defects. In acetabular defects Paprosky types 3A and 3B, especially the use of trabecular metal cups, wedges, buttresses and cup-cage systems can produce good results. Difficult cases in combination with pelvic discontinuity require reconstruction of the acetabulum with acetabular plates or large cup-cages to solve these difficult problems. However, there is still no consensus regarding the best option for reconstructing hips with bone loss. Although the introduction of ultraporous metals has significantly increased the surgeon's ability to reconstruct severely compromised hips, there remain some that cannot be managed readily using cups, augments, or cages. In such situations custom acetabular components may be required. Individual implants represent yet another tool for the reconstructive surgeon. These devices can be helpful in situations of catastrophic bone loss. Ensuring long-term outcome, mechanical stability has a greater impact than restoring an ideal center of rotation. However, despite our consecutive case series there are no mid- to long-term results available so far. Re-revision for failed revision THA acetabular components is a technically very challenging condition


Bone & Joint 360
Vol. 2, Issue 1 | Pages 16 - 19
1 Feb 2013

The February 2013 Knee Roundup. 360 . looks at: mobile-bearing TKRs; arthroscopic ACL reconstruction; the use of chondrocytes for osteochondral defects; ACL reconstruction and the return to pivoting sports; ACLs and the MOON study; the benefit of knee navigation; and trabecular metal


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 84 - 84
1 Mar 2017
Pianigiani S Vignoni D Innocenti B
Full Access

Introduction. In revision TKA, the management of bone loss depends on location, type, and extent of bony deficiency. Treatment strategies involve cement filling, bone grafting and augments. On the market several solutions are currently available, differing for their shape, thickness and material. While the choice of the shape and the thickness is mainly dictated by the bone defect, no explicit guideline is currently available to describe the best choice of material to be selected for a specific clinical situation. However, the use of different materials could induce different response in term of bone stress and thus changes in implant stability that could worsen long-term implant performance. For these reasons, an investigation about the changes in bone stress in the femur and in the tibia when augments, with different materials and thicknesses was performed. Methods. Different configurations have been separately considered including proximal tibial, distal or/and posterior femoral augments with a thickness of 5, 10 and 15 mm. Apart the control, in which no augments were used, but only the TKA is considered, the augment in all the other configurations were considered made by three different materials: bone cement, to simulate cement filling, tantalum trabecular metal and conventional metal (titanium for the tibia and CoCr for the femoral augments). Each configuration was inserted on a lower leg model including a cruciate-retaining total knee arthroplasty and analyzed by means of finite element analysis applying the max force achieved during walking. The bone stress was investigated in the medial and lateral region of interest close to the augment (with a bone thickness of 10 mm) and in an additional bone region of interest of 50 mm thickness. The bone stress have been compared among the different models and also with respect to the control model. Results. In general, the use of an augment induces a change in bone stress, especially in the region close to the bone cuts. The stiffness of the augment must be as close as possible to the one of the bone. Cement has the best results in terms of bone stress, however, it is only suitable for extremely small defects. Tantalum trabecular metal has results very close to cement and it could be consider a good alternative to cement for any size of defect. Metal (both titanium and CoCr) has the least satisfying results inducing the highest change in bone stress with respect the control. Conclusions. Tibial and femoral bone augments are adopted in case of bone defects that could be present during a revision knee replacement. Several solutions are available on the market in different shapes and materials. However, very few studies are reported to provide possible guidelines. The results of this study demonstrate that material stiffness of the augment must be as close as possible to the one of the bone to achieve the best results


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 118 - 121
1 Nov 2014
Lachiewicz PF Watters TS

Metaphyseal bone loss is common with revision total knee replacement (RTKR). Using the Anderson Orthopaedic Research Institute (AORI) classification, type 2-B and type 3 defects usually require large metal blocks, bulk structural allograft or highly porous metal cones. Tibial and femoral trabecular metal metaphyseal cones are a unique solution for large bone defects. These cones substitute for bone loss, improve metaphyseal fixation, help correct malalignment, restore the joint line and may permit use of a shorter stem. The technique for insertion involves sculpturing of the remaining bone with a high speed burr and rasp, followed by press-fit of the cone into the metaphysis. The fixation and osteoconductive properties of the porous cone outer surface allow ingrowth and encourage long-term biological fixation. The revision knee component is then cemented into the porous cone inner surface, which provides superior fixation compared with cementing into native but deficient metaphyseal bone. The advantages of the cone compared with allograft include: technical ease, biological fixation, no resorption, and possibly a lower risk of infection. The disadvantages include: difficult extraction and relatively short-term follow-up. Several studies using cones report promising short-term results for the reconstruction of large bone defects in RTKR. Cite this article: Bone Joint J 2014;96-B(11 Suppl A):118–21


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 109 - 113
1 Nov 2013
Petrie J Sassoon A Haidukewych GJ

Pelvic discontinuity represents a rare but challenging problem for orthopaedic surgeons. It is most commonly encountered during revision total hip replacement, but can also result from an iatrogentic acetabular fracture during hip replacement. The general principles in management of pelvic discontinuity include restoration of the continuity between the ilium and the ischium, typically with some form of plating. Bone grafting is frequently required to restore pelvic bone stock. The acetabular component is then impacted, typically using an uncemented, trabecular metal component. Fixation with multiple supplemental screws is performed. For larger defects, a so-called ‘cup–cage’ reconstruction, or a custom triflange implant may be required. Pre-operative CT scanning can greatly assist in planning and evaluating the remaining bone stock available for bony ingrowth. Generally, good results have been reported for constructs that restore stability to the pelvis and allow some form of biologic ingrowth. Cite this article: Bone Joint J 2013;95-B, Supple A:109–13


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 62 - 62
1 May 2014
Gross A
Full Access

Pelvic discontinuity with associated bone loss is a complex challenge acetabular revision surgery. Reconstruction by the use of ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment. The trabecular cup provides a good environment for bone graft remodeling and eventual bone or fibrous ingrowth. The cage protects the trabecular metal cup until stabilisation occurs. The cage not only protects the cup but places the articulating center at the correct level. We reviewed a consecutive series of 32 cases of acetabular revision reconstructions with pelvic discontinuity who had been treated by the cup-cage technique. The mean follow-up was 38 months (24.0 to 68.0). Failure was defined as a migration of a component of >5mm. In 29 hips there was no clinical or radiological evidence of loosening at the last follow-up. The Harris hip scores improved significantly from 44.6 (sd 10.4) to 78.7 (sd 10.4) points (p<0.001). In three hips (11.5%) the construct migrated at one year after surgery. The complications included two cases of dislocations, one of infection and one of partial palsy of the peroneal nerve. Our findings indicated that the treatment of pelvic discontinuity by the component-cage construct is a reliable option


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1069 - 1074
1 Aug 2013
Rao BM Kamal TT Vafaye J Moss M

We report the results of revision total knee replacement (TKR) in 26 patients with major metaphyseal osteolytic defects using 29 trabecular metal cones in conjunction with a rotating hinged total knee prosthesis. The osteolytic defects were types II and III (A or B) according to the Anderson Orthopaedic Research Institute (AORI) classification. The mean age of the patients was 72 years (62 to 84) and there were 15 men and 11 women. In this series patients had undergone a mean of 2.34 previous total knee arthroplasties. The main objective was to restore anatomy along with stability and function of the knee joint to allow immediate full weight-bearing and active knee movement. Outcomes were measured using Knee Society scores, Oxford knee scores, range of movement of the knee and serial radiographs. Patients were followed for a mean of 36 months (24 to 49). The mean Oxford knee clinical scores improved from 12.83 (10 to 15) to 35.20 (32 to 38) (p < 0.001) and mean American Knee Society scores improved from 33.24 (13 to 36) to 81.12 (78 to 86) (p < 0.001). No radiolucent lines suggestive of loosening were seen around the trabecular metal cones, and by one year all the radiographs showed good osteo-integration. There was no evidence of any collapse or implant migration. Our early results confirm the findings of others that trabecular metal cones offer a useful way of managing severe bone loss in revision TKR. Cite this article: Bone Joint J 2013;95-B:1069–74


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 47 - 47
1 Jul 2014
Backstein D
Full Access

Restoration of bone loss is a major challenge of revision TKA surgery. It is critical to achieve of a stable construct to support implants and achieve successful results. Major bone defects of the femoral and/or tibia (AORI type IIB/III) have been reconstructed using impaction grafting, structural allografts or tumor prostheses. The major concerns with structural allograft are graft resorption, mechanical failure, tissue availability, disease transmission, considerable surgical skill required and prolonged operative time. Porous tantalum metaphyseal cones, are becoming the established method of choice to correct large bone defects with several recent studies demonstrating promising results. The high coefficient of friction of these implants provides structural support for femoral and tibial components. The high degree of porosity has excellent potential for bone ingrowth and long-term biologic fixation. Several published series, although with relatively small cohorts of patients, have reported good short-term results with trabecular metal cones for major femoral and tibial bony defects in revision TKA. In a recent study, 16 femoral and 17 tibial cones were reviewed at an average follow up of 33 months (range, 13 to 73 months) the mean Knee Society Score improved from 42 pre-operatively to 83 at last follow up with an improvement of the functional score from an average of 34 to 66 (p<0.0001). Radiological follow up revealed no evidence of loosening or migration of the constructs. No evidence of complications were noted in correlation with the use of trabecular metal cones


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 119 - 119
1 Feb 2015
Paprosky W
Full Access

Total knee arthroplasty in the setting of osseous defects has multiple management options. However, the optimal treatment strategy remains controversial. The purpose of this study is to report the clinical and radiographic results of trabecular metal cones in managing osseous defects in the setting of complex primary and revision total knee arthroplasty. There were 129 consecutive total knee arthroplasty procedures performed utilising trabecular metal cones reviewed for clinical and radiographic outcomes. Twenty-five had less than 2 years of follow-up and seven died, leaving 96 patients for evaluation. This cohort included a total of eighty-six (86) tibias with eleven (11) having Type 1 defects, twenty-five (25) having Type 2A defects, forty-three (43) with Type 2B defects and seven (7) with Type 3 defects. There were twenty-seven (27) femurs with one (1) Type 1 defect, nine (9) Type 2A defects, sixteen (16) with Type 2B defects and one (1) Type 3 defect based on the AORI classification. There were 28 male patients and 68 female patients, with an average age of 68 years and an average BMI of 35.0. There were six primary procedures and ninety revision procedures. Continuous variables were evaluated using a t-test. Twelve patients required revision leaving 84 knees (87.5%) with the cones in place at an average of 31 months of follow-up (range, 24–77.3 months). The mean KSS score increased from 51.0 preoperatively to 80.2 postoperatively (p<0.0001). The mean KSS functional score increased from 32.9 preoperatively to 47.8 postoperatively (p=0.0002). Including the twelve revisions, there were twenty-two knees requiring re-operation (22.9%) with another seventeen requiring manipulation under anesthesia and there were four additional non-operative complications (1 foot drop, 1 stress fracture, 2 superficial infections)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2020
Abe S Iwata H Ezaki A Ishida H Sakata K Matsuoka H Sogou E Nannno K Kuroda S Nakamura S Hayashi J Nakai T
Full Access

A-70-year old woman underwent uncomplicated total hip arthroplasty using a titanium modular stem with a 46mm CoCr femoral head, a titanium shell, and a metal linear (Wright Medical Technology). Eight years after implantation, she presented with a painful left hip. A pelvic radiograph revealed adequate positioning of both hip implants without any signs of wear of loosening. CT scanning confirmed the presence of a 5 × 5 cm soft tissue mass in the ilium above the cup component accompanied by the iliac fracture. The patient was diagnosed as having an adverse reaction to metal debris (ARMD) after a metal-on-metal THA and revision was performed. Perioperatively?tissue necrosis and partial destruction of the abductor mechanism were found in the absence of any macroscopic infection. Both the neck trunnion and bore of the head showed slight signs of corrosion. The modular neck was revised with a ceramic 28mm head and a new dual-mobility liner(Zimmer Biomet). The iliac fracture was fixed with a porous trabecular metal augment(Zimmer Biomet). The histopathology of tissue sample revealed extensively necrotic material with focal cellular areas of inflammatory cells containing macrophages and neutrophilas. Metalic debris was also scattered in the necrotic materials. After the revision, the patient was recovered without pain or dislocation, and iliac fracture was well fixed. Instability is a substantial problem in the revision of ARMD. Extensive necrosis with gross deficiency of the abductor mechanism is associated with postoperative dislocation. Revision of failed MoM THA a dual-mobility device an effective strategy


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1399 - 1408
1 Oct 2017
Scott CEH MacDonald D Moran M White TO Patton JT Keating JF

Aims. To evaluate the outcomes of cemented total hip arthroplasty (THA) following a fracture of the acetabulum, with evaluation of risk factors and comparison with a patient group with no history of fracture. . Patients and Methods. Between 1992 and 2016, 49 patients (33 male) with mean age of 57 years (25 to 87) underwent cemented THA at a mean of 6.5 years (0.1 to 25) following acetabular fracture. A total of 38 had undergone surgical fixation and 11 had been treated non-operatively; 13 patients died at a mean of 10.2 years after THA (0.6 to 19). Patients were assessed pre-operatively, at one year and at final follow-up (mean 9.1 years, 0.5 to 23) using the Oxford Hip Score (OHS). Implant survivorship was assessed. An age and gender-matched cohort of THAs performed for non-traumatic osteoarthritis (OA) or avascular necrosis (AVN) (n = 98) were used to compare complications and patient-reported outcome measures (PROMs). Results. The mean time from fracture to THA was significantly shorter for patients with AVN (2.2 years) or protrusio (2.2 years) than those with post-traumatic OA (9.4 years) or infection (8.0 years) (p = 0.03). Nine contained and four uncontained defects were managed with autograft (n = 11), bulk allograft (n = 1), or trabecular metal augment (n = 1). Initial fracture management (open reduction and internal fixation or non-operative), timing of THA (> /< one year), and age (> /< 55 years) had no significant effect on OHS or ten-year survival. Six THAs were revised at mean of 12 years (5 to 23) with ten-year all-cause survival of 92% (95% confidence interval 80.8 to 100). THA complication rates (all complications, heterotopic ossification, leg length discrepancy > 10 mm) were significantly higher following acetabular fracture compared with atraumatic OA/AVN and OHSs were inferior: one-year OHS (35.7 versus 40.2, p = 0.026); and final follow-up OHS (33.6 versus 40.9, p = 0.008). . Conclusion . Cemented THA is a reasonable option for the sequelae of acetabular fracture. Higher complication rates and poorer PROMs, compared with patients undergoing THA for atraumatic causes, reflects the complex nature of these cases. Cite this article: Bone Joint J 2017;99-B:1399–1408


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 11 - 11
1 May 2019
Seitz W
Full Access

In an effort to address the relatively high rate of glenoid component lucent lines, loosening and failure, tantalum/trabecular metal glenoid implant fixation has evolved as it has in hip and knee arthroplasty. Trabecular metal-anchored glenoid implants used in a consecutive patient case series have demonstrated a lower failure rate than traditional all polyethylene cemented glenoids. Although the radiographs of some patients demonstrated small focal areas of lucency, none have become loose, and only two have actually demonstrated glenoid component failure due to a fracture 6 years after the index procedure. One with glenoid loosening was due to polyethylene wear from a massive cuff tear occurring 8 years after the index procedure. Most patients experienced significant improvements in shoulder range of motion and reduction in pain. Trabecular metal-anchored glenoids when carefully implanted do not produce excessive failure rates, but rather result in functional improvements while decreasing operative time


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 89 - 89
1 Jan 2016
Kaneko T Otani T Kono N Mochizuki Y Sunakawa T Ikegami H Musha Y
Full Access

Background. Polymethylmethacrylate (PMMA) has been used for total knee arthroplasty (TKA) as a method of fixation; however, its durability has been questionable for the long-term use because of the loosening after the cement deterioration, its vulnerability toward infectious resistance, and a smaller amount of healthy bone left for the knee revision surgery. Especially, a decrease of bone density on the proximal tibia has been believed to be triggered as a result of stress shielding. When compared with a cemented TKA, a cementless TKA reduces the amount of bone loss after surgery. In 1999, the Trabecular Metal (TM), with its main composition being the porous tantalum metal, became available as a choice of the porous cementless knee joint prosthesis. The characteristics of porous tantalum metal are its great affinity to the bone as well as its similarity to cancellous bone. The porous tantalum metal starts to bond with osteoblasts, and fills up 80% of porous structure in one year; therefore, it has been characterized by its higher initial fixation strength. However, it is questionable if strong fixation strength due to bone ingrowth between the tibial tray mainly made up with the porous tantalum metal and a cancellous bone will continually be kept. Bobyn, JD, Dunbar et al. have acknowledged the existence of bone ingrowth based on the radiographic evaluation; however, their data had not been quantified in their report. In this study, the bone ingrowth density have periodically quantified using 3D bone morphometric software (TRI/3D-BON64.RATOC) after taking CT of the knee joint prosthesis. Material and Methods. From October 2011, we have reviewed 45 medial osteoarthritis knees that underwent MIS-TKA using Trabecular Metal Modular Tibia CR-type (Zimmer, Inc, Warsaw, Indiana). Ages range from 61–89 years (mean, 74.5 years), and 5 males (7 knees), and 32 females (38 knees) participated in this study. After taking CT picture with the Phantom under lower extremities, the bone ingrowth density are quantified utilizing 3D bone morphometric software (TRI/3D-BON63.RATOX). Measured areas are divided into 6 zones that are right under the pegs of TM femoral component, and the bone ingrowth density (BMC/TC) between TM and cancellous bone were periodically measured on 3, 6, 9, 12,15,18,21,24.27 months after the surgery. Also, intra-zone comparison were implemented by each period among Medial (Zone 1), Lateral (Zone 2), Medial Anterior (Zone 3), Medial Posterior (Zone 4), Lateral Anterior (Zone 5), and Lateral Posterior (Zone 6). Mann-Whitney U test and Student's t-test were used for statistical analysis. All cases of tibial component alignment was within 3 degree varus-valgus to neutral alignment. Results. Bone ingrowth and formation was increased to nine months from six months after surgery and was reduced to 12 months postoperatively. But bone resorption was aboloished 18 months after surgery without influence stress shieldings. In detail, the result was significant higher bone ingrowth and formation in medial than lateral region. I recognized that lateral lesion was affected by stress shieldings. The results was not significant difference of bone ingrowth between medial anterior and posterior region but significant difference of bone ingrowth in lateral posterior than lateral anterior


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 422 - 422
1 Oct 2006
Ronga M Manelli A Monteleone G Cherubino P
Full Access

Biomaterial porosity is considered one of most important proprieties required to obtain fixation of bone ingrowth and ongrowth in prostheses. Since 1998 in the USA and from in Europe a new highly porous biomaterial, Trabecular Metal Technology (TMT, ©Zimmer, USA) has been used in orthopaedic surgery. This study evaluates the short-term morphological findings of porous tantalum screws implanted in three patients with osteonecrosis of a femoral head. Tantalum trabecular metal offers several advantages over conventional materials. Its regular porosity is considered one of most important properties in bone ingrowth and ongrowth and high biocompatibility and osteoconductivity. The biomechanical properties of tantalum are sufficient to withstand physiological load. Our study disclosed a good integration. The bone penetrated the porous metal completely and many characteristics of good bio-integration were evident such as new formation of lamellae, presence of calcium and phosphorus elements, absence of fracture and signs of implant metallosis. The presence of peri-implant medullary cisternae confirmed the functional sites of new bone formation. We conclude that the porous tantalum material is an optimal osteoinductor and osteoconductor even in critical conditions


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 421 - 421
1 Oct 2006
Fadda M Pisanu F Manunta A Doria C Zirattu G Leali PT
Full Access

Introduction: Trabecular metal associated with monob-lock elliptical design represents a valid surgical solution for orthopaedic acetabular reconstructive procedures and second surgery. Materials and methods: From 1999 to 2004, 61 patients between 45 and 81 years with osteoathritis underwent total hip primary arthroplasties with porous tantalum elliptical cup. We performed clinical evaluation through Harris Hip Score test. Bone-implant interface was studied through radiography with reference to the three Charnley’s areas. Follow-up were performed preoperatively at six months and yearly thereafter. Results: Clinical results showed high improvement of Harris Hip Score (average preoperatively score was 46, postoperatively 90). Radiographic evaluation revealed a bone apposition to the porous tantalum without radiolucent lines around the acetabular interface. No local (osteolysis) or general (DVT) complication was seen. Conclusions: Tantalum monoblock elliptical acetabular cup with high volumetric porosity, flexibility and high biocompatibility associated with particular microstructure permits direct apposition of bone, more extensive osseointegration with the maximum bone contact. The trabecular metal cup increases the initial stability helping in the prevention of osteolysis and loosening in a five years follow up


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1696 - 1696
1 Dec 2017
Haddad FS

Mohaddes M, Shareghi B, Kärrholm J. Promising early results for trabecular metal acetabular components used at revision total hip arthroplasty. Bone Joint J 2017;99-B:880-886


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 594 - 594
1 Dec 2013
Wright S Hollingdale J Kandola J
Full Access

Total knee replacement (TKR) is an established treatment for end stage joint disease of the knee. Trabecular metal is one of the design experiments seeking to improve the bone-implant interface and wear patterns in order to increase the longevity of primary joint replacements and reduce the revision burden. Uncemented implants retain bone stock, reduce third body wear, and require a shorter operative time. Although only 4% of knee replacements currently being implanted are uncemented TKRs, there has been considerable recent interest in uncemented designs with a hope of improving the survival time of primary implants. National Joint Registry data has been less favourable of uncemented designs thus far. We report our experience with these comparative implants and present our functional and radiological mid-term results. Trabecular metal is made of tantalum. It has an interconnecting 3-dimensional lattice structure which is 80% porous. It closely resembles the microstructural architecture of cancellous bone. Bone grows into the porous structure creating a strong bond between bone and implant. In this design, the tibial pegs are seated in a peripheral position, in denser cancellous bone when compared with a central peg. Tantalum offers an appropriate modulus of elasticity, reducing the likelihood of component lift-off and stress shielding. Over a 4.5 year period, between April 2007 and December 2011, 132 knees in 127 patients with a diagnosis of end stage osteoarthritis, underwent TKR at a single hospital (CMH), performed by a single surgeon (JH). All surgeries were performed with a thigh tourniquet, medial parapatellar approach, antibiotic and VTE prophylaxis, patellar resurfacing, and rapid recovery rehabilitation. 86 cemented TKRs in 78 patients (mean age 76 years), and 66 uncemented TKRs in 49 patients (mean age 68 years). All components were standard NexGen (Zimmer) implants. Follow-up was a mean of 40 months (range 6–87 months). We analysed the patient postoperative routine standing and recumbent anterior-posterior and lateral radiographs using the knee society TKA scoring system. All linear measurements were made using a PACS viewing system and analysed by 2 of the authors independently. There was no significant radiological lucent lines, and no single KSS > 4. Patients completed Oxford Knee Scores and Knee Society Scoring questionnaires to evaluate their functional outcomes. The mean OKS was 41, and KSS 89. In this period there were revisions in 3 cemented prostheses and 2 uncemented prostheses. 2 revisions were for infection, 2 for peri-prosthetic fracture following trauma, and 1 for unexplained pain. The uncemented TKR performs equally as well as its cemented counterpart in our experience, both clinically and radiologically, at mid-term follow-up of up to 7 years (mean 3.3 years)


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 195 - 200
1 Feb 2014
Abolghasemian M Tangsaraporn S Drexler M Barbuto R Backstein D Safir O Kuzyk P Gross A

The use of ilioischial cage reconstruction for pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer, Warsaw, Indiana) cup-cage technique in our institution, due to the unsatisfactory outcome of using a cage alone in this situation. We report the outcome of 26 pelvic discontinuities in 24 patients (20 women and four men, mean age 65 years (44 to 84)) treated by the cup-cage technique at a mean follow-up of 82 months (12 to 113) and compared them with a series of 19 pelvic discontinuities in 19 patients (18 women and one man, mean age 70 years (42 to 86)) treated with a cage at a mean follow-up of 69 months (1 to 170). The clinical and radiological outcomes as well as the survivorship of the groups were compared. In all, four of the cup-cage group (15%) and 13 (68%) of the cage group failed due to septic or aseptic loosening. The seven-year survivorship was 87.2% (95% confidence interval (CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84) for the cage-alone group (p = 0.009). There were four major complications in the cup-cage group and nine in the cage group. Radiological union of the discontinuity was found in all successful cases in the cup-cage group and three of the successful cage cases. Three hips in the cup-cage group developed early radiological migration of the components, which stabilised with a successful outcome. Cup-cage reconstruction is a reliable technique for treating pelvic discontinuity in mid-term follow-up and is preferred to ilioischial cage reconstruction. If the continuity of the bone graft at the discontinuity site is not disrupted, early migration of the components does not necessarily result in failure. Cite this article: Bone Joint J 2014;96-B:195–200


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 319 - 319
1 Jul 2011
Clauss M Trampuz A Borens O Ilchmann T
Full Access

Background: Bacteria form a biofilm on the surface of orthopaedic devices, causing persistent and infection. Little is known about biofilms formation on bone grafts and bone substitutes. We analyzed various representative materials regarding their propensity for biofilm formation caused by Staphylococcus aureus. Methods: As bone graft beta-tricalciumphosphate (b-TCP, CyclOsTM) and as bone substitute a tantalum metal mesh (trabecular metalTM) and PMMA (Pala-cosTM) were investigated. As test organism S. aureus (strain ATCC 29213) was used. Test materials were incubated with bacterial solution of 105 colony-forming units (cfu)/ml at 37°C for 24 h without shaking. After 24 h, the test materials were removed and washed 3 times in normal saline, followed by sonication in 50 ml Ringer solution at 40 kHz for 5 minutes. The resulting sonication fluid was plated in aliquots of 0.1 ml onto aerobe blood agar with 5% sheep blood and incubated at 37°C with 5% CO2 for 24 h. Then, bacterial counts were enumerated and expressed as cfu/ml. All experiments were performed in triplicate to calculate the mean ± standard deviation. The Wilcoxon test was used for statistical calculations. Results: The three investigated materials show a differing specific surface with b-TCB> trabecular metal> PMMA per mm2. S. aureus formed biofilm on all test materials as confirmed by quantitative culture after washing and sonication. The bacterial counts in sonication fluid (in cfu/ml) were higher in b-TCP (5.1 x 106 ± 0.6 x 106) and trabecular metal (3.7 x 106 ± 0.6 x 106) than in PMMA (3.9 x 104 ± 1.8 x 104), p< 0.05. Conclusion: Our results demonstrate that about 100-times more bacteria adhere on b-TCP and trabecular metal than on PMMA, reflecting the larger surface of b-TCP and trabecuar metal compared to the one of PMMA. This in-vitro data indicates that bone grafts are susceptible to infection. Further studies are needed to evaluate efficient approaches to prevent and treat infections associated with bone grafts and substitutes, including modification of the surface or antibacterial coating


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 117 - 117
1 May 2019
Lachiewicz P
Full Access

A well-fixed uncemented acetabular component is most commonly removed for chronic infection, malposition with recurrent dislocation, and osteolysis. However, other cups may have to be removed for a broken locking mechanism, a bad “track record”, and for metal-on-metal articulation problems. Modern uncemented acetabular components are hemispheres which have 3-dimensional ingrowth patterns. Coatings include titanium or cobalt-chromium alloy beads, mesh, and now the so-called “enhanced coatings”, such as tantalum trabecular metal, various highly porous titanium metals, and 3-D printed metal coatings. These usually pose a problem for safe removal without fracture of the pelvis or creation of notable bone deficiency. Preoperative planning is essential for safe and efficient removal of these well-fixed components. Strongly consider getting the operative report, component “stickers”, and contacting the implant manufacturer for information. There should a preoperative check list of the equipment and trial implants needed, including various screwdrivers, trial liners, and a chisel system. The first step in component removal is excellent 360-degree exposure of the acetabular rim, and this can be accomplished by several approaches. Then, the acetabular polyethylene liner is removed; a liner that is cemented into a porous shell can be “reamed out” using a specific device. Following this, any central or peripheral screws are removed; broken or stripped screw heads add an additional challenge. A trial acetabular liner is placed, and an acetabular curved chisel system is used. There are two manufacturers of this type of system. Both require the known outer acetabular diameter and the inner diameter of the trial liner. With the curved chisel system and patience, well-fixed components can be safely removed, and the size of the next acetabular component to be implanted is usually 4mm larger than the one removed. There are special inserts for removal of monobloc metal shells. Remember that removal of these well-fixed components is more difficult in patients compared to models, and is just the first step of a successful acetabular revision