header advert
Results 501 - 600 of 4366
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 113 - 113
11 Apr 2023
de Mesy Bentley K Galloway C Muthukrishnan G Masters E Zeiter S Schwarz E Leckenby J
Full Access

Serial section electron microscopy (SSEM) was initially developed to map the neural connections in the brain. SSEM eventually led to the term ‘Connectomics’ to be coined to describe process of following a cell or structure through a volume of tissue. This permits the true three-dimensionality to be appreciated and relationships between cells and structures. The purpose of this study was to utilize this methodology to interrogate S. aureus infected bone.

Bone samples were harvested from mice tibia infected with S. aureus and were fixed, decalcified, and osmicated. The samples were paraffin embedded and 5-micron sections were cut to identify regions of bacterial invasion into the osteocyte-lacuna-canalicular-network (OLCN). This area was cut from the paraffin block, deparaffinized, post-fixed and reprocessed into epoxy resin. Serial sections were cut at 60nm and collected onto Kapton tape utilizing the Automated Tape-collecting Ultramicrotome (ATUMtome) system. Samples were mounted onto 4” silicon wafers and post-stained with 2% uranyl acetate followed by 0.3% lead citrate and carbon coated. A ZEISS GeminiSEM 450 scanning electron microscope fitted with an electron backscatter diffusion detector was used to image the sections. The image stack was aligned and segmented using the open-source software, VASTlite.

264 serial sections were imaged, representing approximately 40 × 45 × 15-micron (x, y, z) volume of tissue. 70% of the canaliculi demonstrated infiltration by S. aureus.

This study demonstrates that SSEM can be applied to the skeletal system and provide a new solution to investigate the OLCN system. It is feasible that this methodology could be implemented to investigate why some canaliculi are resistant to colonization and potentially opens up a new direction for the prevention of chronic osteomyelitis. In order to make this a realistic target, automated segmentation methodologies utilizing machine learning must be developed and applied to the bone tissue datasets.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 71 - 71
2 Jan 2024
Ma S Dubin A Romero L Loud M Salazar A Chu S Klier N Masri S Zhang Y Wang Y Chesler A Wilkinson K Vásquez V Marshall K Patapoutian A
Full Access

Distal arthrogryposis (DA) is a collection of rare developmental disorders characterized by congenital joint contractures. Most arthrogryposis mutations are in muscle- and joint-related genes, and the anatomical defects originate cell-autonomously within the musculoskeletal tissues. However, gain-of-function (GOF) mutations in PIEZO2, a principal mechanosensor in somatosensation, cause DA subtype 5 via unknown mechanisms. We show that expression of a GOF PIEZO2 mutation in proprioceptive sensory neurons mainly innervating muscle spindles and tendons is sufficient to induce DA5-like phenotypes in mice. Overactive PIEZO2 causes anatomical defects via increased activity within the peripheral nervous system during postnatal development. Surprisingly, overactive PIEZO2 is likely to cause joint abnormalities via increased exocytosis from sensory neuron endings without involving motor circuitry. This reveals a role for somatosensory neurons: excessive mechanosensation within these neurons disrupts musculoskeletal development. We also present proof-of-concept that Botox injection or dietary treatment can counteract the effect of overactive PIEZO2 function to evade DA-like phenotypes in mice when applied during a developmental critical period. These approaches might have clinical applications. Beyond this, our findings call attention to the importance of considering sensory mechanotransduction when diagnosing and treating other musculoskeletal disorders.

Acknowledgements: Our work is supported by National Institutes of Health grant (R35 NS105067, R01 DE022358, R25 SC3GM127195, R25 GM07138, R01GM133845, intramural) and Howard Hughes Medical Institute.


Although remnant-preserved ACL reconstruction (ACLR) restores knee joint stability and dampens the problem of acute ACL rupture-induced knee pain, an increasing number of patients still develop post-traumatic osteoarthritis (PTOA) after 10 to 15 years of ACLR. We previously found that remnant-preserved ACLR with concomitant medial and lateral meniscus repair may not prevent cartilage degeneration and weaken muscle strength, while the clinical features of PTOA are not clear. We hypothesized that remnant-preserved ACLR with concomitant medial and lateral meniscus tears is related to early cartilage damage, worse function recovery, patient-reported outcomes (PROs) and delayed duration to return to sports. The aim is to evaluate the remnant-preserved ACLR with complicated meniscal injuries in predicting which patients are at higher risk of osteoarthritic changes, worse function and limited activities after ACLR for 12 months.

Human ethical issue was approved by a committee from Xi'an Jiaotong University. 26 young and active patients (24 male, 2 female) with ACL injuries (Sherman type I and II) with concomitant medial and lateral meniscus within 2 months were included from January 2014 to March 2022. The average age of the ACLR+ meniscus repair was 26.77±1.52 (8 right, 5 left) and isolated ACLR control was 31.92±2.61 years old (7 left, 6 right). Remnant-preserved ACLR with a 5- to 6-strand hamstring tendon graft was operated on by the same sports medicine specialists. MRI CUBE-T2 scanning with 48 channels was conducted by a professional radiologist. The volume of the ACL graft was created through 3 dimensional MRI model (Mimics 19, Ann Arbor). Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS) was applied to score visible cartilage damage. IKDC 2000 score and VAS were assessed by two blinded researchers. Results were presented as mean± SEM of each group.

The cross-sectional area and 3D volume of the ACL graft were greater in the remnant-preserved ACLR+meniscus group compared with isolated ACLR (p=0.01). It showed that ACLR+ meniscus group had early signs of joint damage and delayed meniscus healing regarding ACLOAS compared to control group (p=0.045). MRI CUBE-T2 prediction of radiographic cartilage degeneration was not obvious in both groups post remnant-preserved ACLR over 12 months (p>0.05). However, higher VAS scores, lower IKDC scores, and long-last joint swelling were reported in the ACLR+ meniscus repair group at the end of 12 months follow-up. Although remnant-preserved ACLR+ meniscus was able to maintain the restore the knee function, it showed delayed timing (>12 months) to return to play at the pre-injury stage, while no difference between the timing of returning to the normal daily routine of their ACLR knee compared to control (p=0.30). The cost of ACLR+ meniscus (average 10,520.76$) was higher than the control group (6,452.92$, p=0.018).

Remnants-preserved ACLR with concomitant injured medial and lateral meniscus repair shows a higher risk of cartilage damage, greater cost, worse functional performance, and longer time for young male patients to return to sports after 12-month follow-up compared to isolated ACLR. Further evidence and long-term follow-up are needed to better understand the association between these results and the risk of development of PTOA in this patient cohort.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 68 - 68
17 Apr 2023
Lazaro-Pacheco D Holsgrove T
Full Access

Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue.

IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines.

Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours.

The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of biomechanical testing protocols and IVD regenerative therapies.


Bone & Joint 360
Vol. 13, Issue 2 | Pages 47 - 49
1 Apr 2024
Burden EG Krause T Evans JP Whitehouse MR Evans JT


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 27 - 27
1 Dec 2022
Ghermandi R
Full Access

Spinal surgery deals with the treatment of different pathological conditions of the spine such as tumors, deformities, degenerative disease, infections and traumas. Research in the field of vertebral surgery can be divided into two main areas: 1) research lines transversal to the different branches; 2) specific research lines for the different branches.

The transversal lines of research are represented by strategies for the reduction of complications, by the development of minimally invasive surgical techniques, by the development of surgical navigation systems and by the development of increasingly reliable systems for the control of intra-operative monitoring.

Instead, specific lines of research are developed within the different branches. In the field of oncological pathology, the current research concerns the development of in vitro models for the study of metastases and research for the study of targeted treatment methods such as electrochemotherapy and mesenchymal stem cells for the treatment of aneurysmal bone cysts. Research in the field of spinal deformities is focused on the development of increasingly minimally invasive methods and systems which, combined with appropriate pharmacological treatments, help reduce trauma, stress and post-operative pain. Scaffolds based on blood clots are also being developed to promote vertebral fusion, a fundamental requirement for improving the outcome of vertebral arthrodesis performed for the treatment of degenerative disc disease. To improve the management and the medical and surgical treatment of vertebral infections, research has focused on the definition of multidisciplinary strategies aimed at identifying the best possible treatment path. Thus, flow-charts have been created which allow to manage the patient suffering from vertebral infection. In addition, dedicated silver-coated surgical instrumentation and bone substitutes have been developed that simultaneously guarantee mechanical stability and reduce the risk of further local infection. In the field of vertebral traumatology, the most recent research studies have focused on the development of methods for the biostimulation of the bone growth in order to obtain, when possible, healing without surgery. Methods have also been developed that allow the minimally invasive percutaneous treatment of fractures by means of vertebral augmentation with PMMA, or more recently with the use of silicone which from a biomechanical point of view has an elastic modulus more similar to that of bone. It is clear that scientific research has changed clinical practice both in terms of medical and surgical management of patients with spinal pathologies. The results obtained stimulate the basic research to achieve even more. For this reason, new lines of research have been undertaken which, in the oncology field, aim at developing increasingly specific therapies against target receptors. Research efforts are also being multiplied to achieve regeneration of the degenerated intervertebral disc and to develop implants with characteristics increasingly similar to those of bone in order to improve mechanical stability and durability over time. Photodynamic therapies are being developed for the treatment of infections in order to reduce the use of antibiotic therapies. Finally, innovative lines of research are being launched to treat and regenerate damaged nerve structures with the goal, still far from today, of making patients with spinal cord injuries to walk.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 17 - 17
17 Nov 2023
Naeem H Maroy R Lineham B Stewart T Harwood P Howard A
Full Access

Abstract

OBJECTIVES

To determine if force measured using a strain gauge in circular external fixation frames is different for 1) different simulated stages of bone healing, and for 2) fractures clinically deemed either united or un-united.

METHODS

In a laboratory study, 3 similar Ilizarov frame constructs were assembled using a Perspex bone analogue. Constructs were tested in 10 different clinical situations simulating different stages of bone healing including with the bone analogue intact, with 1,3 and 50mm gaps, and with 6 materials of varying stiffness's within the 50mm gap. A Bluetooth strain gauge was inserted across the simulated fracture focus, replacing one of the 4 threaded rods used to construct the frame. Constructs were loaded to 700N using an Instron testing machine and maximum force during loading was measured by the strain gauge. Testing was repeated with the strain gauge replacing each of the 4 threaded rods in turn, with measurements being repeated 3 times, across all 3 frame constructs for all 10 simulated clinical situations (n=360). Force measurements between the situations were compared using a Kruskal-Wallis test (KW) and a post-hoc Steel test was used for multiple comparison against control (intact bone model). Additionally, a pilot study has been initiated to assess clinical efficacy of the strain gauge measurement in patients with circular frames. The strain gauge replaced the anterior rod across the fracture focus for each patient. Patients were asked to step on a weighing scale with their affected limb, and maximum weight transfer through the limb and maximal force measured in the frame were recorded. This was repeated 3 times and a mean ratio of force to weight through affected limb was calculated for each patient. The clinical situation at each measurement was designated as united or un-united by one of the senior authors for analysis. Force measurements between the situations were compared using a Wilcoxon-Mann-Whitney test.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 3 - 3
1 Dec 2022
Leardini A Caravaggi P Ortolani M Durante S Belvedere C
Full Access

Among the advanced technology developed and tested for orthopaedic surgery, the Rizzoli (IOR) has a long experience on custom-made design and implant of devices for joint and bone replacements. This follows the recent advancements in additive manufacturing, which now allows to obtain products also in metal alloy by deposition of material layer-by-layer according to a digital model. The process starts from medical image, goes through anatomical modelling, prosthesis design, prototyping, and final production in 3D printers and in case post-production. These devices have demonstrated already to be accurate enough to address properly the specific needs and conditions of the patient and of his/her physician. These guarantee also minimum removal of the tissues, partial replacements, no size related issues, minimal invasiveness, limited instrumentation. The thorough preparation of the treatment results also in a considerable shortening of the surgical and of recovery time. The necessary additional efforts and costs of custom-made implants seem to be well balanced by these advantages and savings, which shall include the lower failures and revision surgery rates. This also allows thoughtful optimization of the component-to-bone interfaces, by advanced lattice structures, with topologies mimicking the trabecular bone, possibly to promote osteointegration and to prevent infection. IOR's experience comprises all sub-disciplines and anatomical areas, here mentioned in historical order. Originally, several systems of Patient-Specific instrumentation have been exploited in total knee and total ankle replacements. A few massive osteoarticular reconstructions in the shank and foot for severe bone fractures were performed, starting from mirroring the contralateral area. Something very similar was performed also for pelvic surgery in the Oncology department, where massive skeletal reconstructions for bone tumours are necessary. To this aim, in addition to the standard anatomical modelling, prosthesis design, technical/technological refinements, and manufacturing, surgical guides for the correct execution of the osteotomies are also designed and 3D printed. Another original experience is about en-block replacement of vertebral bodies for severe bone loss, in particular for tumours. In this project, technological and biological aspects have also been addressed, to enhance osteointegration and to diminish the risk of infection. In our series there is also a case of successful custom reconstruction of the anterior chest wall. Initial experiences are in progress also for shoulder and elbow surgery, in particular for pre-op planning and surgical guide design in complex re-alignment osteotomies for severe bone deformities. Also in complex flat-foot deformities, in preparation of surgical corrections, 3D digital reconstruction and 3D printing in cheap ABS filaments have been valuable, for indication, planning of surgery and patient communication; with special materials mimicking bone strength, these 3D physical models are precious also for training and preparation of the surgery. In Paediatric surgery severe multi planar & multifocal deformities in children are addressed with personalized pre-op planning and custom cutting-guides for the necessary osteotomies, most of which require custom allografts. A number of complex hip revision surgeries have been performed, where 3D reconstruction for possible final solutions with exact implants on the remaining bone were developed. Elective surgery has been addressed as well, in particular the customization of an original total ankle replacement designed at IOR. Also a novel system with a high-tibial-osteotomy, including a custom cutting jig and the fixation plate was tested. An initial experience for the design and test of custom ankle & foot orthotics is also in progress, starting with 3D surface scanning of the shank and foot including the plantar aspect. Clearly, for achieving these results, multi-disciplinary teams have been formed, including physicians, radiologists, bioengineers and technologists, working together for the same goal.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 8 - 8
1 Dec 2022
Caravaggio F Antonelli M Depalmi F
Full Access

Chronic Achilles tendinopathy is characterised by sub-acute inflammation with pro-inflammatory type 1 macrophages (M1), tissue degeneration and consequent partial or total tendon injury. Control of the inflammatory response and M1-to-M2 macrophage polarisation can favour tendon healing both directly and indirectly, by allowing for the regenerative process driven by local mesenchymal stem cells.

Ten patients (3 females and 7 males aged between 32 and 71 years old) with partial Achilles tendon injury were treated with injections of autologous peripheral blood mononuclear cells (PB-MNCs). The cell concentrate was obtained from 100-120 cc of each patient's blood with a selective point-of-care filtration system. PB-MNCs remained trapped in the filter and were injected immediately after sampling. Around 60% of the PB-MNC concentrate was injected directly into the injured area, while the remaining 40% was injected in smaller amounts into the surrounding parts of the Achilles tendon affected by tendinosis.

All patients were evaluated both clinically with the help of the American Orthopaedic Foot & Ankle Society (AOFAS) scale, and radiologically (MRI examination) at baseline and 2 months after the PB-MNC injection. A clinical reassessment with the AOFAS scale was also performed 6 months after the intervention. The rehabilitation protocol implied full weight-bearing walking immediately after the procedure, light physical activity 3-4 days after the injection, and physiotherapist-assisted stretching exercises and eccentric training.

In all patients, functional and radiological signs of tendon healing processes were detected as early as 2 months after a single treatment and the AOFAS scale rose from the initial mean value of 37.5 (baseline) to 85.4 (6 months).

Our preliminary results indicate that regenerative therapies with PB-MNCs can prove useful for partial Achilles tendon injuries as a valid alternative to surgical options, especially when other conservative approaches have failed. Advantages of this therapy include rapid execution, no need for an operating theatre, easy reproducibility, quick recovery and good tolerability regardless of the patient's age (the procedure is not to be performed in subjects who are below 18 years old). Further studies on the topic are recommended to confirm these observations.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 9 - 9
1 Dec 2022
Olivotto E Mariotti F Castagnini F Favero M Oliviero F Evangelista A Ramonda R Grigolo B Tassinari E Traina F
Full Access

Hip Osteoarthritis (HOA) is the most common joint disorder and a major cause of disability in the adult population, leading to total hip replacement (THR). Recently, evidence has mounted for a prominent etiologic role of femoroacetabular impingement (FAI) in the development of early OA in the non-dysplastic hip. FAI is a pathological mechanical process, caused by abnormalities of the acetabulum and/or femur leading to damage the soft tissue structures. FAI can determine chondro-labral damage and groin pain in young adults and can accelerate HOA progression in middle-aged adults.

The aim of the study was to determine if the presence of calcium crystal in synovial fluid (SF) at the time of FAI surgery affects the clinical outcomes to be used as diagnostic and predictive biomarker.

49 patients with FAI undergoing arthroscopy were enrolled after providing informed consent; 37 SFs were collected by arthrocentesis at the time of surgery and 35 analyzed (66% males), median age 35 years with standard deviation (SD) 9.7 and body mass index (BMI) 23.4 kg/m2; e SD 3.

At the time of surgery, chondral pathology using the Outerbridge score, labral pathology and macroscopic synovial pathology based on direct arthroscopic visualization were evaluated. Physical examination and clinical assessment using the Hip disability & Osteoarthritis Outcome Score (HOOS) were performed at the time of surgery and at 6 months of follow up. As positive controls of OA signs, SF samples were also collected from cohort of 15 patients with HOA undergoing THR and 12 were analysed.

45% FAI patients showed CAM deformity; 88% presented labral lesion or instability and 68% radiographic labral calcification. 4 patients out of 35 showed moderate radiographic signs of OA (Kellegren-Lawrence score = 3). Pre-operative HOOS median value was 61.3% (68.10-40.03) with interquartile range (IQR) of 75-25% and post-operative HOOS median value 90% with IQR 93.8-80.60. In both FAI and OA patients the calcium crystal level in SFs negatively correlated with glycosaminoglycan (component of the extracellular matrix) released, which is a marker of cartilage damage (Spearman rho=-0.601, p<0.001).

In FAI patients a worst articular function after surgery, measured with the HOOS questionnaire, was associated with both acetabular and femoral chondropathy and degenerative labral lesion. Moreover, radiographic labral calcification was also significantly associated with pain, worst articular function and labral lesion. Calcium crystal level in SFs was associated with labral lesions and OA signs.

We concluded that the levels of calcium crystals in FAI patients are correlated with joint damage, OA signs and worst post-operative outcome. The presence of calcium crystals in SF of FAI patients might be a potential new biomarker that might help clinicians to make an early diagnosis, evaluate disease progression and monitor treatment response.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs.

The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection.

The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy.

The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain).

Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy.

The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery.

Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x106, G2a arm) and 16 the ‘low dose’ MSC (100x106, G2b arm).

The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic.

Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols.

The clinical and biochemical results of the study, still under evaluation, are presented.

* ORTHOUNION Horizon 2020 GA 733288


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 86 - 86
4 Apr 2023
Joumah A Al-Ashqar M Richardson G Bakhshayesh P Kanakaris N
Full Access

The aim of this study was to assess the impact of Covid-19 measures on the rate of surgical site infections (SSI) and subsequent readmissions in orthopaedic patients.

Retrospective, observational study in a level 1 major trauma center comparing rates of SSI in orthopaedic patients who underwent surgery prior to the Covid-19 lockdown versus that of patients who underwent surgery during the lockdown period. A total of 1151 patients were identified using electronic clinical records over two different time periods; 3 months pre Covid-19 lockdown (n=680) and 3 months during the Covid-19 lockdown (n=470). Patients were followed up for 1 year following their initial procedure. Primary outcome was readmission for SSI. Secondary outcomes were treatment received and requirement for further surgeries.

The most commonly performed procedures were arthroplasty and manipulation under anaesthesia with 119 in lockdown vs 101 non-lockdown (p=0.001). The readmission rate was higher in the lockdown group with 61 (13%) vs 44 (6.5%) in the non-lockdown group (p <0.001). However, the majority were due to other surgical complications such as dislocations. Interestingly, the SSI rates were very similar with 24 (5%) in lockdown vs 28 (4%) in non-lockdown (p=0.472). Twenty patients (4.2%) required a secondary procedure for their SSI in the lockdown group vs 24 (3.5%) in non-lockdown (p=0.381). Mortality rate was similar at 44 (9.3%) in lockdown vs 61 (9.0%; p=0.836).

Whilst Covid-19 precautions were associated with higher readmission rates, there was no significant difference in rate of SSI between the two groups.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 87 - 87
4 Apr 2023
Gehweiler D Pastor T Gueorguiev B Jaeger M Lambert S
Full Access

The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function.

Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies.

A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/elevation, in-/external rotation) can be set and scanned in a defined and reproducible manner. Clavicle fractures healed in malposition can be simulated by osteotomy and fixation using a titanium/carbon external fixator.

During image processing the first rib served as fixed reference in space. Clavicle, scapula and humerus were registered, segmented, and triangulated. The different positions were displayed as superimposed surface meshes and measurements performed automatically. Initial results of an intact shoulder girdle demonstrated that different arm positions including ante-/retroversion and abduction/elevation resulted solely in a transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space.

A radiolucent frame enabling systematic and reproducible CT scanning of upper torsos in various arm movements was developed and utilized to characterize the effect on the 3D volume of the periclavicular space. Initial results demonstrated exclusively transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space during arm positions within a physiological range of motion.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 88 - 88
4 Apr 2023
Anjum S Kirby J Deehan D Tyson-Capper A
Full Access

The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses and there is evidence that statins can modulate TLR4 activity. This study investigates simvastatin's effect on orthopaedic biomaterial-mediated changes in protein expression of key inflammatory markers and soluble-ICAM-1 (sICAM-1), an angiogenic factor implicated in pseudotumour formation.

Human macrophage THP-1 cells were pre-incubated with 50µM simvastatin for 2-hours or a vehicle control (VC), before being exposed to 0.75mM cobalt chloride, 50μm3 per cell zirconium oxide or LPS as a positive control, in addition to a further 24-hour co-incubation with 50µM simvastatin or VC. Interleukin −8 (IL-8), sICAM-1, chemokine ligand 2 (CCL2), CCL3 and CCL4 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 10 was used for statistical analysis including a one-way ANOVA.

Pre-treatment with simvastatin significantly reduced LPS and cobalt-mediated IL-8 secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells. Pre-treatment with simvastatin significantly reduced LPS-mediated but not cobalt ion-mediated CCL2 (n=3) and CCL3 protein (n=3) secretion in THP-1 cells. Simvastatin significantly reduced zirconium oxide-mediated CCL4 secretion (n=3).

Simvastatin significantly reduced cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving implant failure.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 89 - 89
4 Apr 2023
Cui C Long Y Liu C Wong R Chow S Cheung W
Full Access

Sarcopenia is an age-related geriatric syndrome which is associated with subsequent disability and morbidity. Currently there is no promising therapy approved for the treatment of sarcopenia. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK) are expressed in bone and skeletal muscle. Activation of the NF-κB pathway mainly inhibits myogenic differentiation, which leads to skeletal muscle dysfunction and loss. LYVE1 and CD206 positive macrophage has been reported to be associated with progressive impairment of skeletal muscle function with aging. The study aims to investigate the effects of an anti-RANKL treatment on sarcopenic skeletal muscle and explore the related mechanisms on muscle inflammation and the polarization status of macrophages.

Sarcopenic senescence-accelerated mouse P8 (SAMP8) mice at month 8 were treated intraperitoneally with 5mg/kg anti-RANKL (IK22/5) or isotype control (2A3; Bio X Cell) antibody every 4 weeks and harvested at month 10. Senescence accelerated mouse resistant-1 (SAMR1) were collected at month 10 as the age-matched non-sarcopenic group. Ex-vivo functional assessment, grip strength and immunostaining of C/EBPa, CD206, F4/80, LYVE1 and PAX7 were performed. Data analysis was done with one-way ANOVA, and the significant level was set at p≤0.05.

At month 10, tetanic force/specific tetanic force, twitch force/specific twitch force in anti-RANKL group were significantly higher than control group (all p<0.01). The mice in the anti-RANKL treatment group also showed significantly higher grip strength than Con group (p<0.001). The SAMP8 mice at month 10 expressed significantly more C/EBPa, CD206 and LYVE1 positive area than in SAMR1, while anti-RANKL treatment significantly decreased C/EBPa, CD206 and LYVE1 positive area.

The anti-RANKL treatment protected against skeletal muscle dysfunctions through suppressing muscle inflammation and modulating M2 macrophages, which may represent a novel therapeutic approach for sarcopenia.

Acknowledgment: Collaborative Research Fund (CRF, Ref: C4032-21GF)


The current study aims to find the role of Enhance Recovery Pathway (ERP) as a multidisciplinary approach aimed to expedite rapid recovery, reduce LOS, and minimize morbidity associated with Non Fusion Anterior Scoliosis Correction (NFASC) surgery.

A retrospective analysis of 35 AIS patients who underwent NFASC with Lenke 1 and Lenke 5 curves with a minimum of 1 year of follow-up was done. Patient demographics, surgical details, postoperative analgesia, mobilization, length of stay (LOS), patient satisfaction survey score with respect to information and care, and 90 days complications were collected.

The cohort included 34 females and 1 male with a mean age of 15.2 years at the time of surgery. There were 16 Lenke 1 and 19 Lenke 5 in the study. Mean preoperative major thoracic and thoracolumbar/lumbar Cobb's angle were 52˚±7.6˚ and 51˚±4.5˚ respectively. Average blood loss and surgical time were 102 ±6.4 ml and 168 ± 10.2 mins respectively. Average time to commencing solid food was 6.5±1.5 hrs. Average time to mobilization following surgery was 15.5± 4.3 hrs. The average duration to the stopping of the epidural was 42.5±3.5 hrs. The average dose of opioid consumption intraoperatively was 600.5±100.5 mcg of fentanyl i.v. and 12.5±4.5 mg morphine i.v. Postoperatively opioids were administered via an epidural catheter at a dose of 2 mg of morphine every 24 hours up to 2 days and an infusion of 2mcg/hr of fentanyl along with 0.12-0.15% ropivacaine. The average duration to transition to oral analgesia was 55.5±8.5 hrs .20 patients had urinary catheter and the average time to removal of the catheter was 17.5±1.4 hrs. 25 patients had a chest tube and the average time to remove of chest tube was 25.5±3.2 hrs. The average length of hospital stay was 3.1±0.5 days. No patient had postoperative ileus or requirement of blood transfusion or any other complications. No correlation was found between LOS and initial cobb angle.

The application of ERP in AIS patients undergoing NFASC results in reduced LOS and indirectly the cost, reduced post-operative opioid use, and overall improve patient satisfaction score.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 4 - 4
17 Nov 2023
Mahajan U Mehta S Sathyamoorthy P
Full Access

Abstract

There are numerous advantages of discharging patients early after any surgery. Day case arthroplasty in hip and knee is already brought into practice at many centres. We present our journey towards discharging elective shoulder arthroplasty patient on same after their surgery. An initial retrospective study of patients who underwent elective shoulder replacement between 2017 and 2020 were studied. It was identified that a selected group of patients could be discharged on the same of their surgery. The criteria to select a patient for this service was laid down that include ASA 1 or 2, good family support on discharge, personal wishes of patients and early identification of potential patients in the clinic and planning for day case shoulder arthroplasty56 consecutive patients underwent elective arthroplasty of shoulder. Among them 22 patients were discharges on the next day of surgery. The potential patients those could discharged on same were identified to be 11 out of 22 were under ASA 2 and had good family support at home on discharge. Average length of stay after surgery was 2.17 days. We have prospectively discharged 2 patients following the new criteria. This study demonstrates how outpatient elective shoulder could be implemented at other centres. Patient participation and selection with proper planning is key for success here.

Declaration of Interest

(a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 2 - 2
11 Apr 2023
Kronenberg D Everding J Moali C Legoff S Stange R
Full Access

BMP-1 is the major procollagen-C-peptidase activating, besides fibrillar collagen types I-III, several enzymes and growth factors involved in the generation of extracellular matrix. This study investigated the effect of adding and inhibiting BMP-1 directly post fracture.

Standardised femoral fractures were stabilized by an intramedullary nail in 12 week-old female C57Bl/6J mice. We injected either 20 µL recombinant active BMP-1, activity buffer or the BMP-1 specific inhibitor “sizzled”. After 7, 14 and 28 days, mice were sacrificed. Femurs were dissected and paraffin slides were prepared. Callus composition was divided into soft tissue, mineralized and cartilaginous callus. Murine MC3T3 pre-osteoblastic cells were kept in culture adding BMP-1 and sizzled during osteoblastic differentiation. Putative cytotoxicity was determined using MTT-vitality assay. Cell calcification, collagen deposition, and BMP-2 and myostatin protein quantity were characterized.

Adding BMP-1 displayed a weak positive effect on the outcome. After 7 days, more mineralised callus was present, meanwhile the cartilaginous callus was apparently remodelled at higher rate. In the case of BMP-1 inhibition, we observed more cartilaginous callus, which may indicate reduced stability. In cell culture, we could observe a high interference with mineralisation capabilities depending on the stage of osteoblastic development when adding BMP-1 or inhibiting it. Addition and inhibition impaired myostatin (anti-osteogen) and BMP-2 (pro-osteogen) expression.

Interfering with BMP-1 homeostasis in this early stage of fracture repair seems to have rather negative effects. Inhibition apparently yields lower callus quality while the addition of BMP-1 does not significantly accelerate the healing outcome. Cell culture experiments show that BMP-1 application after 7 days of healing leads to higher collagen output but has no effect on mineralisation. This may suggest that BMP-1 application at a later time-point may lead to more pronounced beneficial effects on fracture repair.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 118 - 118
2 Jan 2024
Meng H Verrier S Grad S Li Z
Full Access

Pericytes are contractile, motile cells that surround the capillary. Recent studies have shown that pericytes promoted joint fibrosis and induced subchondral bone angiogenesis, indicating the role of pericytes in osteoarthritis (OA). However, whether pericytes are involved in regulating inflammatory and catabolic response, as well as fibrotic repair of cartilage is still unclear. Here we used 2D and 3D models to investigate the communication of pericytes and chondrocytes under inflammatory osteoarthritis conditions.

CD34-CD146+ pericytes were isolated and sorted from human bone marrow. Human OA chondrocytes were isolated from OA joints. In 2D studies, monolayer cultured chondrocytes were treated +/- pericyte conditioned media, +/- 1ng/ml IL1β for 24h. In 3D studies, pericytes and chondrocytes were cultured within fibrin gel in 3D polyurethane scaffolds, separately or combined for 7 days, followed by treatment of +/- IL1β for another 7 days (Fig 2A). The inflammatory response, catabolic activity and expression of fibrosis markers of chondrocytes and pericytes were measured by ELISA and/or q-rtPCR.

Pericytes had weak inflammatory, catabolic and fibrotic response to IL1β (data not shown). The 2D study showed that pericyte conditioned media promoted inflammation, catabolism and fibrosis markers of chondrocytes, in the absence of IL1β treatment (Figure 1). However, study in 3D showed that coculture of chondrocytes and pericytes reduced the inflammatory and catabolic response of chondrocytes to IL1β and induced fibrosis markers in chondrocytes (Figure 2).

Pericytes are involved in regulating inflammatory response, catabolic response and fibrosis of chondrocytes. The opposite results from 2D and 3D experiments indicate the variety of the regulatory role of pericytes in the interaction with chondrocytes within different culture models. The underlying mechanism is under evaluation with on-going studies.

Acknowledgements

This study was funded by SINPAIN project, from European Union's Horizon Europe research and innovation programme under Grant Agreement NO. 101057778. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 67 - 67
11 Apr 2023
Britton M Schiavi J Vaughan T
Full Access

Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading, mechanical properties and microdamage accumulation of T2D-bone tissue has not yet been examined and thus our objective is to investigate this relationship.

Ethically approved femoral heads were obtained from patients, with (n=8) and without (n=8) T2D. To obtain the mechanical properties of the sample, one core underwent a monotonic compression test to 10% strain, the other core underwent a cyclic compression test at a normalized stress ratio between 0.0035mm/mm and 0.016mm/mm to a maximum strain of 3%. Microdamage was evaluated by staining the tissue with barium sulfate precipitate [2] and conducting microcomputed tomography scanning with a voxel size of 10μm.

The monotonically tested T2D-group showed no statistical difference in mechanical properties to the non-T2D-group, even when normalised against BV/TV. There was also no difference in BV/TV. For the cyclic test, the T2D-group had a significantly higher initial modulus (p<0.01) and final modulus (p<0.05). There was no difference in microdamage accumulation.

Previous population-level studies have found that T2D-patients have been shown to have an increased fracture risk when compared to non-T2D-patients. This research indicates that T2D does not impair the mechanical properties of trabecular bone from the femoral heads of T2D-patients, suggesting that other mechanisms may be responsible for the increased fracture risk seen in T2D-patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 5 - 5
11 Apr 2023
Mischler D Tenisch L Schader J Dauwe J Gueorguiev B Windolf M Varga P
Full Access

Despite past advances of implant technologies, complication rates of fixations remain high at challenging sites such as the proximal humerus [1]. These may not only be owed to the implant itself but also to dissatisfactory surgical execution of fracture reduction and implant positioning. Therefore, the aim of this study was to quantify the instrumentation accuracy of a highly standardised and guided procedure and its influence on the biomechanical outcome and predicted failure risk.

Preoperative planning of osteotomies creating an unstable 3-part fracture and fixation with a locking plate was performed based on CT scans of eight pairs of low-density proximal humerus samples from elderly female donors (85.2±5.4 years). 3D-printed subject-specific guides were used to osteotomise and instrument the samples according to the pre-OP plan. Instrumentation accuracies in terms of screw lengths and orientations were evaluated by comparing post-OP CT scans with the pre-OP plan. The fixation constructs were biomechanically tested until cyclic cut-out failure [2]. Failure risks of the planned and the post-OP configurations were predicted using a validated sample-specific finite element (FE) simulation approach [2] and correlated with the experimental outcomes.

Small deviations were found for the instrumented screw trajectories compared to the planned configuration in the proximal-distal (0.3±1.3º) and anterior-posterior directions (-1.7±1.8º), and for screw tip to joint distances (-0.3±1.1 mm). Significantly higher failure risk was predicted for the post-OP compared to the planned configurations (p<0.01) via FE. When incorporating the instrumentation inaccuracies, the biomechanical results could be predicted well with FE (R2=0.70).

Despite the high instrumentation accuracy achieved using sophisticated subject-specific 3D-printed guides, even minor deviations from the pre-OP plan significantly increased the FE-predicted risk of failure. This underlines the importance of intraoperative guiding technology [3] in tandem with careful pre-OP planning to assist surgeons to achieve optimal outcomes.

Acknowledgements

This study was performed with the assistance of the AO Foundation via the AOTRAUMA Network.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 61 - 61
4 Apr 2023
Makaram N Al-Hourani K Nightingale J Ollivere B Ward J Tornetta III P Duckworth A
Full Access

The aim of this study was to perform a systematic review of the literature on Gustilo-Anderson (GA) type IIIB open tibial shaft (AO-42) injuries to determine the consistency of reporting in the literature.

A search of PubMed, EMBASE and Cochrane Central Register of Controlled Trials was performed to identify relevant studies published from January 2000 to January 2021 using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The study was registered using the PROSPERO International prospective register of systematic reviews. Patient/injury demographics, management and outcome reporting were recorded.

There were 32 studies that met the inclusion criteria with a total of 1,947 patients (70.3% male, 29.7% female). There were 6 studies (18.8%) studies that reported on comorbidities and smoking, with mechanism of injury reported in 22 (68.8%). No studies reported on all operative criteria included, with only three studies (9.4%) reporting for time to antibiotics, 14 studies (43.8%) for time from injury to debridement and nine studies (28.1%) for time to definitive fixation. All studies reported on the rate of deep infection, with a high proportion documenting union rate (26/32, 81.3%). However, only two studies reported on mortality or on other post-operative complications (2/32, 6.3%). Only 12 studies (37.5%) provided any patient reported outcomes.

This study has demonstrated a deficiency and a lack of standardized variable and outcome reporting in the orthopaedic literature for Gustilo-Anderson type IIIB open tibial shaft fractures. We propose a future international collaborative Delphi process is needed to standardize.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model.

Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces).

10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020).

A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed.

In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions.

These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 80 - 80
2 Jan 2024
Lerma-Juárez M Escudero-Duch C Serrano-Yamba R Moreno-García A Yus C Arruebo M Vilaboa N
Full Access

We have developed plasmonic fibrin-based hydrogels that incorporate gold nanoparticles which transduce incident near-infrared (NIR) light into heat. Human adenovirus serotype type-5 vectors encoding a firefly luciferase (fLuc) coding sequence driven by a heat-inducible promoter were incorporated into the hydrogels. Transmission electronic microscopic analysis revealed that the adenoviral vectors were associated to the fibrin fibers. In vitro experiments in which human cells were cultured with plasmonic hydrogels showed that the adenoviral vectors can diffuse from the hydrogels, transduce the cells, and stimulate heat-induced transgene expression upon NIR irradiation. The hydrogels were implanted in 4.2 mm drill hole defects generated in the humerus of male rabbits. Three days after implantation, the defects were NIR-irradiated. Six h later, the animals were euthanized and samples from the bone defect zone were processed for immunohistochemical analyses using a specific fLuc antibody. The results showed strong expression of fLuc in tissues surrounding the implants of NIR-irradiated rabbits, while non- irradiated animals exhibited negligible expression. We next aimed to use the temperature increase to induce the production of transgenic bone morphogenetic protein 6 (BMP-6), using safe gene switches that can provide tighter control of in vivo transgene expression than heat-inducible promoters. These switches are only activated by heat in the presence of rapamycin and maintain a high level of targeted transgene expression for several days after heat activation. Adenoviral vectors encoding the safe switches that control the expression of BMP-6 were incorporated to the composites. The resulting NIR-responsive hydrogels were implanted in the bone defects generated in rabbits and used as a platform to transduce host cells, generate local hyperthermia and stimulate BMP-6 production.

Acknowledgements: This research was supported by grants RTI2018-095159-B-I00 and PID2021-126325OB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”), by grant P2022/BMD- 7406 (Regional Government of Madrid). M.A.L-J. is the recipient of predoctoral fellowship PRE2019-090430 (MCIN/AEI/10.13039/501100011033).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 63 - 63
4 Apr 2023
Rashid M Cunningham L Walton M Monga P Bale S Trail I
Full Access

The purpose of this study is to report the clinical and radiological outcomes of patients undergoing primary or revision reverse total shoulder arthroplasty using custom 3D printed components to manage severe glenoid bone loss with a minimum of 2-year follow-up.

After ethical approval (reference: 17/YH/0318), patients were identified and invited to participate in this observational study. Inclusion criteria included: 1) severe glenoid bone loss necessitating the need for custom implants; 2) patients with definitive glenoid and humeral components implanted more than 2 years prior; 3) ability to comply with patient reported outcome questionnaires. After seeking consent, included patients underwent clinical assessment utilising the Oxford Shoulder Score (OSS), Constant-Murley score, American Shoulder and Elbow Society Score (ASES), and quick Disabilities of the Arm, Shoulder, and Hand Score (quickDASH). Radiographic assessment included AP and axial projections. Patients were invited to attend a CT scan to confirm osseointegration. Statistical analysis utilised included descriptive statistics (mean and standard deviation) and paired t test for parametric data.

3 patients had revision surgery prior to the 2-year follow-up. Of these, 2/3 retained their custom glenoid components. 4 patients declined to participate. 5 patients were deceased at the time of commencement of the study. 21 patients were included in this analysis. The mean follow-up was 36.1 months from surgery (range 22–60.2 months). OSS improved from a mean 16 (SD 9.1) to 36 (SD 11.5) (p < 0.001). Constant-Murley score improved from mean 9 (SD 9.2) to 50 (SD 16.4) (p < 0.001). QuickDASH improved from mean 67 (SD 24) to 26 (SD 27.2) (p = 0.004). ASES improved from mean 28 (SD 24.8) to 70 (SD 23.9) (p = 0.007). Radiographic evaluation demonstrated good osseointegration in all 21 included patients.

The utility of custom 3D-printed components for managing severe glenoid bone loss in primary and revision reverse total shoulder arthroplasty yields significant clinical improvements in this complex patient cohort.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 9 - 9
11 Apr 2023
Angrisani N Willumeit-Römer R Windhagen H Scheper V Wiese B Mavila B Helmholz H Reifenrath J
Full Access

There is no optimal therapy to stop or cure chondral degeneration in osteoarthritis (OA). Beside cartilage, subchondral bone is involved. The often sclerotic bone is mechanically less solid which in turn influences negatively chondral quality. Microfracturing as therapeutic technique aims to enhance bone quality but is applied only in smaller cartilage lesions. The osteoproliferative properties of Magnesium (Mg) have been shown repeatedly1-3. The present study examined the influence of micro-scaled Mg cylinders compared to sole drilling in an OA model.

Ten New Zealand White rabbits underwent anterior crucial ligament transection. During 12 weeks after surgery, the animals developed OA as previously described4. In a second surgery, half of the animals received 20 drill holes (ø 0.5mm) and the other half received 20 drill holes, which were additionally filled with one Mg cylinder each. Extracapsular plication was performed in all animals. During the follow-up of 8 weeks three µ-computed tomographic (µCT) scans were performed: immediately after surgery and after four and eight weeks. Changes of bone volume, trabecular thickness and bone density were calculated and compared.

µCT evaluation showed an increase in bone volume and trabecular thickness in both groups. This increase was significantly higher in rabbits which received Mg cylinders showing thrice as high values for both parameters (bone volume: Mg group +44.5%, drilling group +15.1%, p≤0.025; trabecular thickness: Mg group +53.2%, drilling group +16.9%, p≤0.025). Also bone density increased in both groups, but on a distinctly lower level and with no significant difference.

Although profound higher bone volume was found after implantation of Mg cylinders, µCT showed similar levels of bone density indicating adequate bone quality in this OA model. Macroscopic and histological evaluation of cartilage condition have to reveal possible impact on OA progression. Additionally, current examination implement different alloys and influence on lameness.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 11 - 11
11 Apr 2023
Di Giacomo G Vadalà G Tilotta V Cicione C Ambrosio L Russo F Papalia R Denaro V
Full Access

The purpose of this study was to evaluate the beneficial effects of r-Irisin (IR) on human primary tenocytes (hTCs) in vitro. Indeed, Irisin is secreted from muscles in response to exercise and mediates many beneficial effects on tissues and organs.

Tissue samples (n=3) were analyzed by histology and immunohistochemistry for αVβ5 receptor. hTCs isolated, culture expanded were treated with: 1) RPMI medium as control; 2) IR at different concentrations; 3) IL-1β; 4) pre-treated with IL-1β for 24 h and then co-treated with IR; 5) pre-treated with IR for 24 h and then co-treated with IL-1β. We evaluated: cell metabolic activity (MTT); cell proliferation (trypan blue staining and PicoGreen); nitrite concentration (Griess). The analysis were performed in triplicate for each donor and each experiment was repeated at least three times. Data were expressed as mean ± S.D. One-way ANOVA analysis was used to compare the groups under exam.

We found the presence of the αVβ5 receptor on hTCs plasma membrane supporting the potential interaction with irisin. Cell proliferation was significantly increased with IR at 5, 10 and 25 ng/mL. IR 25 ng/mL after IL1β pre-treatment was able to counteract the increase of nitrite production (p < 0.001) compared to the inflamed hTCs (p < 0.01; p < 0.0001), as well as IR at 10 and 25 ng/ml showed a protective role from oxidative damage. We observed a significant increase in cell metabolic viability in culture under IR at 5 and 25 ng/mL (p < 0.001; p < 0.05) in the pre-treated IR groups, whereas IR showed anti-inflammatory effects at the highest concentration of r-Irisin (p < 0.05).

This is the first study reporting the capability of irisin to attenuate tendinopathy in vitro by acting on acute inflamed tenocytes. Our results confirmed and highlighted the potential cross-talk mechanism between muscle and tendon.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing.

A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan.

Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01).

This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 126 - 126
2 Jan 2024
Schmidt S Klampfleuthner F Diederichs S
Full Access

The signaling molecule prostaglandin E2 (PGE2), synthesized by cyclooxygenase-2 (COX-2), is immunoregulatory and reported to be essential for skeletal stem cell function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in osteoarthritis (OA) analgesia, but cohort studies suggested that long-term use may accelerate pathology. Interestingly, OA chondrocytes secrete high amounts of PGE2. Mesenchymal stromal cell (MSC) chondrogenesis is an in vitro OA model that phenocopies PGE2 secretion along with a hypertrophic OA-like cell morphology. Our aim was to investigate cause and effects of PGE2 secretion in MSC-based cartilage neogenesis and hypertrophy and identify molecular mechanisms responsible for adverse effects in OA analgesia.

Human bone marrow-derived MSCs were cultured in chondrogenic medium with TGFβ (10ng/mL) and treated with PGE2 (1µM), celecoxib (COX-2 inhibitor; 0.5µM), AH23848/AH6809 (PGE2 receptor antagonists; 10µM), or DMSO as a control (n=3–4). Assessment criteria were proteoglycan deposition (histology), chondrocyte/hypertrophy marker expression (qPCR), and ALP activity. PGE2 secretion was measured (ELISA) after TGFβ withdrawal (from day 21, n=2) or WNT inhibition (2µM IWP-2 from day 14; n=3).

Strong decrease in PGE2 secretion upon TGFβ deprivation or WNT inhibition identified both pathways as PGE2 drivers. Homogeneous proteoglycan deposition and COL2A1 expression analysis showed that MSC chondrogenesis was not compromised by any treatment. Importantly, hypertrophy markers (COL10A1, ALPL, SPP1, IBSP) were significantly reduced by PGE2 treatment, but increased by all inhibitors. Additionally, PGE2 significantly decreased ALP activity (2.9-fold), whereas the inhibitors caused a significant increase (1.3-fold, 1.7-fold, 1.8-fold). This identified PGE2 as an important inhibitor of chondrocyte hypertrophy.

Although TGFβ and WNT are known pro-arthritic signaling pathways, they appear to induce a PGE2-mediated antihypertrophic effect that can counteract pathological cell changes in chondrocytes. Hampering this rescue mechanism via COX inhibition using NSAIDs thus risks acceleration of OA progression, indicating the need of OA analgesia adjustment.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 84 - 84
2 Jan 2024
Tashmetov E Saginova D Kamyshanskiy Y Saginov A Koshanova A
Full Access

Various approaches have been implemented to enhance bone regeneration, including the utilization of autologous platelet-rich plasma and bone morphogenetic protein-2. The objective of this study was to evaluate the impact of Marburg Bone Bank-derived bone grafts in conjunction with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (ZA) on osteogenesis within rabbit bone defects.

Methodology

Bone defects (5mm in diameter) were created in the femurs of 96 male rabbits. The animals were allocated into five groups: (1) bone graft + PRP (BG + PRP), (2) bone graft + 5μg rhBMP-2 (BG + rhBMP-2), (3) bone graft + 5μg ZA (BG + ZA), (4) bone graft + 10μg rhBMP-2 + 5μg ZA (BG + rhBMP-2 + ZA), and (5) bone graft (BG). Marburg Bone Bank-processed human femoral head allografts were utilized for bone grafting. The rabbits were euthanized at 14-, 30-, and 60-days post-surgery, and their femurs underwent histopathological and histomorphometric assessments.

Results

Histomorphometric analysis revealed significantly enhanced de novo osteogenesis within the bone allografts in the BG + PRP and BG + rhBMP-2 groups compared to the BG, BG + ZA, and BG + rhBMP-2 + ZA groups at 14 and 30 days (p < 0.05). However, on day 60, the BG + rhBMP-2 group exhibited elevated osteoclastic activity (early resorption). The local co-administration of ZA with thermally treated grafts impeded both bone graft resorption and new bone formation within the bone defect across all time points. The addition of ZA to BG + rhBMP-2 resulted in diminished osteogenic activity compared to the BG + rhBMP-2 group (p < 0.000).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 23 - 23
17 Apr 2023
Wu Y
Full Access

We investigated factors associated with postoperative lipiduria and hypoxemia in patients undergoing surgery for orthopedic fractures.

We enrolled patients who presented to our emergency department due to traumatic fractures between 2016 and 2017. We collected urine samples within 24 hours after the patients had undergone surgery to determine the presence of lipiduria. Hypoxemia was defined as an SpO2 <95% determined with a pulse oximeter during the hospitalization. Patients’ anthropometric data, medical history, and laboratory test results were collected from the electronic medical record. Logistic regression analyses were used to determine the associations of clinical factors with postoperative lipiduria and hypoxemia with multivariate adjustment.

A total of 144 patients were analyzed (mean age 51.3 ± 22.9 years, male 50.7%). Diabetes (odd ratio 3.684, 95% CI 1.256-10.810, p=0.018) and operation time (odd ratio 1.005, 95% CI 1.000-1.009, p=0.029) were independently associated with postoperative lipiduria, while age (odd ratio 1.034, 95% CI 1.003-1.066, p=0.029), body mass index (odd ratio 1.100, 95% CI 1.007-1.203, p=0.035), and operation time (odd ratio 1.005, 95% CI 1.000-1.010, p=0.033) were independently associated with postoperative hypoxemia.

We identified several factors independently associated with postoperative lipiduria and hypoxemia in patients with fracture undergoing surgical intervention. Operation time was associated with both postoperative lipiduria and hypoxemia, and we recommend that patients with prolonged operation for fractures should be carefully monitored for clinical signs related to fat embolism syndrome.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 130 - 130
2 Jan 2024
Ergene E Liman G Demirel G Yilgor P
Full Access

Skeletal muscle tissue engineering has made progress towards production of functional tissues in line with the development in materials science and fabrication techniques. In particular, combining the specificity of 3D printing with smart materials has introduced a new concept called the 4D printing. Inspired by the unique properties of smart/responsive materials, we designed a bioink made of gelatin, a polymer with well-known cell compatibility, to be 3D printed on a magnetically responsive substrate. Gelatin was made photocrosslinkable by the methacrylate reaction (GELMA), and its viscosity was finetuned by blending with alginate which was later removed by alginate lyase treatment, so that the printability of the bioink as well as the cell viability can be finetuned. C2C12 mouse myoblasts-laden bioink was then 3D printed on a magnetic substrate for 4D shape-shifting. The magnetic substrate was produced using silicon rubber (EcoFlex) and carbonyl iron powders. After 3D printing, the bioink was crosslinked on the substrate, and the substrate was rolled with the help of a permanent magnet. Unrolled (Open) samples were used as the control group. The stiffness of the bioink matrix was found to be in the range of 13–45 kPa, which is the appropriate value for the adhesion of C2C12 cells. In the cell viability analysis, it was observed that the cells survived and could proliferate within the 7-day duration of the experiment. As a result of the immunofluorescence test, compared to the Open Group, more cell nuclei were observed overlapping MyoD1 expression in the Rolled Group; this indicated that the cells in these samples had more cell-cell interactions and therefore tended to form more myotubes.

Acknowledgements: This research was supported by the TÜBİTAK 2211-A and YÖK 100/2000 scholarship programs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 42 - 42
4 Apr 2023
Benca E van Knegsel K Zderic I Caspar J Strassl A Hirtler L Fuchssteiner C Gueorguiev B Windhager R Widhalm H Varga P
Full Access

Screw fixation is an established method for anterior cruciate ligament (ACL) reconstruction, although with a high rate of implant-related complications. An allograft system for implant fixation in ACL reconstruction, the Shark Screw ACL (surgebright GmbH) could overcome some of the shortcomings of bioabsorbable screws, such as foreign body reaction, need for implant removal and imaging artefacts. However, it needs to provide sufficient mechanical stability. Therefore, the aim of this study was to investigate the biomechanical stability, especially graft slippage, of the novel allograft system versus a conventional bioabsorbable interference screw (BioComposite Interference Screw; Arthrex Inc.) for tibial implant fixation in ACL reconstruction.

Twenty-four paired human proximal tibiae (3 female, 9 male, 72.7 ± 5.6 years) underwent ACL reconstruction. The quadrupled semitendinosus and gracilis tendon graft were fixed in one specimen of each pair using the allograft fixation system Shak Screw ACL and the contralateral one using an interference screw. All specimens were cyclically loaded at 1 Hz with peak load levels monotonically increased from 50 N at a rate of 0.1 N/cycle until catastrophic failure. Relative movements of the graft versus the tibia were captured with a stereographic optical motion tracking system (Aramis SRX; GOM GmbH).

The two fixation methods did not demonstrate any statistical difference in ultimate load at graft slippage (p = 0.24) or estimated survival at slippage (p = 0.06). Both, the ultimate load and estimated survival until failure were higher in the interference screw (p = 0.04, and p = 0.018, respectively). Graft displacement at ultimate load reached values of up to 7.2 mm (interference screw) and 11.3 mm (Shark Screw ACL).

The allograft screw for implant fixation in ACL reconstruction showed similar behavior in terms of graft slippage compared to the conventional metal interference screw but underperformed in terms of ultimate load. However, the ultimate load may not be considered a direct indicator of clinical failure.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 148 - 148
11 Apr 2023
Kopinski-Grünwald O Guillaume O Arslan A Van Vlierberghe S Ovsianikov A
Full Access

In the field of tissue engineering (TE), mainly two approaches have been widely studied and utilised throughout the last two decades. Ovsianikov et al. proposed a third strategy for tissue engineering to combine the advantages of the scaffold-based and scaffold-free approach [1].

We utilise the third strategy for TE by fabrication of cell spheroids that are reinforced by microscaffolds, called tissue units (TUs). Aim of the presented study is to differentiate TUs towards a chondrogenic phenotype to show the self-assembly of a millimetre sized cartilage-like tissue in a bottom-up TE approach in vitro.

Two-Photon polymerization (2PP) was utilised to fabricate highly porous microscaffolds with a diameter of 300 µm. The biocompatible and biodegradable, resin Degrad INX (supplied from Xpect INX, Ghent, Belgium) was used for 3D-printing. Each microscaffold was seeded with 4000 human adipose derived stem cells (hASCs) in low-adhesive 96-well plates to allow spheroid formation. TUs were differentiated towards the chondrogenic lineage by application of chondrogenic media, subsequently merged in a cylindrical agarose mold, to fuse into a connected tissue with a diameter of ~1.8 mm and a height of 8 mm.

The characterization of TUs differentiated towards the chondrogenic phenotype included gene expression and protein analysis. Furthermore, immunohistochemically staining for Collagen II and Alcian blue staining were performed to investigate the matrix deposition and fusion of the self-assembled tissue.

Our results suggest that the utilised method could be a promising approach for a variety of tissue engineering approaches, due to the good applicability to a defect side combined with the self-assembly properties of the TUs. Furthermore, the differentiation potential of hASCs is not limited to chondrogenic lineages only, which could pave the way to further TE applications in the future.

Acknowledgements:

This research work was financially supported by the European Research Council (Consolidator Grant 772464 A.O.)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 52 - 52
11 Apr 2023
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Low back pain resulting from Interertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect. However, their behaviour in the harsh degenerate environment is unknown.

Porcine NC cells (pNCs), and Human NP cells from degenerate IVDs were cultured in alginate beads to maintain phenotype. Cells were cultured alone or in combination, or co-stimulated with notochordal cell condition media (NCCM), in media to mimic the healthy and degenerate disc environment, together with controls for up to 1 week. Following culture viability, qPCR and proteomic analysis using Digiwest was performed.

A small increase in pNC cell death was observed in degenerated media compared to standard and healthy media, with a further decrease seen when cultured with IL-1β. Whilst no significant differences were seen in phenotypic marker expression in pNCs cultured in any media at gene level (ACAN, KRT8, KRT18, FOXA2, COL1A1 and Brachyury). Preliminary Digiwest analysis showed increased protein production for Cytokeratin 18, src and phosphorylated PKC but a decrease in fibronectin in degenerated media compared to standard media. Human NP cells cultured with NCCM, showed a decrease in IL-8 production compared to human NP cells alone when cultured in healthy media. However, gene expression analysis (ACAN, VEGF, MMP3 and IL-1β) demonstrated no significant difference between NP only and NP+NCCM groups.

Studying the behaviour of the NCs in in vitro conditions that mimic the in vivo healthy or degenerate niche will help us to better understand their potential for therapeutic approaches. The potential use of NC cell sources for regenerative therapies can then be translated to investigate the potential use of iPSCs differentiated into NC cells as a regenerative cell source.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 105 - 105
2 Jan 2024
Im G
Full Access

Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 1 - 1
17 Apr 2023
Sgardelis P Giddins G
Full Access

Distal radius fractures are common, particularly in post-menopausal women. Several factors have been identified such as osteopenia and an increased risk of falling. We hypothesised that increased soft tissue padding from muscle and fat in the volar hand may confer an element of protection against fractures more in men than women and more in younger than older patients.

The aim of the study was to assess for thenar and hypothenar thickness and assess whether it varies between sexes and changes with age.

We retrospectively evaluated hand MRI scans performed for non-acute conditions in adults without previous injury or surgery. Using the Patient Archiving and Communication System (PACS) we measured the distance (mm) from the volar surface of the trapezium to the skin, the hook of the hamate to skin and the pisiform to skin as measures of thenar and hypothenar thickness. We also recorded the sex and age of the subjects.

Soft tissue thickness was corrected for hand size by dividing by capitate length which we measured; we have already established this as a surrogate measure of hand size.

The scans of 51 men (mean age 35, range 19–66) years and 27 women (mean age 49, range 19–79) years were reviewed. Men had significantly thicker soft tissues compared to women over both the thenar and hypothenar eminences (p=0.0001). Soft tissue thickness did not change significantly with age (p> 0.05).

The study confirms a significant difference in volar hand soft tissue thickness between men and women accounting for differences in hand size. Our previous research has shown how we fall onto our outstretched hands in the upper limb falling reflex and we have shown that padding the thenar and hypothenar eminences reduces force transmission to the forearm bones. In theory thicker thenar and hypothenar musculature would help protect against distal radius fractures following a fall on an outstretched hand. The thinner musculature on women may further predispose them to an increased risk of distal radius fractures. Further research is needed to assess for any loss of volar hand soft tissue thickness beyond age 75 years.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 48 - 48
4 Apr 2023
Yang Y Li Y Pan Q Wang H Bai S Pan X Ling K Li G
Full Access

Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways.

A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion, histology and immunohistochemistry were used to evaluate the wound healing processes.

Gross and histological examinations showed that Tibial Cortex Transverse Transport technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In Tibial Cortex Transverse Transport group, HE staining demonstrated a better epidermis and dermis recovery, while immune-histochemical staining showed that Tibial Cortex Transverse Transport technique promoted local collagen deposition. Tibial Cortex Transverse Transport technique also benefited to angiogenesis and immunomodulation. In Tibial Cortex Transverse Transport group, blood flow in the wound area was higher than that ofother groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the Tibial Cortex Transverse Transport group with double immune-labelling of CD31 and α-SMA. The M2 macrophages at the wound site in the Tibial Cortex Transverse Transport group was also increased.

Tibial cortex transverse transport technique accelerated wound healing through enhanced angiogenesis and immunomodulation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 68 - 68
2 Jan 2024
Li J
Full Access

Applications of weightbearing computed tomography (WBCT) imaging in the foot and ankle have emerged over the past decade. However, the potential diagnostic benefits are scattered across the literature, and a concise overview is currently lacking. Therefore, we aimed to systematically review all reported diagnostic applications per anatomical region in the foot and ankle. A systematic literature search was performed in the electronic databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “weightbearing/standing CT and ankle, hind-, mid- or forefoot”. English language studies analyzing the diagnostic applications of WBCT were included. Studies were excluded if they simulated weightbearing CT, described normal subjects, included cadaveric samples or samples were case reports. The modified Methodological Index for Non-Randomized Studies (MINORS) was applied for quality assessment. The added value was defined as the review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the Prospero database (CRD42019106980). A total of 48 studies (prospective N=8, retrospective N=36, cohort study N=1, diagnostic N=2, prognostic comparative study N=1) were found to be eligible for review. The following diagnostic applications were identified per anatomical area in the foot: ankle (osteoarthritis N=5, ligament injury N=6); hindfoot (deformity N=9); midfoot (Lisfranc injury N=2, flatfoot deformity N=13, osteoarthritis N=1); forefoot (hallux valgus N=12). The identified studies contained diagnostic applications that could not be used on plain radiographs. The mean MINORS equaled 10.1 on a total of 16 (range: 8 to 12). Diagnostic applications of weightbearing CT imaging are most frequently studied in hindfoot deformity, but other area's areas are on the rise. Post-processing of images was identified as the main added value compared to WBRX. However, the findings should be interpreted with caution as the average quality score was moderate. Therefore, future prospective studies are warranted to consolidate the role of WBCT in diagnostic and therapeutic algorithms.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 8 - 8
2 Jan 2024
Habash M Cawley D Devitt A
Full Access

Intra-Discal Vacuum Phenomenon (IDVP) represents an intradiscal nitrogen gas accumulation where a cavity opens in a supine position, lowering intra-discal pressure and generating a bubble. IDVP has been observed in up to 20% of elderly patients and reported in almost 50% of chronic LBP patients. With a highly accurate detection on CT, its significance lacks clarity and consideration within normative data. IDVP occurs with patterns of lumbar and/or lumbopelvic morphology and associated diagnoses. Over-60s population based sample of 2020 unrelated CT abdomen scans without acute spinal presentations, with sagittal reconstructions, inclusive of T12 to femoral heads, were analyzed for IDVP and pelvic incidence (PI). Subjects with diagnostic morphological associations of the lumbar spine, including previous fracture, autofusion, transitional vertebra and listhesis, were selected out and analyzed separately. Subjects were then equally grouped into low, medium and high PI. Prevalence of lumbar spine IDVP is 41.3%. 125 cases were excluded. 1603 subjects yielded 663 IDVP. This was increased in severity towards the lumbosacral junction (L1L2 9.4%, L2L3 10.9%, L3L4 13.7%, L4L5 19.9%, L5S1 28.5%) and those with low PI, while distribution was more even with high PI. 292 had positive diagnostic associations, which were more likely to occur at the level of isthmic spondylolisthesis, adjacent to a previous fracture or suprajacent to lumbosacral transitional vertebra (p<0.05).

This study has identified normative values for prevalence and severity of IDVP in a normal aging population. Morphological patterns that influence the pattern of IVDP such as pelvic incidence and diagnostic associations provide novel insights to the function of the aging spine.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 62 - 62
11 Apr 2023
Preutenborbeck M Wright P Loughran G Bishop N
Full Access

Orthopaedic impaction-instruments are used to drive implants into the bone of the patient. Pre-clinical experimental testing protocols and computer models of those are used to assess robustness and functional efficiency of such instruments. This generally involves impaction of the instrument mounted on a substrate that should represent the mechanics of the patient. In this study, the effects of the substrate on stressing of the impaction-instruments were investigated using dynamic finite element analysis. Model results were compared with experimental data from lab protocols, which have been derived to recreate the mechanics of cadaveric implantations, which represent clinical conditions.

FEA models of selected experimental protocols were created in which a simplified instrument was impacted on substrates with varying material properties and boundary conditions. After impaction, the instrument settled into a modal vibration which then decayed over time. The resulting axial strain data from the computational model was compared to strain-gauge data collected from experimental measurements. Strain signal amplitude, frequency and decay were compared. The damping-ratio was derived from the decay of the strain signal.

The computational model slightly over-predicted the initial experimental strain amplitudes in all cases, but the frequency of the cyclic strain signals matched. However, the model underestimated the experimentally measured rate of signal decay. Inclusion of implant seating and soft-tissue conditions had little effect on decay.

Clinical failures of impaction-instruments may be related to multiple fatigue cycles for each impaction and should be modelled accurately to allow failure prediction. Any soft substrate results in an impedance mismatch at the instrument interface, which reflects the pressure wave and causes vibration with a frequency related to the speed-of-sound in the instrument, and its geometry. While this could be accurately modelled computationally, signal decay was underestimated. Further experimental quantification of energy losses will be important to understand vibration decay.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 54 - 54
4 Apr 2023
Kim Y Yang H Bae H Han H
Full Access

Stem cells are known to have low levels of intracellular reactive oxygen species (ROS) and high levels of glutathione. ROS are thought to interact with several pathways that affect the transcription machinery required for stem cell differentiation, and are critical for maintaining stem cell function. In this study, we are developing a new fluorescent probe that rapidly and reversibly reacts with glutathione (GSH), the most abundant non-protein thiol in living cells that acts as an antioxidant and redox regulator.

Multipotent perivascular progenitor cells derived from human ESCs (hESC-PVPCs): Differentiated ESCs as embryoid bodies in the presence of BMP4 to induce mesoderm differentiation followed by a simple cell selection strategy using attachment of single cells onto collagen-coated dishes. Differential gene expression profiling was performed among H9 hESCs, EBs induced by BMP4 and naturally selected CD140B+CD44+ population at Day 7 (PVPCs). Colony-forming assay: GSHhigh and GSHlow PVPCs were plated on 10-cm tissue culture-treated polystyrene dishes in triplicate in growth medium and cultured for 14 days. Transwell migration assay: GSHhigh and GSHlow PVPCs at passage 4 were resuspended at 1 × 106/mL in the migration medium and seeded in the upper chamber. The following human recombinant SDF-1 and PDGF-AA proteins were used as chemoattractants in the lower compartment.

Probe-GSH conjugate shows shifts in fluorescence excitation and emission spectra that enables ratiometric measurement of GSH levels. Using these properties, stem cells can be purified by FACS-based technology according to intracellular GSH level. We are developing a protocol both for comparing GSH level in stem cell from different culture conditions and for preparing stem cells with high-GSH level . Our results reveal that GSHhigh PVPC purified by FACS show increased colony forming ability compared with that GSHlow PVPC, indicating that intracellular GSH contributes to the maintenance of stemness. Moreover, transplantation of GSHlow PVPC is more effective than that of GSHlow PVPC for cartilage regeneration in osteochondral defect.

This technique enable FACS-based sorting of stem cells according to intracellular GSH levels and thus investigation of functional role of GSH (high antioxidant capacity) in the stem cell maintenance and chondrogenic differentiation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 72 - 72
2 Jan 2024
Agnes C Murshed M Willie B Tabrizian M
Full Access

Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2.

Biocompatibility testing of both cell types is performed using AlamarBlue for metabolic activity, and nucleic acid staining for distribution. Osteoblastic differentiation is assessed through quantification of ALP and osteopontin secretion, as well as osteocalcin and mineralization staining. Differentiation into osteoclasts is verified using SEM and TEM, qPCR, and TRAP staining.

Cellular viability of C2C12 cells and monocytes was maintained when cultured separately in scaffolds with and without BIO for 21 days. Both scaffold variations showed a characteristic increase in ALP secretion from day 1 to 7, indicating early differentiation but BIO-incorporated sponges yielded higher values compared to controls. SEM and TEM imaging confirmed initial aggregation and fusion of monocytes on the scaffold's surface, but BIO addition appeared to result in smoother cell surfaces indicating a change in morphology. Late-stage differentiation assessment and co-culture work in the scaffold are ongoing, but initial results show promise in the material's ability to support multilineage differentiation.

Acknowledgements: The authors would like to acknowledge the financial support of the Collaborative Health Research Program (CHRP) through CIHR and NSERC, as well as Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, and the FRQ-S.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 10 - 10
17 Apr 2023
Constant C Moriarty T Pugliese B Arens D Zeiter S
Full Access

Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri anesthetic hypothermia in rodents on outcomes in preclinical orthopedic device-related infection studies.

A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance was used to determine the fixed effect of peri anesthetic hypothermia (hypothermic defined as rectal temperature <35°C) on the combined harvested tissue and implant colonies forming unit counts, and having controlled for the study groups including treatments received duration of surgery and anesthesia and study period. All animal experiments were approved by relevant ethical committee.

A total of 127 rodents (102 rats and 25 mice) were enrolled in an ODRI and met the inclusion criteria. The mean lowest peri-anesthetic temperature was 35.3 ± 1.5 °C. The overall incidence of peri-anesthetic hypothermia was 41% and was less frequently reported in rats (34% in rats versus 68% in mice). Statistical analysis showed a significant effect of peri anesthetic hypothermia on the post-mortem combined colonies forming unit counts from the harvested tissue and implant(s) (p=0.01) when comparing normo- versus hypothermic rodents. Using Wilks’ Λ as a criterion to determine the contribution of independent variables to the model, peri-anesthetic hypothermia was the most significant, though still a weak predictor, of increased harvested colonies forming unit counts.

Altogether, the data corroborate the concept that bacterial colonization is affected by abnormal body temperature during general anesthesia at the time of bacterial inoculation in rodents, which needs to be taken into consideration to decrease infection data variability and improve experimental reproducibility.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 64 - 64
11 Apr 2023
Steijvers E Xia Z Deganello D
Full Access

Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity.

HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product.

It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule.

Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 12 - 12
2 Jan 2024
Fernández-Costa J Tejedera-Villafranca A Ugarte-Orozco M Cortés-Reséndiz A Ramón-Azcón J
Full Access

Duchenne muscular dystrophy (DMD) is a prevalent childhood neuromuscular disease characterized by progressive skeletal and cardiac muscle degeneration due to dystrophin protein deficiency. Despite ongoing drug development efforts, no cure exists, with limited success in preclinical studies. To expedite DMD drug development, we introduce an innovative organ-on-a-chip (OOC) platform. This microfluidic device sustains up to six 3D patient-derived skeletal muscle tissues, enabling real-time evaluation of anti-DMD treatments. Our in vitro model recreates myotube integrity loss, a hallmark of DMD, by encapsulating myogenic precursors in a fibrin-composite matrix using a PDMS casting mold. Continuous contractile regimes mimic sarcolemmal instability, monitored through tissue contractibility and Creatine Kinase (CK) levels—an established marker of muscle damage. We further enhance our platform with a nanoplasmonic CK biosensor, enabling rapid, label-free, and real-time sarcolemmal damage assessment. Combining these elements, our work demonstrates the potential of OOCs in accelerating drug development for DMD and similar neuromuscular disorders.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 55 - 55
4 Apr 2023
Ge Q Shi Z Ying J Chen J Yuan W Wang P Chen D Feng X Tong P Jin H
Full Access

TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis.

PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed immunohistochemically. Besides, the mRNA and protein expression of PPM1A induced by IL-1β treatment were also detected by q-PCR and immunofluorescence in vitro. OA was induced in PPM1A knockout (KO) mice by destabilization of the medial meniscus (DMM), and histopathological examination was performed. OA was also induced in wild-type (WT) mice, which were then treated with an intra-articular injection of a selective PPM1A inhibitor for 8 weeks.

PPM1A protein expressions were increased in both human OA cartilage and experimental OA mice chondrocytes. We also found that treatment with IL-1β in mouse primary chondrocytes significantly increased both mRNA and protein expression of PPM1A in vitro. Importantly, our data showed that PPM1A deletion could substantially protect against surgically induced OA. Concretely, the average OARSI score and quantification of BV/TV of subchondral bone in KO mice were significantly lower than that in WT mice 8 weeks after DMM surgery. Besides, TUNEL staining revealed a significant decrease in apoptotic chondrocytes in PPM1A-KO mice with DMM operation. With OA induction, the rates of chondrocytes positive for Mmp-13 and Adamts-5 in KO mice were also significantly lower than those in WT mice. Moreover, compared with WT mice, the phosphorylation of Smad2 in chondrocytes was increased in KO mice underwent DMM surgery. However, articular-injection with SD-208, a selective inhibitor of TGF-β/Smad2 signaling could significantly abolish the chondroprotective phenotypes in PPM1A-KO mice. Additionally, both cartilage degeneration and subchondral bone subchondral bone sclerosis in DMM model were blunted following intra-articular injection with BC-21, a small-molecule inhibitor for PPM1A.

Our study demonstrated that PPM1A inhibition attenuates OA by regulating TGF-β/Smad2 signaling. Furthermore, PPM1A is a potential target for OA treatment and BC-21 may be employed as alternative therapeutic agents for the management of OA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 73 - 73
2 Jan 2024
Montesissa M Graziani G Borciani G Boi M Rubini K Valle F Boanini E Baldini N
Full Access

Calcium phosphates-based (CaPs) nanocoatings on metallic prosthesis are widely studied in orthopedics and dentistry because they mimic the mineral component of native human bone and favor the osseointegration process. Despite the fact that different calcium phosphates have different properties (composition, crystallinity, and ion release), only stoichiometric hydroxyapatite (HA) films have been analyzed in deep. Here, we have realized films of different CaPs (HA, beta-tricalcium phosphate (β-TCP) and brushite (DCPD)) onto Ti6Al4V microrough substrates by Ionized Jet Deposition (IJD). We have implemented the heating of substrates at 400°C during deposition to see the effect on coating properties.

Different film features are evaluated: morphology and topography (FEG-SEM, AFM), physical-chemical composition (FT-IR and EDS), dissolution profile and adhesion to substrate (scratch test), with a focus on how the different CaPs and temperature changed the coating features. After coating optimization, we have studied the in vitro BM-MSC behavior, in term of viability and early adhesion.

We have obtained good transfer of fidelity in composition from target to coating for all CaPs, with nanostructured films formed by globular aggregates (~300 nm diameter), with homogeneous and uniform coverage of the substrate surface, without cracks. The heating during deposition has increased the adhesion of the films to the substrate, with higher stability in medium immersion and wettability, features that can improve the biological behavior of cells. All CaP coatings have showed excellent biocompatibility, with DCPD coating that promote higher cells viability at 14 days respect to HA and β- TCP films. About the early cell adhesion, the BM-MSC have showed switch from a globular to an elongated morphology at 6 hours in all coatings respect to the uncoated titanium, sign of better adhesion.

From these results, the fabrication of different CaP nanocoatings with IJD can be a promising for applications in orthopedics and dentistry.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 19 - 19
11 Apr 2023
Wyatt F Al-Dadah O
Full Access

Unicompartmental knee arthroplasty (UKA) and high tibial osteotomy (HTO) are well-established operative interventions in the treatment of knee osteoarthritis (KOA). However, which of these interventions is more beneficial, to patients with KOA, is not known and remains a topic of much debate.

Aims: (i) To determine whether UKA or HTO is more beneficial in the treatment of isolated medial compartment KOA, via an assessment of patient-reported outcome measures (PROMs). (ii) To investigate the relationship between PROMs and radiographic parameters of knee joint orientation/alignment.

This longitudinal observational study assessed a total of 42 patients that had undergone UKA (n=23) or HTO (n=19) to treat isolated medial compartment KOA. The PROMs assessed, pre-operatively and 1-year post-operatively, consisted of the: self-administered comorbidity questionnaire; short form-12; oxford knee score; knee injury and osteoarthritis outcome score; and the EQ-5D-5L. The radiographic parameters of knee joint alignment/orientation assessed, pre-operatively and 8-weeks post-operatively, included the: hip-knee-ankle angle; mechanical axis deviation; and the angle of the Mikulicz line.

Statistical analysis demonstrated an overall significant (p<0.001), pre-operative to post-operative, improvement in the PROM scores of both groups. There were no significant differences in the post-operative PROM scores of the UKA and HTO group. Correlation analyses revealed that pre-operatively, a more distolaterally angled Mikulicz line was associated with worse knee function (p<0.05) and overall health (p<0.05); a relationship that, until now, has not been investigated nor commented upon within the literature.

UKAs and HTOs are both efficacious operations that provide a comparable degree of clinical benefit to patients with isolated medial compartment KOA. To further the scientific/medical community's understanding of the factors that impact upon health-outcomes in KOA, future research should seek to investigate the mechanism underlying the relationship, between Mikulicz line and PROMs, observed within the current study.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 12 - 12
4 Apr 2023
Thewlis D Bahl J Grace T Smitham P Solomon B
Full Access

This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients.

Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed longitudinally for their first 12 postoperative months. Reasons for revision were loosening (73%), dislocation (9%), and infection (18%). Patients completed the Hip dysfunction and Osteoarthritis Outcome Score (HOOS), and underwent gait analysis preoperatively, and at 3 and 12 months postoperatively. A 10 camera motion analysis system (V5 Vantage, Vicon, UK) recorded marker trajectories (100 Hz) during walking at self- selected speeds. A generic lower-body musculoskeletal model (Gait2392) was scaled using principal component analysis [1] and the inverse kinematics tool in Opensim 3.3 was used to compute joint angles for the lower limbs in the sagittal plane. Independent samples t-test were used to compare patient reported outcomes between the primary and revision groups at each timepoint. Statistical parametric mapping was used to compare gait patterns between the two groups at each timepoint.

Preoperatively, patients undergoing primary THA reported significantly worse pain (p<0.001), symptoms (p<0.001), function (p<0.001), and quality of life (p=0.004). No differences were observed at 3 and 12 months postoperatively between patients who had received a primary or revision THA. The only observed difference in gait pattern was that patients with a revision THA had reduced hip extension at 3 months, but no differences were observed preoperatively and 12 months.

Despite the suggestions in the literature that revision THA is bound to have worse outcomes compared to primary THA, we found no differences in in patient-reported outcomes and gait patterns at 12 months postoperatively. This suggests that it may be possible, in some circumstances, for patients following revision THA to achieve similar outcomes to their peers undergoing primary THA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 118 - 118
11 Apr 2023
Styczynska-Soczka K Cawley W Samuel K Campbell J Amin A Hall A
Full Access

Articular cartilage has poor repair potential and the tissue formed is mechanically incompetent. Mesenchymal stromal cells (MSCs) show chondrogenic properties and the ability to re-grow cartilage, however a viable human model for testing cartilage regeneration and repair is lacking. Here, we describe an ex vivo pre-clinical femoral head model for studying human cartilage repair using MSCs.

Human femoral heads (FHs) were obtained following femoral neck fracture with ethical permission/patient consent and full-depth cartilage wells made using a 3mm biopsy punch. Pancreas-derived mesenchymal stromal cells (P-MSC) were prepared in culture media at ~5000 cells/20µl and added to each well and leakage prevented with fibrin sealant. After 24hrs, the sealant was removed and medium replaced with StemProTM chondrogenesis differentiation medium. The FHs were incubated (37oC;5% CO2) for 3wks, followed by a further 3wks in standard medium with 10% human serum with regular medium changes throughout. Compared to wells with medium only, A-MSCs produced a thin film across the wells which was excised en-block, fixed with 4% paraformaldehyde and frozen for cryo-sectioning.

The cell/tissue films varied in thickness ranging over 20-440µm (82±21µm; mean±SEM; N=3 FHs). The thickness of MSC films abutting the cartilage wells was variable but generally greater (15-1880µm) than across the wells, suggesting an attachment to native articular cartilage. Staining of the films using safranin O (for glycosaminoglycans; quantified using ImageJ) was variable (3±8%; mean±SEM; N=3) but in one experiment reached 20% of the adjacent cartilage. A preliminary assessment of the repair tissue gave an O'Driscoll score of 10/24 (24 is best).

These preliminary results suggest the ex vivo femoral head model has promise for studying the capacity of MSCs to repair cartilage directly in human tissue, although optimising MSCs to produce hyaline-like tissue is essential.

Supported by the CSO (TCS/17/32).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 119 - 119
11 Apr 2023
Peffers M Anderson J Jacobsen S Walters M Bundgaard L Hackle M James V
Full Access

Joint tissues release extracellular vesicles (EVs) that potentially sustain joint homeostasis and contribute to osteoarthritis (OA) pathogenesis. EVs are putative novel therapeutics for OA, and transport biologically active molecules (including small non-coding RNAs (SNCRNAs)) between cells. This study identified altering SNCRNA cargo in EVs in OA which may act as early diagnostic markers and treatment targets.

OA was surgically induced in four skeletally mature Standardbred horses using an osteochondral fragment model in the left middle carpal joint. The right joint underwent sham surgery. Synovial fluid (SF) and plasma were obtained weekly throughout the 70-day study. EVs were isolated using size exclusion chromatography and characterised using nanoparticle tracking (Nanosight), and exosome fluorescence detection and tetraspanin phenotyping (Exoview). RNA was extracted from EVs derived from SF (sham and OA joints) and plasma collected at days 10, 35, 42, 49, 56, 63, and subjected to small RNA sequencing on a NovaSeq SP100 flow cell (Illumina).

Nanosight-derived EV characteristics of size and concentration were not significantly different following disease induction. The diameter of the temporal population of plasma and SF-derived exosomes changed significantly for CD9 and CD81 following OA induction with significant temporal, and disease-related changes in CD63 and CD81 protein expressin in plasma and SF.

In SF and plasma-derived EVs snoRNAs, snRNAs, tRNAs, lncRNA, y-RNA, piRNAs and scRNA were found. Following pairwise analysis of all-time points we identified 27 miRs DE in plasma and 45 DE miRs in SF. Seven were DE in plasma and SF; miR-451, miR-25, miR-215, miR-92a, miR-let-7c, miR-486-5p, miR-23a. In plasma and SF 35 and 21 snoRNAs were DE with four DE in plasma and SF; U3, snord15, snord46, snord58.

This work has identified alterations to OA EV sncRNAs in plasma and SF providing a greater understanding of the role of EVs in early OA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 15 - 15
4 Apr 2023
Luk J
Full Access

Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth.

Using allograft tissues that would be otherwise discarded in combination with deidentified diagnostic imaging (MRI and CT), a model of a large shell osteochondral allograft was recreated using LS-PrePost and FEBio based on clinically relevant elastic material properties for cortical bone, trabecular bone, cartilage, and hole ingrowth tissue. The 0.8 mesh size model consisted of 4 mm trabecular bone, 4 mm cortical bone, and 3 mm cartilage sections that summed to a cross-sectional area of 1600 mm2 (40 mm x 40 mm). Holes were modeled to be 4mm deep in relation to clinical practice where holes are drilled from the deep margin of subchondral trabecular bone to the cortical subchondral bone plate. To test the biomechanic variations between drill hole sizes, models with hole sizes pertinent to standard-of-care commercially available orthopaedic drill sizes of 1.1mm, 2.4 mm, or 4.0 mm holes were loaded across the top surface over a one second duration and evaluated for effective stress, effective strain, 1st principal strain, and 3rd principal strain in compressive conditions.

Results measured effective stress and strain and 1st and 3rd principal strain increased with hole depth.

The results of the present FEA modeling study indicate that the larger 4.0 mm diameter holes were associated with greater stresses and strains within OCA shell graft, which may render the allograft at higher risk for mechanical failure. Based on these initial results, the smaller diameter 2.4 mm and 1.1 mm holes will be further investigated to determine optimal number, configuration, and depth of subchondral drilling for OCA preparation for transplantation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 16 - 16
4 Apr 2023
Luk J
Full Access

Despite the growing success of OCA transplantation in treating large articular cartilage lesions in multiple joints, revisions and failures still occur. While preimplantation subchondral drilling is intended to directly decrease allograft bioburden and has been associated with significant improvements in outcomes after OCA transplantation, the effects of size, number, and spacing of subchondral bone drill sites have not been fully evaluated. This study aimed to investigate the effects of drill size with or without pulse-lavage of OCA subchondral bone by quantifying remnant marrow elements using histomorphometry.

With IRB and ACUC approvals, human and canine OCAs were acquired for research purposes. Portions of human tibial plateau OCAs acquired from AATB-certified tissue banks that would otherwise be discarded were recovered and sectioned into lateral and medial hemiplateaus (n=2 each) with a thickness of 7 mm. Canine femoral condyles and tibial plateaus were split into lateral and medial components with a thickness of 7 mm (n=8). Using our clinical preimplantation preparation protocol, holes were drilled into the subchondral bone of each condyle and hemiplateau OCA using either 1.6 mm OD or 3.2 mm OD drill bits from the cut surface to the cortical subchondral bone plate. One femoral condyle and one hemiplateau per drill bit size were pulse-lavaged while the corresponding OCAs were not. The mean total %-fill remaining marrow elements for each treatment group was calculated.

Little to no quantifiable bone marrow element retention was noted to remain within the subchondral bone of human or canine OCA specimens after subchondral drilling of allograft bone with either drill bit size evaluated and with or without pulse-lavage. The %-fill was consistent across zones, ranging from 1-5%.

This project was designed to provide a preliminary histologic evaluation of the effects of drill size on OCA preimplantation preparation efficacy based on amount of remaining bone marrow elements in human and canine femoral condyle and tibial plateau specimens. Based on these initial findings, choice of drill bit size for OCA subchondral drilling may need to be based on the associated biomechanical effects rather than effects on donor bone marrow element removal.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 122 - 122
11 Apr 2023
Chen L Zheng M Chen Z Peng Y Jones C Graves S Chen P Ruan R Papadimitriou J Carey-Smith R Leys T Mitchell C Huang Y Wood D Bulsara M Zheng M
Full Access

To determine the risk of total knee replacement (TKR) for primary osteoarthritis (OA) associated with overweight/obesity in the Australian population.

This population-based study analyzed 191,723 cases of TKR collected by the Australian Orthopaedic Association National Joint Registry and population data from the Australian Bureau of Statistics. The time-trend change in incidence of TKR relating to BMI was assessed between 2015-2018. The influence of obesity on the incidence of TKR in different age and gender groups was determined. The population attributable fraction (PAF) was then calculated to estimate the effect of obesity reduction on TKR incidence.

The greatest increase in incidence of TKR was seen in patients from obese class III. The incidence rate ratio for having a TKR for obesity class III was 28.683 at those aged 18-54 years but was 2.029 at those aged >75 years. Females in obesity class III were 1.7 times more likely to undergo TKR compared to similarly classified males. The PAFs of TKR associated with overweight or obesity was 35%, estimating 12,156 cases of TKR attributable to obesity in 2018. The proportion of TKRs could be reduced by 20% if overweight and obese population move down one category.

Obesity has resulted in a significant increase in the incidence of TKR in the youngest population in Australia. The impact of obesity is greatest in the young and the female population. Effective strategies to reduce the national obese population could potentially reduce 35% of the TKR, with over 10,000 cases being avoided.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 18 - 18
4 Apr 2023
Stanley A Jones G Edwards T Lex J Jaere M
Full Access

Knee pain is common, representing a significant socioeconomic burden. Caused by a variety of pathologies, its evaluation in primary-care is challenging. Subsequently, an over-reliance on magnetic resonance imaging (MRI) exists. Prior to orthopaedic surgeon referral, many patients receive no, or incorrect, imaging. Electronic-triage (e-triage) tools represent an innovative solution to address this problem. The primary aim of this study was to ascertain whether an e-triage tool is capable of outperforming existing clinical pathways to determine the correct pre-hospital imaging based on knee pain diagnosis.

Patients ≥18 years with a new presentation of knee pain were retrospectively identified. The timing and appropriateness of imaging was assessed. A symptom-based e-triage tool was developed, using the Amazon LEXbotplatform, and piloted to predict five common knee pathologies and suggest appropriate imaging.

1462 patients were identified. 17% of arthroplasty patients received an ‘unnecessary MRI’, whilst 28% of arthroscopy patients did not have a ‘necessary MRI’, thus requiring a follow-up appointment, with a mean delay of three months (SD 2.6, range 0.2-20.2). Using NHS tariffs, a wasted cost through unnecessary/necessary MRIs and subsequent follow-up appointments was estimated at £45,816. The e-triage pilot was trialled with 41 patients (mean age:58.4 years, 58.5% female). Preliminary diagnoses were available for 34 patients. Using the highest proportion of reported symptoms in the corresponding group, the e-triage tool correctly identified three of the four knee pathologies. The e-triage tool did not correctly identify anterior cruciate ligament injuries (n=3). 79.2% of participants would use the tool again.

A significant number of knee pathology patients received incorrect imaging prior to their initial hospital appointment, incurring delays and unnecessary costs. A symptom-based e-triage tool was developed, with promising pilot data and user feedback. With refinement, this tool has the potential to improve wait-times and referral quality, whilst reducing costs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 106 - 106
4 Apr 2023
Ding Y Luo W Chen Z Guo P Lei B Zhang Q Chen Z Fu Y Li C Ma T Liu J
Full Access

Quantitative ultrasound (QUS) is a promising tool to estimate bone structure characteristics and predict fragile fracture. The aim of this pilot cross-sectional study was to evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragile fractures retrospectively in postmenopausal women.

Methods

RF signal and speed of sound (SOS) were obtained using an axial transmission QUS at one‐third distal radius for 246 postmenopausal women. Based on the involved RF signal, we conducted a MResNet, which combines multi-channel training with original ResNet, to classify the high risk of fragility fractures patients from all subjects. The bone mineral density (BMD) at lumber, hip and femoral neck acquired with DXA was recorded on the same day. The fracture history of all subjects in adulthood were collected. To assess the ability of the different methods in the discrimination of fragile fracture, the odds ratios (OR) calculated using binomial logistic regression analysis and the area under the receiver operator characteristic curves (AUC) were analyzed.

Results

Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was discriminant for all fragile fractures (OR = 2.64; AUC = 0.74), for Vertebral fracture (OR = 3.02; AUC = 0.77), for non-vertebral fracture (OR = 2.01; AUC = 0.69). MResNet showed comparable performance to that of BMD of hip and lumbar with all types of fractures, and significantly better performance than SOS all types of fractures.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 75 - 75
2 Jan 2024
Marr N Zamboulis D Beaumont R Tatarczyk Z Meeson R Thorpe C
Full Access

Tendon injuries occur frequently in athletes and the general population, with inferior healing leading to deposition of fibrotic scar tissue. New treatments are essential to limit fibrosis and enable tendon regeneration post-injury. In this study, we tested the hypothesis that rapamycin improves tendon repair and limits fibrosis by inhibiting the mTOR pathway.

The left hindlimb of female adult Wistar rats was injured by needle puncture and animals were either given daily injections of rapamycin (2mg/kg) or vehicle. Animals were euthanized 1 week or 3 weeks post-injury (n=6/group). Left and right Achilles tendons were harvested, with the right limbs acting as controls. Tendon sections were stained with haematoxylin & eosin, and scored by 2 blinded scorers, assessing alterations in cellularity, cell morphology, vascularity, extracellular matrix (ECM) organization and peritendinous fibrosis. Immunohistochemistry was performed for the tendon pan-vascular marker CD146 and the autophagy marker LC3.

Injury resulted in significantly altered ECM organization, cell morphology and cellularity in both rapamycin and vehicle-treated groups, but no alterations in vascularity compared to uninjured tendons. Rapamycin had a limited effect on tendon repair, with a significant reduction in peritendinous fibrosis 3 weeks after injury (p=0.028) but no change in cell morphology, cellularity or ECM organization compared to vehicle treated tendons at either 1 week or 3 weeks post injury. CD146 labelling was increased at the site of injury, but there was no apparent difference in CD146 or LC3 labelling in rapamycin and vehicle treated tendons.

The decrease in peritendinous fibrosis post-injury observed in rapamycin treated tendons indicates rapamycin as a potential therapy for tendon adhesions. However, the lack of improvement of other morphological parameters in response to rapamycin treatment indicates that rapamycin is not an effective therapy for injuries to the tendon core.

Acknowledgements: This study was funded by Versus Arthritis (22607)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden.

Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology.

More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones.

Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 20 - 20
4 Apr 2023
Gori M Giannitelli S Vadalà G Papalia R Zollo L Rainer A Denaro V
Full Access

Intraneural electrodes can be harnessed to control neural prosthetic devices in human amputees. However, in chronic implants we witness a gradual loss of device functionality and electrode isolation due to a nonspecific inflammatory response to the implanted material, called foreign body reaction (FBR). FBR may eventually lead to a fibrous encapsulation of the electrode surface. Poly(ethylene glycol) (PEG) is one of the most common low-fouling materials used to coat and protect electrode surfaces. Yet, PEG can easily undergo encapsulation and oxidative damage in long-term in vivo applications. Poly(sulfobetaine methacrylate) - poly(SBMA) - zwitterionic hydrogels may represent more promising alternatives to minimize the FBR due to their ultra-low fouling features. Here, we tested and compared the poly(SBMA) zwitterionic hydrogel coating with the PEG coating in reducing adhesion and activation of pro-inflammatory and pro-fibrotic cells to polyimide surfaces, which are early hallmarks of FBR. We aimed to coat polyimide surfaces with a hydrogel thin film and analysed the release of a model drug from the hydrogel.

We performed hydrogel synthesis, mechanical characterization and biocompatibility analysis. Cell adhesion, viability and morphology of human myofibroblasts cultured on PEG- and hydrogel-coated surfaces were evaluated through confocal microscopy-based high-content analysis (HCA). Reduced activation of pro-inflammatory human macrophages cultured on hydrogels was assessed as well as the hydrogel drug release profile.

Because of its high hydration, biocompatibility, low stiffness and ultra-low fouling characteristics the hydrogel enabled lower adhesion and activation of pro-inflammatory and pro-fibrotic cells vs. polystyrene controls, and showed a long-term release of the anti-fibrotic drug Everolimus. Furthermore, a polyimide surface was successfully coated with a hydrogel thin film.

Our soft zwitterionic hydrogel could outperform PEG as more suitable coating material of neural electrodes for mitigating the FBR. Such poly(SBMA)-based biomaterial could also be envisioned as long-term delivery system for a sustained release of anti-inflammatory and anti-fibrotic drugs in vivo.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 31 - 31
11 Apr 2023
Powell D Wu B Dietz P Bou-Akl T Ren W Markel D
Full Access

Failure of osseointegration and periprosthetic joint infection (PJI) are the two main reasons of implant failure after total joint replacement (TJR). Nanofiber (NF) implant surface coating represents an alternative local drug eluting device that improves osseointegration and decreases the risk of PJI. The purpose of this study was to investigate the therapeutic efficacies of erythromycin (EM)-loaded coaxial PLGA/PCL-PVA NF coating in a rat S. aureus-infected tibia model.

NF coatings with 100mg and 1000mg EM were prepared. NF without EM was included as positive control. 56 Sprague Dawley rats were divided into 4 groups. A titanium pin (1.0-mm x 8 mm) was placed into the tibia through the intercondylar notch. S. aureus (SA) was introduced by both direct injection of 10 μl broth (1 × 104 CFU) into the medullary cavity and single dip of Ti pins into a similar solution prior to insertion. Rats were sacrificed at 8 and 16 weeks after surgery. The outcome measurements include μCT based quantitative osteolysis evaluation and hard tissue histology.

Results: EM-NF coating (EM100 and EM1000) reduced osteolysis at 8 and 16 weeks, compared to EM0 and negative control. The effective infection control by EM-NFs was further confirmed by hard tissue section analysis. The Bone implant contact (BIC) and bone area fraction Occupancy (BAFO) within 200 µm of the surface of the pins were used to evaluate the osseointegration and new bone formation around the implants. At 16 weeks, the bone implant contact (BIC) of EM 100 (35.08%) was higher than that of negative control (3.43%) and EM0 (0%). The bone area fraction occupancy within 200 µm (BAFO) of EM100 (0.63 mm2) was higher than that of negative control (0.390 mm2) and EM0 (0.0 mm2). The BAFO of EM100 was also higher than that of EM1000 (0.3mm2).

There was much less osteolysis observed with EM100 and EM1000 NF coatings at 16 weeks, as compared to EM0 positive control, p=0.08 and p=0.1, respectively. Osseointegration and periprosthetic bone formation was enhanced by EM-NFs, especially EM100. Data from this pilot study is promising for improving implant surface fabrication strategies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 110 - 110
4 Apr 2023
Ding Y Li S Li C Chen Z Wu C
Full Access

Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening.

Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival.

In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed.

Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 33 - 33
2 Jan 2024
Emonde C Reulbach M Evers P Behnsen H Nürnberger F Jakubowitz E Windhagen H
Full Access

According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed.

Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery.

A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (TG) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its TG. We aimed to investigate the effect of fluid absorption on the TG (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when dry and after storage in Ringer's solution for up to 8 weeks.

Samples stored in Ringer's solution exhibited lower TG and VST than those stored in air. After 8 weeks, the TG decreased from 95.2°C to 81.5°C in the Ringer's group, while the VST decreased from 104.4°C to 91.9°C. These findings will be useful in the ultimate goal of this project which is to design an induction-based system for implant removal.

Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB/TRR-298-SIIRI – Project-ID 426335750


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 111 - 111
4 Apr 2023
Ding Y Wu C Li S Sun Y Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process.

A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a.

Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage.

In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 112 - 112
4 Apr 2023
Sun Y Ding Y Wu H Wu C Li S
Full Access

Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA.

Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes. Immunofluorescence are used to test the expression of matrix metalloproteinase (MMP)-13.

CAP-exosomes, compared with nontagged exosomes, are more easily absorbed by chondrocytes. What's more, CAP-exosomes induced lower MMP-13 expression of chondrocytes when compared with nontagged exosomes (p<0.001).

CAP-exosomes show chondrocyte-targeting and exert better protective effect than nontagged exosomes on chondrocyte extracellular matrix. Histological and in vivo validation are now being conducted.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 128 - 128
11 Apr 2023
Elbahi A Onazi O Ramadan M Hanif Y Eastley N Houghton-Clemmey R
Full Access

It is known that Osteoporosis is the pathology of bone mass and tissue loss resulting in an increase of fragility, risk of fracture occurrence, and risk of fracture recurrence. We noted there was no definitive pathway in our last audit, therefore recommended: availability of the Osteoporosis clinic referral form in an accessible place, the form be filled by the doctor reviewing the patient in the first fracture clinic, and a liaison nurse to ensure these forms were filled and sent to the Osteoporosis clinic. This second audit analyses our Trust's response to these recommendations and effect achieved in Osteoporosis care.

We reviewed our local data base from the 7/27/2020 – 10/2/2021 retrospectively for distal radius fractures who were seen in fracture clinic. We analysed a sample size of 59 patients, excluding patients who had already commenced bone protection medications.

67.7% of our patients had neither been on bone protection medications nor recorded referrals and 13.5% were already on bone protection medications when they sustained the fragility fracture. Ten out of the 51 patients were offered referral to the osteoporosis clinic, and one refused. This makes 20% (10 out of 50) of the patients had completed referrals. In comparison, in our first audit, 11% had already been on bone protection medications and 18% had completed referrals. The second cycle showed a slight increase in compliance. Majority of the referrals were completed by Orthopaedic Consultants in both audits and ana awareness increase noted among non-consultants in starting the referral process.

Based on our analysis, our Trust has a slight improvement in commencing bone protection medications, associated with slight improvement in completing referrals to the Osteoporosis clinic. Despite our recommendations in the first audit, there is still no easily accessible definitive pathway to ensure our Trust's patients have timely access to bone protection and continued care at the Osteoporosis clinic. We recommend streamlining our recommendations to have a more effective approach in ensuring our Trust meets national guidelines. We will implement a Yes or No question assessment for patients visiting clinic in our electronic database which should assist in referral completions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 79 - 79
17 Apr 2023
Stockmann A Grammens J Lenz J Pattappa G von Haver A Docheva D Zellner J Verdonk P Angele P
Full Access

Partial meniscectomy patients have a greater likelihood for the development of early osteoarthritis (OA). To prevent the onset of early OA, patient-specific treatment algorithms need to be created that predict patient risk to early OA after meniscectomy. The aim of this work was to identify patient-specific risk factors in partial meniscectomy patients that could potentially lead to early OA.

Partial meniscectomy patients operated between 01/2017 and 12/2019 were evaluated in the study (n=317). Exclusion criteria were other pathologies or surgeries for the evaluated knee and meniscus (n = 114). Following informed consent, an online questionnaire containing demographics and the “Knee Injury and Osteoarthritis Outcome Score” (KOOS) questionnaire was sent to the patient. Based on the KOOS pain score, patients were classified into “low” (> 75) and “high” (< 75) risk patients, indicating risk to symptomatic OA. The “high risk” patients also underwent a follow-up including an MRI scan to understand whether they have developed early OA.

From 203 participants, 96 patients responded to the questionnaire (116 did not respond) with 61 patients considered “low-risk” and 35 “high-risk” patients. Groups that showed a significant increased risk for OA were patients aged > 40 years, females, overweight (BMI >25 kg/m2 ≤ 30 kg/m2), and smokers (*p < 0.05). The “high-risk”-follow-up revealed a progression of early osteoarthritic cartilage changes in seven patients, with the remaining nineteen patients showing no changes in cartilage status or pain since time of operation. Additionally, eighteen patients in the high-risk group showed a varus or valgus axis deviation.

Patient-specific factors for worse postoperative outcomes after partial meniscectomy and indicators for an “early OA” development were identified, providing the basis for a patient-specific treatment approach. Further analysis in a multicentre study and computational analysis of MRI scans is ongoing to develop a patient-specific treatment algorithm for meniscectomy patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 80 - 80
17 Apr 2023
Azizova L Morgan D Rowlands J Brousseau E Kulik T Palianytsia B Mansell J Birchall J Wilkinson T Sloan A Ayre W
Full Access

Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for titanium implants, consisting of a supported lipid bilayer (SLB) encapsulating an antimicrobial agent. The SLB will be robustly tethered to the titanium using self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA). The chosen antimicrobial is Novobiocin, a coumarin-derived antibiotic known to be effective against resistant strains of Staphylococcus aureus.

ODPA SAMs were deposited on TiO2-coated quartz crystal microbalance (QCM) sensors using two environmentally friendly non-polar solvents (anisole and cyclopentyl methyl ether, CPME), two concentrations of ODPA (0.5mM and 1mM) and two processing temperatures (21°C and 60°C). QCM, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and temperature-programmed desorption mass spectrometry (TPD-MS) were used to characterise the ODPA SAM. A SLB with encapsulated Novobiocin was subsequently developed on the surface of the ODPA SAM using fluorescent lipids and a solvent assisted method. The prototype implant surface was tested for antimicrobial activity against S. aureus.

A well-ordered, uniform ODPA SAM was rapidly formed using 0.5 mM ODPA in CPME at 21°C during 10 min, as confirmed by high Sauerbrey mass (≍285-290 ng/cm2), high atomic percentage phosphorus (detected using XPS) and high water contact angles (117.6±2.5°). QCM measurements combined with fluorescence microscopy provided evidence of complete planar lipid bilayer formation on the titanium surface using a solvent assisted method. Incorporation of Novobiocin into the SLB resulted in reduced attachment and viability of S. aureus.

Key parameters were established for the rapid, robust and uniform formation of an ODPA SAM on titanium (solvent, temperature and concentration). This allowed the successful formation of an antimicrobial SLB, which demonstrated potential for reducing attachment and viability of pathogens associated with joint replacement infections.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 38 - 38
2 Jan 2024
Chen Y
Full Access

Chondrocytic activity is downregulated by compromised autophagy and mitochondrial dysfunction to accelerate the development of osteoarthritis (OA). Irisin is a cleaved form of fibronectin type III domain containing 5 (FNDC5) and known to regulate bone turnover and muscle homeostasis. However, little is known about the role of irisin in chondrocytes and the development of OA. This talk will shed light on FNDC5 expression by human articular chondrocytes and compare normal and osteoarthritic cells with respect to autophagosome marker LC3-II and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG). In chondrocytes in vitro, irisin improves IL-1β-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production. Irisin further suppressed Sirt3 and UCP- 1 to improve mitochondrial membrane potential, ATP production, and catalase. This attenuated IL-1β-mediated production of reactive oxygen species, mitochondrial fusion, mitophagy, and autophagosome formation. In a surgical murine model of destabilization of the medial meniscus (DMM) intra-articular administration of irisin alleviates symptoms like cartilage erosion and synovitis. Furthermore, gait profiles of the treated limbs improved. In chondrocytes, irisin treatment upregulates autophagy, 8-OHdG and apoptosis in cartilage of DMM limbs. Loss of FNDC5 in chondrocytes correlates with human knee OA and irisin repressed inflammation-mediated oxidative stress and deficient extracellular matrix synthesis through retaining mitochondrial biogenesis and autophagy. The talk sheds new light on the chondroprotective actions of this myokine and highlights the remedial effects of irisin during progression of OA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 39 - 39
2 Jan 2024
Wang F
Full Access

Osteoporosis (OP) and osteoarthritis (OA) are leading causes of musculoskeletal dysfunction in elderly, with chondrocyte senescence, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability as prominent features. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Not surprisingly, the development of OP and OA correlate with dysregulations of the gut microflora in rodents and humans. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes to regulate joint homeostasis. Modulating the abundance of specific gut bacteria, like Lactobacillus and Bifidobacterium, by probiotics or fecal microbiota transplantation appears to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue and holds potential to slow down OP development. The talk will highlight treatment options with probiotics or metabolites for modulating the progression of OA and OP.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 130 - 130
11 Apr 2023
Biddle M Wilson V Miller N Phillips S
Full Access

Our aim was to ascertain if K-wire configuration had any influence on the infection and complication rate for base of 4th and 5th metacarpal fractures. We hypothesised that in individuals whose wires crossed the 4th and 5th carpometacarpal joint (CMCJ), the rate of complications and infection would be higher.

Data was retrospectively analysed from a single centre. 106 consecutive patients with a base of 5th (with or without an associated 4th metacarpal fracture) were analysed between October 2016 and May 2021. Patients were split into two groups for comparison; those who did not have K-wires crossing the CMCJ's and those in whose fixation had wires crossing the joints. Confounding factors were accounted for and Statistical analysis was performed using SPSS version 20 software.

Of 106 patients, 60 (56.6%) patients did have K-wires crossing the CMCJ. Wire size ranged from 1.2-2.0 with 65 individuals (65.7%) having size 1.6 wires inserted. The majority of patients, 66 (62.9%) underwent fixation with two wires (range 1-4). The majority of infected cases (88.9%) were in patients who had k-wires crossing the CMCJ, this trended towards clinical significance (p=0.09). Infection was associated with delay to theatre (p=0.002) and longer operative time (p=0.002).

In patients with a base of 4th and 5th metacarpal fractures, we have demonstrated an increased risk of post-operative infection with a K-wire configuration that crosses the CMCJ. Biomechanical studies would be of use in determining the exact amount of movement across the CMCJ, with the different K-wire configuration in common use, and this will be part of a follow-up study.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 22 - 22
4 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in full progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries.

Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV, and supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond/joint surface. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior, axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking.

In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). Anteroposterior and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were detected between the groups (p ≥ 0.113).

Conclusions

Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 116 - 116
4 Apr 2023
Zhang J Zhu J Zhou A Thahir A Krkovic M
Full Access

Treatment of tibial osteomyelitis can be challenging and lengthy, with numerous complications possible during rehabilitation. We report on the usage of the Taylor Spatial Frame (TSF) for a large cohort of patients, and analyse factors that affect outcomes

Between 2015-2020, 51 patients were treated with TSF for osteomyelitis at a major trauma centre.

Demographic, infection and treatment factors of: age, smoking status, diabetes, and BMI, acute (<6 weeks post injury) or chronic (>6 weeks) osteomyelitis, bacteria isolated, time to debridement, therapy/surgery number of TSF, time TSF was in, antibiotic treatment period, time to partial weight bear (PWB) and full weight bear (FWB) prescriptions, were collected. Outcomes of complications and time to union were obtained.

Radiological union was achieved at mean 11.0 months. Mean follow up was 24.1 months. Six and three patients were further treated with fusion and amputation respectively. Mean treatment time with TSF was 12.1 months. 78% had some complications, with pin site infection, malunion, and non-union being most prevalent.

Univariate factor analysis, multicollinearity diagnostics, then multivariate model construction were performed.

Staphylococcus Epidermidis in bone debridement microbiology was significantly negatively associated with pin site infection (OR 0.093, 95% CI 0.011-0.828) and malunion (OR 0.698, 95% CI 0.573-0.849), and enterococcus with non-union (OR 0.775, 95% CI 0.656-0.916), during the treatment period. Time to union was significantly positively associated with time from admission to debridement (p=0.035), time TSF was in (p=0.021), presence of complications (p=0.045), bone loss complication(p=0.037), time to FWB prescription(p=0.001).

We have analysed the effectiveness of TSF in the treatment of tibial osteomyelitis, and elucidated important injury, treatment and rehabilitation factors that affect outcome. The negative bacterial-complication cross associations could be due to successful eradication as culture specific antibiotics were used postoperatively. Earlier patient full weight bearing could enhance callous formation leading to faster union.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 131 - 131
11 Apr 2023
van Hoogstraten S Arts J
Full Access

An increasingly used treatment for end-stage ankle osteoarthritis is total ankle replacement (TAR). However, implant loosening and subsidence are commonly reported complications, leading to relatively high TAR failure rates. Malalignment of the TAR has often been postulated as the main reason for the high incidence of these complications. It remains unclear to what extent malalignment of the TAR affects the stresses at the bone-implant interface. Therefore, this study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure.

FE models of the neutrally aligned as well as malaligned CCI Evolution TAR implant (Van Straten Medical) were developed. Separate models were developed for the tibial and talar segment, with the TAR components in neutral alignment and 5° and 10° varus, valgus, anterior and posterior malalignment, resulting in a total of 9 differently aligned TAR models. Loading conditions of the terminal stance phase of the gait cycle, when the force on the ankle joint is highest (5.2x body weight), were applied. Peak and mean contact pressure and shear stress at the bone-implant interface were analyzed. Also, stress distributions on the bone-implant interface were visualized.

In the neutrally aligned tibial and talar TAR models, peak contact pressures of respectively 98.4 MPa and 68.2 MPa, and shear stresses of respectively 49.3 MPa and 39.0 MPa were found. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. A maximum peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component and the highest shear stress found was 98.5 MPa for the 10° posterior malaligned talar model.

Upon TAR malalignment contact stresses increase substantially, suggesting that proper orientation of the TAR is needed to minimize peak stresses on the bone-implant interface. This is in line with previous studies, which state that malalignment considerably increases bone strains, micromotion, and internal TAR contact pressures, which might increase the risk of TAR failure. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 41 - 41
2 Jan 2024
Balmayor E
Full Access

Messenger RNA (mRNA) is a new class of drug that can be used to express a therapeutic protein and, in contrast to DNA, is safer and inexpensive. Among its advantages, mRNA will immediately begin to express its encoded protein in the cell cytoplasm. The protein will be expressed for a period of time, after which the mRNA is degraded. There is no risk of genetic damage, one of the concerns with plasmid DNA (pDNA) used in traditional gene therapy approaches. Nevertheless, mRNA application in tissue regeneration and regenerative medicine remains limited. In this case, mRNA must overcome its main hurdles: immunogenicity, lack of stability, and intracellular delivery. Research has been done to overcome these limitations, and the future of mRNA seems promising for tissue repair1,2. This keynote talk will address questions including: What are the opportunities for mRNA to improve outcomes in musculoskeletal tissue repair, in particular bone and cartilage? What are the key factors and challenges to expediting this technology to patient treatment (beyond COVID-19 vaccination)?

Acknowledgements: E.R.B thanks the cmRNAbone project funded by the European Union's Horizon 2020 research and innovation program under the grant agreement no. 874790 and the NIH R01 AR074395 from NIAMS for funding her mRNA work.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 132 - 132
11 Apr 2023
van Hoogstraten S Arts J
Full Access

Malalignment is often postulated as the main reason for the high failure rate of total ankle replacements (TARs). Only a few studies have been performed to correlate radiographic TAR malalignment to the clinical outcome, but no consistent trends between TAR alignment parameters and the clinical outcome were found. No standard TAR alignment measurement method is present, so reliable comparison between studies is difficult. Standardizing TAR alignment measurements and increasing measurable parameters on radiographs in the clinic might lead to a better insight into the correlation between malalignment and the clinical outcome. This study aims to develop and validate a tool to semi-automatic measure TAR alignment, and to improve alignment measurement on radiographs in the clinic.

A tool to semi-automatically measure TAR alignment on anteroposterior and lateral radiographs was developed and used by two observers to measure TAR alignment parameters of ten patients. The Intraclass Coefficient (ICC) was calculated and accuracy was compared to the manual measurement method commonly used in the clinic.

The tool showed an accuracy of 76% compared to 71% for the method used during follow-up in the clinic. ICC values were 0.94 (p<0.01) and higher for both inter-and intra-observer reliability.

The tool presents an accurate, consistent, and reliable method to measure TAR alignment parameters. Three-dimensional alignment parameters are obtained from two-dimensional radiographs, and as the tool can be applied to any TAR design, it offers a valuable addition in the clinic and for research purposes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 37 - 37
11 Apr 2023
Kirker-Head C Dietrich A Brisbois A Woodaman R Wagner K
Full Access

To create a comprehensive, user-friendly, database that facilitates selection of optimized animal models for fracture research. Preclinical testing using research animal models can expedite effective and safe interventions for clinical fracture patients but ethical considerations (e.g., adherence to 3R humane principles) and failure to meet critical review (e.g., clinical translation, reproducibility) currently complicate the model selection process.

English language publications (1980-2021) were derived from PubMed® using the search-term ‘bone and fracture and animal’. Clinical cases, reviews, and cadaver studies were excluded. Qualifying papers reporting use of fracture models had the following data transcribed: Author, journal, abstract, summary data, animal data, bone, focus (e.g., allograft) and model (e.g., articular fracture). Publications were quantitatively scored (1 star [very poor] – 5 stars [excellent]) for reproducibility, clinical translation and animal welfare.

4602 papers were derived from 677 journals from 177 publishers. Number of annual publications progressively increased from 18 (1980), peaking in 2015 (250) before substantially declining in 2020 (121) and 2021 (51). Descriptors (low to high) included 15 species (frog [1]–rat [1586]), 24 bones (phalanx [1]–femur [1646]), 134 research foci (bioprinting [4]–fracture healing [3533]), and 37 fracture models (avulsion [4]–diaphyseal [2113]). Percent of total publications scoring 1 or more stars for reproducibility, clinical translation and animal welfare ranged from: 1.0–5.8% (1 star), 5.9–30.6% (2 star), 21.3–42.8% (3 star), 19.2–44.4% (4 stars), and 1.3–26.7% (5 stars).

FRAMD provides a dedicated resource that enhances selection of animal models that pertain to researchers’ fracture focus while being clinically relevant, reproducible and humane. FRAMD will help improve scientific data, reduce unnecessary use of animals, heighten workplace efficiency, and reduce cost by avoiding ill-suited or outdated models. FRAMD may particularly benefit grant writers and organizations seeking ‘best-practice’ assurance (e.g., funding agencies, academic research societies, CROs).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2).

Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 120 - 120
4 Apr 2023
Joumah A Cowling P
Full Access

Though retear rates following rotator cuff repair are well established, we set out to review current literature to determine when early retears occurred (defined as <12m following surgery), and examine which pre- and post-operative variables might affect outcome.

Pubmed, Medline, and CINAHL were searched for literature published from 2011 to 2021 using specific search terms. The inclusion criteria were studies reporting retear rates within 12 months of initial surgical repair. Exclusionary criteria were studies that included partial thickness tears, and studies that did not use imaging modalities within 12 months to assess for retears. PRISMA guidelines were followed, identifying a total of 10 papers.

A combined total of 3372 shoulders included (Mean age 56 −67 years). The most common modality used to identify early retears were ultrasound scan and MRI. 6 of the 10 studies completed imaging at 0-3 months, 6 studies imaged at 3-6 months and 6 studies imaged at 6-12 months. Across all studies, there was a 17% early retear rate (574 patients). Of these, 13% occurred by 3 months, whilst the peak for retears occurred at 3-6 months (82%) and 5% occurred at 6-12 months. The risk of retear was higher in larger tears and extensive tendon degeneration. All studies apart from one documented a return to work/sport at 6 months post-operatively. Postoperative rehabilitation does not appear to alter retear rate, although data is limited with only 1 of 10 studies allowing active range of movement before 6 weeks. Retorn tendons had poorer functional outcomes compared to intact tendons at 12m following initial repair.

The majority of early retears occur at 3-6 months and this time period should be prioritised both in rehabilitation protocols and future research. Age, tear size, and tendon degeneration were found to influence likelihood of early retears.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 92 - 92
17 Apr 2023
Raina D Mrkonjic F Tägil M Lidgren L
Full Access

A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA augmentation on the integration of a different fracture fixation device (gamma nail lag-screw) with osteoporotic saw bones.

Osteoporotic saw bones (bone volume fraction = 15%) were instrumented with a gamma nail without augmentation (n=8) or augmented (n=8) with a CaS/HA biomaterial (Cerament BVF, Bonesupport AB, Sweden) using a newly developed augmentation method described earlier. The lag-screws from both groups were then pulled out at a displacement rate of 0.5 mm/s until failure. Peak extraction force was recorded for each specimen along with photographs of the screws post-extraction. A non-parametric t-test was used to compare the two groups.

CaS/HA augmentation of the lag-screw led to a 650% increase in the peak extraction force compared with the controls (p<0.01). Photographs of the augmented samples shows failure of the saw-bones further away from the implant-bone interface indicating a protective effect of the CaS/HA material.

We present a novel method to enhance the immediate mechanical anchorage of a lag-screw to osteoporotic bone and it is also envisaged that CaS/HA augmentation combined with systemic bisphosphonate treatment can lead to new bone formation and aid in the reduction of implant failures and re-operations.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 46 - 46
11 Apr 2023
Boljanovic D Razmjou H Wainwright A
Full Access

Virtual physiotherapy has been provided to hundreds of patients at the Holland Centre during the COVID pandemic. As we plan for virtual care to be one part of our care delivery we want to evaluate it and ensure the care delivery is safe and effective.

The objectives of this project was two-fold: 1) to examine the outcome of virtual physiotherapy and/ or a hybrid of virtual and in-person care in patients who received post-operative treatment following total knee replacement at the Holland Centre, 2) to explore the challenges of virtual care participation in the joint replacement population.

Patients who received either virtual care or a combination of in-person and virtual care (hybrid model) based on the patients’ needs were included. Patient-related outcomes were the Patient Specific Functional Scale (PSFS) and pain scale. Flexion and extension range of motion were measured before and after treatment. A modified Primary Care Patient Experience Virtual Care Survey was used to examine barriers for virtual care.

Sixty patients, mean age 68(8), ranging between 45-83 years, 34(57%) females, who received either virtual care or a combination of in-person and virtual care based on the patients’ needs were included. Patients showed improvement in the PSFS and pain scores (p<0.0001). Flexion (p<0.0001) and extension (p=0.02) improved at a statistically significant level. A separate sample (N=54) (age range 50-85 years) completed the patient experience survey.

A well-designed post-operative virtual physiotherapy program, initially implemented to maintain continuity of care during the pandemic, continues to be an important part of our model of care as we normalize our activities. Clear understanding of barriers to virtual care and mitigation strategies will help us create virtual care standards, meet our patient needs, optimize our care delivery and potentially increase the use of virtual rehab in the future.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 96 - 96
2 Jan 2024
Al-Sharabi N
Full Access

Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of MSC after transplantation, and extracellular vesicles (EVs) are an important component of this paracrine role. The aim of this study was to investigate the in vitro osteogenic effects of EVs derived from undifferentiated mesenchymal stem cells and from chemically induced to differentiate into osteogenic cells for 7 days. Further, the osteoinductive potential of EVs for bone regeneration in rat calvarial defects was assessed.

We could isolate and characterize EVs from naïve and osteogenic-induced MSCs. Proteomic analysis revealed that EVs contained distinct protein profiles, with Osteo-EVs having more differentially expressed proteins with osteogenic properties. EVs were found to enhance the proliferation and migration of cultured MSC. In addition, the study found that Osteo-EVs/MEM combination scaffolds could enhance greater bone formation after 4 weeks as compared to native MEM loaded with serum-free media.

The study suggests that EVs derived from chemically osteogenic-induced MSCs for 7 days can significantly enhance both the osteogenic differentiation activity of cultured hMSCs and the osteoinductivity of MEM scaffolds. The results indicate that Osteo-MSC-secreted nanocarriers-EVs combined with MEM scaffolds can be used for repairing bone defects.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 53 - 53
2 Jan 2024
Barrias C
Full Access

Bottom-up tissue engineering (TE) strategies employing microscale living materials as building blocks provide a promising avenue for generating intricate 3D constructs resembling native tissues. These microtissue units exhibit high cell densities and a diverse extracellular matrix (ECM) composition, enhancing their biological relevance. By thoughtfully integrating different cell types, the establishment of vital cell-cell and cell-matrix interactions can be promoted, enabling the recreation of biomimetic micro-niches and the replication of complex morphogenetic processes. Notably, by co-assembling blood vessel-forming endothelial cells with supportive stromal cells, microtissues with stable capillary beds, referred to as vascular units (VUs), can be generated. Through a modular TE approach, these VUs can be further combined with other microtissues and biomaterials to construct large-scale vascularized tissues from the bottom up. Integration of VUs with technologies such as 3D bioprinting and microfluidics allows for the creation of structurally intricate and perfusable constructs. In this presentation, we will showcase examples of VUs and explore their applications in regenerative medicine and tissue modeling.

Acknowledgements: This work was supported by project EndoSWITCH (PTDC/BTM-ORG/5154/2020) funded by FCT (Portuguese Foundation for Science and Technology).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 54 - 54
2 Jan 2024
Mathavan N
Full Access

Aging impairs the regenerative capacity of musculoskeletal tissues and is associated with poor healing outcomes. PolgAD257A/D257A (PolgA) mice present a premature aging phenotype due to the accumulation of mitochondrial DNA (mtDNA) point mutations at rates 3 – 5 fold higher compared to wild type mice. Consequently, PolgA mice exhibit the premature onset of clinically-relevant musculoskeletal aging characteristics including frailty, osteo-sarcopenia, and kyphosis. I will present our recent findings on the use of PolgA mice to investigate the effects of aging on the regenerative capacity of bone. In particular, I will focus on the mechano-sensitivity of the regenerative process in aged bone environments and the opportunities it presents for clinical translation of mechanical intervention therapies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 132 - 132
4 Apr 2023
Callary S Abrahams J Zeng Y Clothier R Costi K Campbell D Howie D Solomon L
Full Access

First-time revision acetabular components have a 36% re-revision rate at 10 years in Australia, with subsequent revisions known to have even worse results. Acetabular component migration >1mm at two years following revision THA is a surrogate for long term loosening. This study aimed to measure the migration of porous tantalum components used at revision surgery and investigate the effect of achieving press-fit and/or three-point fixation within acetabular bone.

Between May 2011 and March 2018, 55 patients (56 hips; 30 female, 25 male) underwent acetabular revision THR with a porous tantalum component, with a post-operative CT scan to assess implant to host bone contact achieved and Radiostereometric Analysis (RSA) examinations on day 2, 3 months, 1 and 2 years. A porous tantalum component was used because the defects treated (Paprosky IIa:IIb:IIc:IIIa:IIIb; 2:6:8:22:18; 13 with pelvic discontinuity) were either deemed too large or in a position preventing screw fixation of an implant with low coefficient of friction. Press-fit and three-point fixation of the implant was assessed intra-operatively and on postoperative imaging.

Three-point acetabular fixation was achieved in 51 hips (92%), 34 (62%) of which were press-fit. The mean implant to host bone contact achieved was 36% (range 9-71%). The majority (52/56, 93%) of components demonstrated acceptable early stability. Four components migrated >1mm proximally at two years (1.1, 3.2, 3.6 and 16.4mm). Three of these were in hips with Paprosky IIIB defects, including 2 with pelvic discontinuity. Neither press-fit nor three-point fixation was achieved for these three components and the cup to host bone contact achieved was low (30, 32 and 59%).

The majority of porous tantalum components had acceptable stability at two years following revision surgery despite treating large acetabular defects and poor bone quality. Components without press-fit or three-point fixation were associated with unacceptable amounts of early migration.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 38 - 38
4 Apr 2023
Döring J Basten S Ecke M Herbster M Kirsch B Halle T Lohmann C Bertrand J Aurich J
Full Access

Reducing wear of endoprosthetic implants is still an important goal in order to increase the life time of the implant. Endoprosthesis failure can be caused by many different mechanisms, such as abrasive wear, corrosion, fretting or foreign body reactions due to wear accumulation. Especially, modular junctions exhibit high wear rates and corrosion due to micromotions at the connection of the individual components. The wear generation of cobalt-chromium-molybdenum alloys (CoCrMo) is strongly influenced by the microstructure. Therefore, the aim of this work is to investigate the subsurface phase transformation by deep rolling manufacturing processes in combination with a “sub-zero” cooling strategy.

We analyzed the influence on the phase structure and the mechanical properties of wrought CoCr28Mo6 alloy (ISO 5832-12) by a deep rolling manufacturing process at various temperatures (+25°C,-10°C,-35°C) and different normal forces (700N and 1400N). Surface (Sa,Sz) and subsurface characteristics (residual stress) as well as biological behavior were investigated for a potential implant application.

We showed that the microstructure of CoCr28Mo6 wrought alloy changes depending on applied force and temperature. The face centered cubic (fcc) phase could be transformed to a harder hexagonal-close-packed (hcp) phase structure in the subsurface. The surface could be smoothed (up to Sa = 0.387 µm±0.185 µm) and hardened (≥ 700 HV 0.1) at the same time. The residual stress was increased by more than 600% (n=3). As a readout for metabolic activity of MonoMac (MM6) and osteosarcoma (SaOS-2) cells a WST assay (n=3) was used. The cells showed no significant negative effect of the sub-zero manufacturing process.

We showed that deep rolling in combination with an innovative cooling strategy for the manufacturing process has a great potential to improve the mechanical properties of CoCr28Mo6 wrought alloy, by subsurface hardening and phase transformation for implant applications.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 134 - 134
4 Apr 2023
Arrowsmith C Alfakir A Burns D Razmjou H Hardisty M Whyne C
Full Access

Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation).

A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach.

The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03).

This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 51 - 51
11 Apr 2023
Robarts S Palinkas V Boljanovic D Razmjou H
Full Access

The Severity Scoring System (SSS) is a guide to interpreting findings across clinical, functional, and radiological findings, used by qualified, specially trained physiotherapists in the advanced practice role in order to provide consistency in determining the severity of the patient's condition and need for surgical consultation. The system has been utilized for over 14 years as a part of standardized assessment and management care and was incorporated into virtual care in 2020 following the pandemic restrictions. The present study examined the validity of the modified SSS in virtual care.

Patients who were referred to the Rapid Access Clinic (RAC), were contacted via phone by two experienced advanced practice practitioners (APPs) from May to July 2020, when in-person care was halted due to the pandemic. The virtual interview included taking history, completing self-reported measures for pain and functional ability and reviewing the radiological reports.

A total of 63 patients were interviewed (mean age 68, SD=9), 34 (54%) females. Of 63 patients, 33 (52%) were considered a candidate for total knee arthroplasty (TKA). Men and women were comparable in age, P4 and LEFS scores. The TKA candidates had a significantly higher SSS (p<0.0001) and pain scores (p=0.024). The variability of the total SSS score explained by the functional, clinical and radiological components of the tool were 55%, 48% and 4% respectively, highlighting the more important role of patient's clinical history and disability in the total SSS.

The virtual SSS is a valid tool in directing patients for surgical management when used by highly trained advanced practice physiotherapists. A large component of the SSS is based on clinical data and patient disability and the APP's skillset rather than severity of pathology found on imaging.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 47 - 47
2 Jan 2024
Cerveró-Varona A Canciello A Prencipe G Peserico A Haidar-Montes A Santos H Russo V Barboni B
Full Access

The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies.

Acknowledgement: This research is part of the P4FIT project ESR1, funded under the H2020-ITN-EJD-Marie-Skłodowska-Curie grant agreement 955685.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 88 - 88
17 Apr 2023
Aljuaid M Alzahrani S Alzahrani A Filimban S Alghamdi N Alswat M
Full Access

Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical sagittal alignment parameters and cervical spine facets’ tropism.

A retrospective cross-sectional study carried out in a tertiary center where cervical spine magnetic resonance imaging (MRI) radiographs of patients in orthopedics/spine clincs were included. They had no history of spine fractures. Images’ reports were reviewed to exclude those with tumors in the c-spine.

A total of 96 patients was included with 63% of them were females. The mean of age was 45.53± 12.82. C2-C7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) means were −2.85±10.68 and 1.51± 0.79, respectively. Facet tropism was found in 98% of the sample in at least one level on either axial or sagittal plane. Axial C 2–3 CFT and sagittal C4-5 were correlated with CA (r=0.246, P 0.043, r= −278, P 0.022), respectively. In addition, C2-C7 sagittal vertical axis (SVA) was moderately correlated with axial c2-3 FT (r= −0.330, P 0.006) Also, several significant correlations were detected in our model Cervical vertebral slopes and CFT at the related level. Nonetheless, high BMI was associated with multi-level and multiplane CFT with higher odd's ratios at the lower levels.

This study shows that CFT at higher levels is correlated with increasing CA and decreasing SVA and at lower levels with decreasing CA. Obesity is a risk factor for CFT.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 90 - 90
2 Jan 2024
Gimona M
Full Access

Nanovesicle-based therapy is increasingly being pursued as a safe, cell-free strategy to combat various immunological, musculoskeletal and neurodegenerative diseases. Small secreted extracellular vesicles (sEVs) obtained from multipotent mesenchymal stromal cells (MSCs) are of particular interest for therapeutic use since they convey anti-inflammatory, anti-scarring and neuroprotective activities to the recipient cells. Cell-derived vesicles (CDVs) produced by a proprietary extrusion process are surrounded by a lipid bilayer membrane with correct membrane topology, display biological activities similar to MSC-derived EVs and may find specific application for organ-targeted drug delivery systems. Translation of nanovesicle-based therapeutics into clinical application requires quantitative and reproducible analysis of bioactivity and stability, and the potential for GMP-compliant manufacturing. Manufacturing and regulatory considerations as well as preclinical models to support clinical translation will be discussed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 125 - 125
4 Apr 2023
Heylen J Macdonald N Larsson E Moon K Vaughan A Owens R
Full Access

In current practice in the UK there are three main approaches to investigating suspected scaphoid fractures not seen on initial plain film x-rays.

Early MRI of all cases

Review all cases in clinic at two weeks with repeat x-rays

Hybrid model. Virtual Fracture Clinic (VFC) triage to reduce those who are seen in clinic at two weeks by:

Organising early MRI for those with high-risk presentation.

Discharging those with an alternative more likely diagnosis.

Our unit uses the VFC model. We aimed to evaluate its efficiency, safety, clinical outcomes and economic viability.

All patients attending the emergency department with either a confirmed or suspected scaphoid fracture between March and December 2020 were included (n=305). Of these 297 were referred to the VFC: 33 had a confirmed fracture on x-ray and 264 had a suspected fracture.

Of the suspected fractures reviewed in VFC 14% had an MRI organised directly owing to a high-risk presentation, 79% were brought for fracture clinic review and 17% discharged with an alternative diagnosis such as osteoarthritis.

Of those subsequently reviewed in fracture clinic at two weeks: 9% were treated as scaphoid fractures (based on clinical suspicion and repeat x-rays), 17% had MRI or CT imaging organised, 5% did not attend and 69% were discharged.

Overall, 17% of cases initially triaged, had further imaging – 41 MRIs and 5 CTs. MRI detected: 5% scaphoid fracture, 17% other fracture, 24% bone contusion, complete ligament tear 10%, partial ligament tear 39% and normal study 10%. The results of MRI minimally affected management. 3 patients were taken out of plaster early, 1 patient was immobilized who was not previously and no patients underwent operative management.

In the following 12-month period one patient re-presented with a hand or wrist issue.

This approach avoided 218 MRIs, equating to £24000 and 109 hours of scanner time.

VFC triage and selective use of MRI scanning is a safe, efficient and cost-effective method for the management suspected scaphoid fractures. This can be implemented in units without the resource to MRI all suspected scaphoid fractures from the emergency department.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 43 - 43
11 Apr 2023
Amirouche F Mok J Leonardo Diaz R Forsthoefel C Hussain A
Full Access

Lateral lumbar interbody fusion (LLIF) has biomechanical advantages due to the preservation of ligamentous structures (ALL/PLL), and optimal cage height afforded by the strength of the apophyseal ring. We compare the biomechanical motion stability of multiple levels LLIF (4 segments) utilising PEEK interbody 26mm cages to stand-alone cage placement and with supplemental posterior fixation with pedicle screw and rods.

Six lumbar human cadaver specimens were stripped of the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous structures and potted. Specimens were tested under 5 conditions: intact, posterior bilateral fixation (L1-L5) only, LLIF-only, LLIF with unilateral fixation and LLIF with bilateral fixation. Non-destructive testing was performed on a universal testing machine (MTS Systems Corp) to produce flexion-extension, lateral-bending, and axial rotation using customized jigs and a pulley system to define a non-constraining load follower. Three-dimensional spine motion was recorded using a motion device (Optotrak).

Results are reported for the L3-L4 motion segment within the construct to allow comparison with previously published works of shorter constructs (1-2 segments). In all conditions, there was an observed decrease in ROM from intact in flexion/extension (31%-89% decrease), lateral bending (19%-78%), and axial rotation (37%-60%). At flexion/extension, the decreases were statistically significant (p<0.007) except for stand-alone LLIF. LLIF+unilateral had similar decreases in all planes as the LLIF+bilateral condition. The observed ROM within the 4-level construct was similar to previously reported results in 1-2 levels for stand-alone LLIF and LLIF+bilateral.

Surgeons may be concerned about the biomechanical stability of an approach utilizing stand-alone multilevel LLIF. Our results show that 4-level multilevel LLIF utilizing 26 mm cages demonstrated ROM comparable to short-segment LLIF. Stand-alone LLIF showed a decrease in ROM from the intact condition. The addition of posterior supplemental fixation resulted in an additional decrease in ROM. The results suggest that unilateral posterior fixation may be sufficient.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 44 - 44
11 Apr 2023
Medesan P Chen Y Rust P Mearns-Spragg A Paxton J
Full Access

Jellyfish collagens exhibit auspicious perspectives for tissue engineering applications primarily due to their outstanding compatibility with a wide range of cell types, low immunogenicity and biodegradability. Furthermore, derived from a non-mammalian source, jellyfish collagens reduce the risk of disease transmission, minimising therefore the ethical and safety concerns. The current study aims to investigate the potential of 3-dimensional jellyfish collagen sponges (3D-JCS) in promoting bone tissue regeneration.

Both qualitative and quantitative analyses were performed in order to assess adhesion and proliferation of MC3T3 cells on 3D-JCL, as well as cell migration and bone-like ECM production. Histological and fluorescent dyes were used to stain mineral deposits (i.e. Alizarin Red S (ARS), Von Kossa, Tetracycline hydrochloride) while images were acquired using optical and confocal microscopy.

Qualitative data indicated successful adhesion and proliferation of MC3T3 cells on the 3D-JCS as well as cell migration along with ECM production both on the inner and outer surface of the scaffolds. Moreover, quantitative analyses indicated a four-fold increase of ARS uptake between 2- and 3-dimensional cultures (N=3) as well as an eighteen-fold increase of ARS uptake for the 3D-JCS (N=3) when cultured in osteogenic conditions compared to control. This suggests the augmented osteogenic potential of MC3T3 cells when cultured on 3D-JCS. Nevertheless, the cell-mediated mineral deposition appeared to alter the mechanical properties of the jellyfish collagen sponges that were previously reported to exhibit low mechanical properties (compressive modulus: 1-2 kPa before culture).

The biocompatibility, high porosity and pore interconnectivity of jellyfish collagen sponges promoted adhesion and proliferation of MC3T3 cells as well as cell migration and bone-like ECM production. Their unique features recommend the jellyfish collagen sponges as superior biomaterial scaffolds for bone tissue regeneration. Further studies are required to quantify the change in mechanical properties of the cell-seeded scaffolds and confirm their suitability for bone tissue regeneration. We predict that the 3D-JCS will be useful for future studies in both bone and bone-tendon interface regeneration.

Acknowledgments

This research has been supported by a Medical Research Scotland Studentship award (ref: -50177-2019) in collaboration with Jellagen Ltd.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 139 - 139
11 Apr 2023
Jeong S Suh D Park J Moon J
Full Access

Olecranon plates used for the internal fixation of complex olecranon fractures are applied directly over the triceps tendon on the posterior aspect of the olecranon. The aim of the study is to describe the relationship of the plates and screws to the triceps tendon at the level of the olecranon.

Eight cadaveric elbows were used. Dimensions of the triceps tendon at the insertion and 1cm proximal were measured. A long or a short olecranon plate was then applied over the olecranon and the most proximal screw applied. The length of the plate impinging on the tendon and the level of the screw tract on the tendon and bone were measured.

The mean olecranon height was 24.3cm (22.4-26.9cm) with a tip-to-tendon distance of 14.5cm (11.9-16.2cm). The triceps tendon footprint averaged 13.3cm (11.7-14.9cm) and 8.8cm (7.6-10.2cm) in width and length, respectively. The mean width of the central tendon 1 cm proximal to the footprint was 6.8 cm. The long olecranon plate overlay over more movable tendon length than did the short plate and consequently the superior screw pierced the triceps tendon more proximally with the long plate. Using the Mann-Whitney U test, the differences were significant.

The long olecranon plates encroach on more triceps tendon than short plates. This may be an important consideration for olecranon fractures with regards implant loosening or triceps tendon injury.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 45 - 45
11 Apr 2023
Hanetseder D Hruschka V Redl H Marolt Presen D
Full Access

Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human bone marrow stromal cells (hBMSCs).

ECM was engineered from hiPSC-derived mesenchymal-like progenitors (hiPSC-MPs), as well as young (<30 years) and aged (>70 years) hBMSCs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. Three hBMSCs of different ages were cultured on engineered ECMs. Growth and differentiation responses were compared to tissue culture plastic, as well as to collagen and fibronectin coated plates.

Decellularized ECMs contained collagens type I and IV, fibronectin, laminin and < 5% residual DNA, suggesting efficient cell elimination. Cultivation of young and aged hBMSCs on the hiPSC-ECM in osteogenic medium significantly increased hBMSC growth and markers of osteogenesis, including collagen deposition, alkaline phosphatase activity, bone sialoprotein expression and matrix mineralization compared to plastic controls and single protein substrates. In aged BMSCs, matrix mineralization was only detected in ECM cultures in osteogenic medium. Comparison of ECMs engineered from hiPSC-MPs and hBMSCs of different ages suggested similar structure, composition and potential to enhance osteogenic responses in aged BMSCs. Engineered ECM induced a higher osteogenic response compared to specific matrix components.

Our studies suggest that aged BMSCs osteogenic activity can be enhanced by culture on engineered ECM. hiPSCs represent a scalable cell source, and tissue engineering strategies employing engineered ECM materials could potentially enhance bone regeneration in elderly patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 49 - 49
11 Apr 2023
Speirs A Melkus G Rakhra K Beaule P
Full Access

Femoroacetabular impingement (FAI) results from a morphological deformity of the hip and is associated with osteoarthritis (OA). Increased bone mineral density (BMD) is observed in the antero-superior acetabulum rim where impingement occurs. It is hypothesized that the repeated abnormal contact leads to damage of the cartilage layer, but could also cause a bone remodelling response according to Wolff's Law. Thus the goal of this study was to assess the relationship between bone metabolic activity measured by PET and BMD measured in CT scans.

Five participants with asymptomatic cam deformity, three patients with uni-lateral symptomatic cam FAI and three healthy controls were scanned in a 3T PET-MRI scanner following injection with [18F]NaF. Bone remodelling activity was quantified with Standard Uptake Values (SUVs). SUVmax was analyzed in the antero-superior acetabular rim, femoral head and head-neck junction. In these same regions, BMD was calculated from CT scans using the calibration phantom included in the scan. The relationship between SUVmax and BMD from corresponding regions was assessed using the coefficient of determination (R2) from linear regression.

High bone activity was seen in the cam deformity and acetabular rim. SUVmax was negatively correlated with BMD in the antero-superior region of the acetabulum (R2=0.30, p=0.08). SUVmax was positively correlated with BMD in the antero-superior head-neck junction of the femur (R2=0.359, p=0.067). Correlations were weak in other regions.

Elevated bone turnover was seen in patients with a cam deformity but the relationship to BMD was moderate. This study demonstrates a pathomechanism of hip degeneration associated with FAI deformities, consistent with Wolff's law and the proposed mechanical cause of hip degeneration in FAI. [18F]-NaF PET SUV may be a biomarker of degeneration, especially in early stages of degeneration, when joint preservation surgery is likely to be the most successful.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 97 - 97
4 Apr 2023
van Knegsel K Zderic I Kastner P Varga P Gueorguiev B Knobe M Pastor T
Full Access

Recently, a new suture was designed to minimize laxity in order to preserve consistent tissue approximation while improving footprint compression after tendon repair. The aims of this study were: (1) to compare the biomechanical competence of two different high strength sutures in terms of slippage and failure load, (2) to investigate the influence of both knots number and different media (air, saline and fat) on the holding capacity of the knots.

Alternating surgical knots of two different high-strength sutures (group1: FibreWire; group2: DynaCord; n = 105) were tied on two roller bearings with 50N tightening force. Biomechanical testing was performed in each medium applying ramped monotonic tension to failure defined in terms of either knot slippage or suture rupture. For each group and medium, seven specimens with either 3, 4, 5, 6, or 7 knots each were tested, evaluating their knot slippage and ultimate load to failure. The minimum number of knots preventing slippage failure and thus resulting in suture rupture was determined in each group and medium, and taken as a criterium for better performance when comparing the groups.

In each group and medium failure occurred via suture rupture in all specimens for the following minimum knot numbers: group1: air – 7, saline – 7, fat – 7; group2: air – 6; saline – 4; fat – 5. The direct comparison between the groups when using 7 knots demonstrated significantly larger slippage in group1 (6.5 ± 2.2 mm) versus group2 (3.5 ± 0.4 mm) in saline (p < 0.01) but not in the other media (p ≥0.52). Ultimate load was comparable between the two groups for all three media (p ≥ 0.06).

The lower number of required knots providing sufficient repair stability, smaller slippage levels and identical suture strength, combined with the known laxity alleviation effect demonstrate advantages of DynaCord versus FibreWire.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 133 - 133
2 Jan 2024
Carvalho M Cabral J da Silva C
Full Access

Mesenchymal stromal cells (MSC) have been proposed as an emerging cell therapy for bone tissue engineering applications. However, the healing capacity of the bone tissue is often compromised by patient's age and comorbidities, such as osteoporosis. In this context, it is important to understand the impact of donor age on the therapeutic potential of MSC. Importantly, the impact on donor age is not restricted to cells themselves but also to their microenvironment that is known to affect cell function.

The extracellular matrix (ECM) has an important role in stem cell microenvironment, being able to modulate cell proliferation, self-renewal and differentiation. Decellularized cell-derived ECM (dECM) has been explored for regenerative medicine applications due to its bioactivity and its resemblance to the in vivo microenvironment. Thus, dECM offers the opportunity not only to develop microenvironments with customizable properties for improvement of cellular functions but also as a platform to study cellular niches in health and disease. In this study, we investigated the capacity of the microenvironment to rescue the impaired proliferative and osteogenic potential of aged MSC. The goal of this work was to understand if the osteogenic capacity of MSC could be modulated by exposure to a dECM derived from cells obtained from young donors. When aged MSC were cultured on dECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the osteogenic differentiation capacity of MSC. dECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments.

Acknowledgements: The authors thank FCT for funding through the project DentalBioMatrix (PTDC/BTM-MAT/3538/2020) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 135 - 135
2 Jan 2024
Iaquinta M Lanzillotti C Tognon M Martini F Stoddart M Bella ED
Full Access

The effects of dexamethasone (dex), during in vitro human osteogenesis, are contrasting. Indeed, dex downregulates SOX9 during osteogenic differentiation of human bone marrow mesenchymal stromal cells (HBMSCs). However, dex also promotes PPARG expression, resulting in the formation of adipocyte-like cells within the osteogenic monolayers. The regulation of both SOX9 and PPARG seems to be downstream the transactivation activity of the glucocorticoid receptor (GR), thus the effect of dex on SOX9 downregulation is indirect. This study aims at determining whether PPAR-γ regulates SOX9 expression levels, as suggested by several studies.

HBMSCs were isolated from bone marrow of patients with written informed consent. HBMSCs were cultured in different osteogenic induction media containing 10 or 100 nM dex. Undifferentiated cells were used as controls. Cells were treated either with a pharmacological PPAR-γ inhibitor T0070907 (donors n=4) or with a PPARG-targeting siRNA (donors n=2). Differentiation markers or PPAR-γ target genes were analysed by RT-qPCR. Mineral deposition was assessed by ARS staining. Two-way ANOVA followed by a Tukey's multiple comparison test compared the effects of treatments.

At day 7, T0070907 downregulated ADIPOQ and upregulated CXCL8, respectively targets of PPAR-γ-mediated transactivation and transrepression. RUNX2 and SOX9 were also significantly downregulated in absence of dex. PPARG was successfully downregulated by siRNA. ADIPOQ expression was also inhibited, while CXCL8 did not show any significant difference between siRNA treatment groups. RUNX2 was downregulated by the PPARG-siRNA treatment in presence of 100 nM dexamethasone, while SOX9 levels were not affected. ARS showed no change in the mineralization levels when PPARG expression or activity was inhibited.

Understanding how dex regulates HBMSC differentiation is of pivotal importance to refine current in vitro models. These results suggest that PPARG does not mediate SOX9 downregulation. Unexpectedly, RUNX2 expression was also unaltered or even downregulated after PPAR-γ inhibition.

Acknowledgements: AO Foundation, AO Research Institute (CH) and PRIN 2017 MUR (IT) for financial support.