header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MYOKINE FUNDC5 COMPROMISES MITOCHONDRIAL DYSFUNCTION IN OSTEOARTHRITIS

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 2 of 2.



Abstract

Chondrocytic activity is downregulated by compromised autophagy and mitochondrial dysfunction to accelerate the development of osteoarthritis (OA). Irisin is a cleaved form of fibronectin type III domain containing 5 (FNDC5) and known to regulate bone turnover and muscle homeostasis. However, little is known about the role of irisin in chondrocytes and the development of OA. This talk will shed light on FNDC5 expression by human articular chondrocytes and compare normal and osteoarthritic cells with respect to autophagosome marker LC3-II and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG). In chondrocytes in vitro, irisin improves IL-1β-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production. Irisin further suppressed Sirt3 and UCP- 1 to improve mitochondrial membrane potential, ATP production, and catalase. This attenuated IL-1β-mediated production of reactive oxygen species, mitochondrial fusion, mitophagy, and autophagosome formation. In a surgical murine model of destabilization of the medial meniscus (DMM) intra-articular administration of irisin alleviates symptoms like cartilage erosion and synovitis. Furthermore, gait profiles of the treated limbs improved. In chondrocytes, irisin treatment upregulates autophagy, 8-OHdG and apoptosis in cartilage of DMM limbs. Loss of FNDC5 in chondrocytes correlates with human knee OA and irisin repressed inflammation-mediated oxidative stress and deficient extracellular matrix synthesis through retaining mitochondrial biogenesis and autophagy. The talk sheds new light on the chondroprotective actions of this myokine and highlights the remedial effects of irisin during progression of OA.


Email: