header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

EFFECT OF TYPE-2 DIABETES ON OSTEOPOROTIC TRABECULAR BONE MECHANICAL PROPERTIES AND MICRODAMAGE ACCUMULATION

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 2 of 3.



Abstract

Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading, mechanical properties and microdamage accumulation of T2D-bone tissue has not yet been examined and thus our objective is to investigate this relationship.

Ethically approved femoral heads were obtained from patients, with (n=8) and without (n=8) T2D. To obtain the mechanical properties of the sample, one core underwent a monotonic compression test to 10% strain, the other core underwent a cyclic compression test at a normalized stress ratio between 0.0035mm/mm and 0.016mm/mm to a maximum strain of 3%. Microdamage was evaluated by staining the tissue with barium sulfate precipitate [2] and conducting microcomputed tomography scanning with a voxel size of 10μm.

The monotonically tested T2D-group showed no statistical difference in mechanical properties to the non-T2D-group, even when normalised against BV/TV. There was also no difference in BV/TV. For the cyclic test, the T2D-group had a significantly higher initial modulus (p<0.01) and final modulus (p<0.05). There was no difference in microdamage accumulation.

Previous population-level studies have found that T2D-patients have been shown to have an increased fracture risk when compared to non-T2D-patients. This research indicates that T2D does not impair the mechanical properties of trabecular bone from the femoral heads of T2D-patients, suggesting that other mechanisms may be responsible for the increased fracture risk seen in T2D-patients.


Email: