Advertisement for orthosearch.org.uk
Results 1 - 20 of 74
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 71 - 71
1 Nov 2021
Farinelli L Baldini M Faragalli A Carle F Gigante AP
Full Access

Introduction and Objective

The geometry of the proximal tibia and distal femur is intimately linked with the biomechanics of the knee and it is to be considered in total knee arthroplasty (TKA) component positioning. The aim of the present study was to evaluate the proximal tibial torsion in relation to the flexion-extension axis of the knee in healthy and pathological cohort affected by knee osteoarthritis (OA).

Materials and Methods

We retrospectively analyzed computed tomography scans of OA knee of 59 patients prior to TKA and non-arthritic knee of 39 patients as control. Posterior condylar angle (PCA), femoral tibial torsion (TEAs-PTC and TEAs-PTT), proximal tibial torsion (PTC-PTT and PCAx-PTC) and distance between tibial tuberosity and the trochlear groove (TT-TG) were measured.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 35 - 35
1 Jul 2020
Tsukamoto I Yamagishi K Nakagawa K Inoue S Akagi M
Full Access

We proposed the substitute anteroposterior (sAP) line of the tibia for medial unicompartmental knee arthroplasty (UKA), which connects the medial border of the patellar tendon at the articular surface level and the medial intercondylar tubercle of the tibia. However, it has not been shown that referencing this line improves the rotational alignment of the components. Therefore, in this study, we investigated whether the tibial component could be implanted perpendicular to the SEA by referencing the sAP line and whether referencing the sAP line could reduce the rotational mismatch between the femoral and the tibial components.

Postoperative computed tomography datasets from 60 lower limbs in 57 Japanese patients with medial UKA were used. Among these, 30 knees were operated using the sAP line for AP reference and other 30 knees using the medial intercondylar ridge (MIR) line. First, the angle between the AP orientation of the tibial component and the surgical epicondylar axis (SEA) was measured. Then, the rotational mismatch angle between the components was measured.

The tibial and femoral components placed referencing the sAP line were externally rotated 90.7°±3.2° and 91°±7.7° relative to the SEA, respectively, those referencing the MIR line were 94.9°±8.5° and 91.2°±7.7°, respectively. When referencing the sAP line, the orientation of the component was more perpendicular to the SEA (Student t-test, unpaired, P = .016) and rotational variability of the tibial component was significantly smaller (F test, P < 0 .0001). The rotational mismatch angle when referencing the sAP line and the MIR line was 0.3°±8.3°and −3.8°±6.7°, respectively. Referencing the sAP line significantly reduced the rotational mismatch between the components (Student t-test, unpaired, P = .045).

Referencing the sAP line in the medial UKA may be useful to determine the AP orientation of the tibial component.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 435 - 442
1 Apr 2019
Zambianchi F Franceschi G Rivi E Banchelli F Marcovigi A Nardacchione R Ensini A Catani F

Aims

The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA).

Patients and Methods

Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 139 - 139
1 Apr 2019
De Smet A Verrewaere D Sys G
Full Access

Introduction

Rotational or axial alignment is an important concept in total knee surgery. Malrotation of the femoral component can lead to patellofemoral maltracking, pain and stiffness. In reconstruction surgery of the knee, achievement of correct rotation is even more difficult because of the lack of anatomical landmarks. The linea aspera is often the only remaining landmark, but its reliability is questionable.

Goal of research

Can custom-made 3D-guides help with rotational alignment of the knee after a wide resection of the distal femur?


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1585 - 1591
1 Dec 2018
Kaneko T Kono N Mochizuki Y Hada M Sunakawa T Ikegami H Musha Y

Aims

Patellofemoral problems are a common complication of total knee arthroplasty. A high compressive force across the patellofemoral joint may affect patient-reported outcome. However, the relationship between patient-reported outcome and the intraoperative patellofemoral contact force has not been investigated. The purpose of this study was to determine whether or not a high intraoperative patellofemoral compressive force affects patient-reported outcome.

Patients and Methods

This prospective study included 42 patients (42 knees) with varus-type osteoarthritis who underwent a bi-cruciate stabilized total knee arthroplasty and in whom the planned alignment was confirmed on 3D CT. Of the 42 patients, 36 were women and six were men. Their mean age was 72.3 years (61 to 87) and their mean body mass index (BMI) was 24.4 kg/m2 (18.2 to 34.3). After implantation of the femoral and tibial components, the compressive force across the patellofemoral joint was measured at 10°, 30°, 60°, 90°, 120°, and 140° of flexion using a load cell (Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan) manufactured in the same shape as the patellar implant. Multiple regression analyses were conducted to investigate the relationship between intraoperative patellofemoral compressive force and patient-reported outcome two years after implantation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 22 - 22
1 Oct 2018
Saffi M Young SW Spangehl MJ Clarke HD
Full Access

Introduction. Tibial component malrotation is associated with pain, stiffness and altered patellofemoral kinematics in total knee arthroplasty (TKA). However, accurately measuring tibial component rotation following TKA is difficult. Proposed protocols utilizing computed tomography (CT) are not well validated and can be time consuming. This study aimed to; 1) Validate and compare the reproducibility of the Berger (2D-CT) and Mayo (3D-CT) protocols; 2) Validate a simple, and potentially rapid screening measurement using an anatomical distance on 2D axial CT- the Centre of Tibial Tray to Tibial Tubercle (CTTT) distance. Methods. Rotational alignment of 70 TKA patients were evaluated by 3 independent observers using the Berger, and Mayo protocols, which have been previously described, and a new CTTT protocol (Figure 1). The inter and intra-rater interclass correlation coefficients (ICC's), mean difference between measurements and the mean measurement times were calculated. Linear regression analysis was performed to give a coefficient of determination (R2). Results. The intra-rater reliability for all 3 protocols was rated as “very good” (Mayo 0.96, Berger 0.85 and CTTT 0.85). The inter-rater reliability for the Mayo and the Berger method was rated as “very good” (0.87 and 0.83 respectively), the CTTT was rated as “good” (0.79). The Mayo method had a lower mean difference in intra-rater measurements than the Berger method (1.42° vs 2.60° p= <0.01). Comparing the CTTT to the Mayo method produced an R2 value of 0.73 indicating strong correlation. As a screening tool, 92% of patients with CTTT ≤ 6mm had < 9° of tibial component internal rotation (IR), and 93% of patients with a CTTT ≥ 10mm had ≥ 9° IR. The Mayo method takes 3 minutes, 29 seconds; Berger method: 2 minutes, 5 seconds; CTTT method: 39 seconds to perform. Conclusion. 3D CT is the gold standard for formally determining tibial component rotational alignment. The CTTT has the strongest correlation to the Mayo method, and is the least time consuming. The CTTT method can be used as a reliable, simple and rapid screening tool in daily clinical practice to assess tibial component rotational alignment following TKA, prior to formal measurement. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 396 - 403
1 Mar 2018
Messner J Johnson L Taylor DM Harwood P Britten S Foster P

Aims

The aim of this study was to report the clinical, functional and radiological outcomes of children and adolescents with tibial fractures treated using the Ilizarov method.

Patients and Methods

Between 2013 and 2016 a total of 74 children with 75 tibial fractures underwent treatment at our major trauma centre using an Ilizarov frame. Demographic and clinical information from a prospective database was supplemented by routine functional and psychological assessment and a retrospective review of the notes and radiographs.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 45 - 45
1 Dec 2017
Sriphirom P Siramanakul C Sirisak S Chanopas B Setasuban P
Full Access

The “correct” rotational alignment and “normal” rotational alignment may not be the same position. Because of natural tibial plateau has average 3° varus but classical TKA method make tibial cut perpendicularly to tibial mechanical axis. Consequently femoral rotational compensation to 3° becomes necessary. While anatomical TKA method performed tibial cut in 3° varus. Then posterior femoral cut will be parallel to posterior condylar axis and component rotation theoretically should be aligned in natural anatomy. This study compares the rotational alignment between two methods. Study conducted on 80 navigated TKAs with modified gap technique. Intraoperative femoral rotation retrieved from navigation. Rotational alignment was calculated using the Berger protocol with postoperative computerised tomography scanning. The alignment parameters measured were tibial and femoral component rotations and the combined component rotations. 57 knees with PS design can be classified into 35 knees as anatomical group and 22 knees as classical group. 23 knees with CR design had 12 knees as anatomical group and 11 knees as classical group. The intraoperative femoral rotation in anatomical group had less external rotation than classical group significantly in PS design (0.77°±1.03° vs 2.86°±1.49°, p = 0.00) and also had the same results in CR design (1.33°±1.37°vs 2.64°±0.81°, p = 0.012). However, the postoperative excessive femoral and tibial component rotation compared with native value and combined rotation had no significant differences between classical and anatomical method in both implant design. Using CAS TKA with gap technique showed no difference in postoperative rotational alignment between classical and anatomical method


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 43 - 43
1 Aug 2017
Whiteside L
Full Access

Alignment of total joint replacement in the valgus knee can be done readily with intramedullary alignment and hand-held instruments. Intramedullary alignment instruments usually are used for the femoral resection. The distal femoral surfaces are resected at a valgus angle of 5 degrees. A medialised entry point is advised because the distal femur curves toward valgus in the valgus knee, and the distal surface of the medial femoral condyle is used as reference for distal femoral resection. In the valgus knee, the anteroposterior axis is especially important as a reliable landmark for rotational alignment of the femoral surface cuts because the posterior femoral condyles are in valgus malalignment, and are unreliable for alignment. Rotational alignment of the distal femoral cutting guide is adjusted to resect the anterior and posterior surfaces perpendicular to the anteroposterior axis of the femur. In the valgus knee this almost always results in much greater resection from the medial than from the lateral condyle. Intramedullary alignment instruments are used to resect the proximal tibial surface perpendicular to its long axis. Like the femoral resection, resection of the proximal tibial surface is based on the height of the intact medial bone surface. After correction of the deformity, ligament adjustment is almost always necessary in the valgus knee. Stability is assessed first in flexion by holding the knee at 90 degrees and maximally internally rotating the extremity to stress the medial side of the knee, then maximally externally rotating the extremity to evaluate the lateral side of the knee. Medial opening greater than 4mm, and lateral opening greater than 5mm, is considered abnormally lax, and a very tight lateral side that does not open at all with varus stress is considered to be abnormally tight. Stability is assessed in full extension by applying varus and valgus stress to the knees. Medial opening greater than 2mm is considered to be abnormally lax, and a very tight lateral side that does not open at all with varus stress is considered to be too tight. Release of tight structures should be done in a conservative manner. In some cases, direct release from bone attachment is best (popliteus tendon); in others, release with pie-crusting technique is safe and effective. In knees that are too tight laterally in flexion, but not in extension, the LCL is released in continuity with the periosteum and synovial attachments to the bone. When this lateral tightness is associated with internal rotational contracture, the popliteus tendon attachment to the femur is also released. The iliotibial band and lateral posterior capsule should not be released in this situation because they provide lateral stability only in extension. The only structures that provide passive stability in flexion are the LCL and the popliteus tendon complex, so knees that are tight laterally in flexion and extension have popliteus tendon or LCL release (or both). Stability is tested after adjusting tibial thickness to restore ligament tightness on the lateral side of the knee. Additional releases are done only as necessary to achieve ligament balance. Any remaining lateral ligament tightness usually occurs in the extended position only, and is addressed by releasing the iliotibial band first, then the lateral posterior capsule, if needed. The iliotibial band is approached subcutaneously and released extrasynovially, leaving its proximal and distal ends attached to the synovial membrane. In knees initially too tight laterally in extension, but not in flexion, the LCL and popliteus tendon are left intact, and the iliotibial band is released. If this does not loosen the knee enough laterally, the lateral posterior capsule is released. The LCL and popliteus tendon rarely, if ever, are released in this type of knee. Finally, the tibial component thickness is adjusted to achieve proper balance between the medial and lateral sides of the knee. Anteroposterior stability and femoral rollback are assessed, and posterior cruciate substitution is done, if necessary, to achieve acceptable posterior stability


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 818 - 823
1 Jun 2017
Kodama A Mizuseki T Adachi N

Aims

We assessed the long-term (more than ten-year) outcomes of the Kudo type-5 elbow prosthesis in patients with rheumatoid arthritis (RA).

Materials and Methods

We reviewed 41 elbows (Larsen Grade IV, n = 21; Grade V, n = 20) in 31 patients with RA who had undergone a Kudo type-5 total elbow arthroplasty (TEA) between 1994 and 2003, and had been followed up for more than ten years. The humeral component was cementless and the all-polyethylene ulnar component cemented in every patient. Clinical outcome was assessed using the Mayo elbow performance score. We calculated the revision rate and evaluated potential risk factors for revision. The duration of follow-up was a mean 141 months (120 to 203).


Introduction

A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA).

We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA.

Patients and methods

Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled.

To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a).

In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA.

The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 48 - 48
1 Feb 2017
Kang K Trinh T Yoo O Jang Y Lee M Lim D
Full Access

Introduction. The Rotational alignment is an important factor for survival total knee Arthroplasty. Rotational malalignment causes knee pain, global instability, and wear of the polyethylene inlay. Also, the anterior cortex line was reported that more reliable and more easily identifiable landmark for correct tibial component alignment. The aims of the current study is to identify effect of inserting the tibial baseplate of using anterior cortex line landmark of TKA on stress/strain distributions within cortical bone and bone cement. Through the current study, final aim is to suggest an alternative position of tibia baseplate for reduction of TKA failures with surgical convenience. Materials and Method. A three-dimensional tibia FE model with TKA was generated based on a traditional TKA surgical guideline. Here, a commercialized TKA (LOSPA, Corentc, Korea) was considered corresponded to a patient specific tibia morphology. Tibia baseplate was positioned at anterior cortex line. Alternative two positions were also considered based on tibia tuberosity 1/3 line and tibia tuberosity end line known as a gold standard (Fig. 1-A). Loading and boundary conditions for the FE analysis were determined based on five activities of daily life of persons with TKA (Fig. 1-B). FE model was additionally validated comparing with an actual mechanical test. Results and Discussions. The, through comparing with strain distribution on the cortical bone measured from the actual mechanical test considering 0°, 30° 60°, 90°, 120° and 140° flexion with femoral rollback phenomenon (Fig. 2). Stress/strain on the cortical bone (medial region) of the proximal tibia for the baseplate positioned at anterior cortex line were a little better distributed than those at tibia tuberosity 1/3 line and tibia tuberosity end line although the stress/stain values were similar to each other (Fig. 3-A). Potential fracture risk of the bone cement for the baseplate positioned at anterior cortex line was lower than that at tibia tuberosity 1/3 line and tibia tuberosity end line, considering safety factor (N=3). Particularly, Potential fracture risk of the bone cement for the baseplate positioned at tibia tuberosity 1/3 line known as a gold standard was highest (over 20MPa for stair down activity) (Fig. 3-B). Conclusion. Our results suggested that anterior cortex line landmark was feasible to apply positioning method on the tibial baseplate in terms of mechanical characteristics which were compared to tibia tuberosity 1/3 line and tibia tuberosity end line known as a gold standard. This study may be valuable by suggesting for the first time an alternative baseplate position for reduction of TKA failures with surgical convenience


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 109 - 109
1 Feb 2017
Kim J Han H Lee S Lee M
Full Access

Background. Rotational alignment is important for the long-term success and good functional outcome of total knee arthroplasty (TKA). While the surgical transepicondylar axis (sTEA) is the generally accepted landmark on the distal femur, a precise and easily identifiable anatomical landmark on the tibia has yet to be established. Our aim was to compare five axes on the proximal tibia in normal and osteoarthritic (OA) knees to determine the best landmark for determining rotational alignment during TKA. Methods. One hundred twenty patients with OA knees and 30 without knee OA were recruited for the study. Computed tomography (CT) images were obtained and converted through multiplanar reconstruction so the angles between the sTEA and the axes of the proximal tibia could be measured. Five AP axes were chosen: the line connecting the center of the posterior cruciate ligament(PCL) and the medial border of the patellar tendon at the cutting level of the tibia (PCL-PT), the line from the PCL to the medial border of the tibial tuberosity (PCL-TT1), the line from the PCL to the border of the medial third of the tibia (PCL-TT2), the line from the PCL to the apex of the tibia (PCL-TT3), and the AP axis of the tibial prosthesis along with the anterior cortex of the proximal tibia (anterior tibial curved cortex, ATCC). Results. In OA knees, the mean angles were less than those in normal knees for all 5 axes tested. In normal knees, the angle of the ATCC axis had the smallest mean value (1.6° ± 2.8°) and the narrowest range. In OA knees, the angle of the PCL-TT1 axis had the smallest mean value (0.3° ± 5.5°); however, the standard deviation (SD) and range were wider than that of the angle of the ATCC axis. The mean angle of the ATCC axis was larger (0.8° ± 2.7°) than the angle of the PCL-TT1 axis, but the difference was not statistically significant (P =0.461). The angle of the ATCC axis had the smallest SD and the narrowest range. Conclusion. In OA knees, the AP axis of the proximal tibia showed greater internal rotation compared with normal knees. In our study, the ATCC was found to be the most reliable and useful anatomical landmark for tibial rotational alignment in TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 47 - 47
1 Oct 2016
Halai M Jamal B Robinson P Qureshi M Kimpton J Syme B McMillan J Holt G
Full Access

Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes which would aid alignment of the femoral component. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population. Our sample group represents real life patients awaiting total knee arthroplasty (TKA), as opposed non-arthritic or cadaveric knees.

We identified the relationship between these rotational axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers.

Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and the AP axis was 92.78° with a standard deviation of 2.51° (range 88° – 99°). The mean angle between the AP axis and the PCA was 95.43° with a standard deviation of 2.75° (range 85° – 105°). The mean angle between the TEA and the PCA was 2.78° with a standard deviation of 1.91° (range 0° – 10°).

We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. The TEA's relationship with the PCA and AP appears important in defining rotation. Due to the well accepted difficulty in defining the TEA intra-operatively, there may be a role for patient-specific instrumentation in TKA surgery with pre-operative MRI.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 52 - 52
1 May 2016
Ishida K Shibanuma N Toda A Matsumoto T Takayama K Sasaki H Oka S Kodato K Kuroda R Kurosaka M
Full Access

Purpose

To investigate the tibiofemoral rotational profiles during surgery in navigated posterior-stabilized (PS) total knee arthroplasty (TKA) and investigated the effect on postoperative maximum flexion angles.

Materials and Methods

At first, twenty-five consecutive subjects (24 women and 1 man; age: mean, 77 years; range, 58–85 years) with varus osteoarthritis treated with navigated PS TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. Kinematic parameters, including the tibiofemoral rotational angles from maximum extension to maximum flexion, were recorded thrice before and after PCL resections, and after implantation. The effect of PCL resection and component implantation on tibiofemoral rotational kinematics was statistically evaluated. Then, the effect of tibiofemoral rotational alignment changes on the postoperative maximum angles were retrospectively examined with 96 subjects (84 women, 12 men; average age, 76 years; age range, 56–88 years) who underwent primary TKA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 119 - 119
1 May 2016
Park Y
Full Access

Purpose

The purpose of this study is to investigate the relationship between the angles made by the reference axes on the computerized tomography (CT) images and comparison of the knee alignment between healthy young adults and patients who is scheduled to have total knee arthroplasty.

Materials and Methods

This study was conducted in 102 patients with osteoarthritis of knee joint who underwent preoperative computerized tomography (CT). The control group included 50 patients having no arthritis who underwent CT of knee. Axial CT image of the distal femur were used to measure the angles among the the anteroposterior (AP) axis, the posterior condylar axis (PCA), clinical transepicondylar axis (cTEA) and the surgical transepicondylar axis (sTEA). Then, the differences in amounts of rotation between normal and osteoarthritic knee was evaluated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 24 - 24
1 Jan 2016
Hamada D Mikami H Toki S Wada K Goto T Sairyo K
Full Access

Objective

Rotational malalignment of the femoral component still causes patellofemoral complications that result in failures in total knee arthroplasty (TKA). To achieve correct rotational alignment, a couple of anatomical landmarks have been proposed. Theoretically, transepicondylar axis has been demonstrated as a reliable rotational reference line, however, intraoperative identification of the transepicondylar axis is challenging in some cases. Therefore, surgeons usually estimate the transepicondylar axis from posterior condylar axis (PCA) using twist angle determined by the preoperative X-rays and CT. While PCA is the most apparent landmark, radiographs are not able to detect posterior condylar cartilage. In most osteoarthritic knees, the cartilage thickness of the posterior condyle is different between medial and lateral condyles. The purpose of this study is to evaluate the effect of the posterior condylar cartilage on rotational alignment of the femoral component in large number of arthritic patients. Furthermore, we investigated whether the effect of posterior condylar cartilage is different between osteoarthritis (OA) and rheumatoid arthritis (RA).

Methods

Ninety-nine OA knees and 36 RA knees were included. Detailed information is summarized in Table 1. All cases underwent TKA using navigation system. The institutional review board approved the study protocol and informed consent was obtained from each participants. To evaluate the effect of posterior condylar cartilage, we measured two different condylar twist angle (CTA) using navigation system and intraoperative fluoroscopy-based multi-planner reconstruction (MPR) images obtained by a mobile C-arm. To uniform the SEA in two different measuring systems, we temporary inserted a suture anchors in medial and lateral prominence. The CTA that does not include the posterior condylar cartilage (MPR CTA) is evaluated on MPR images and the CTA that does include the posterior condylar cartilage (Navi. CTA) is calculated by navigation system. The difference between these two angles corresponds to the effect of posterior condylar cartilage on the rotation of the femoral component (Fig. 1). The paired or unpaired t test was used to compare the obtained data. The statistics were performed using GraphPad Prism 6. A P value of 0.05 or less is considered as a significant difference.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 134 - 134
1 Jan 2016
Wimmer M Freed R Daniels C Pourzal R
Full Access

Introduction. Current pre-clinical testing is performed using knee wear simulators with standardized walking profiles. Differences in generated damage patterns to those observed on retrieved liners have been explained with the absence of activities other than walking, less severe loading conditions, and a discrepancy in the simulator's tibiofemoral contact mechanics and in vivo knee excursion. While it has been recognized that rotational alignment of the knee may also drive the location and shape of wear scars, to the best of our knowledge this parameter has not been investigated in knee simulator studies. Methods. Here, we use patient specific gait as input to the simulation to approximate the patient specific contact mechanics. Kinematic and kinetic input data was obtained from gait analysis of a patient with a MGII (Zimmer Inc.) prosthesis at 11 years post-op using the point cluster technique for tibiofemoral kinematics, and a mathematical model for internal force calculations. Using the identical type of prosthesis on the simulator, wear tests were conducted in displacement mode on a closed-loop controlled station. Because x-rays of the patient suggested an internal rotation of the tibial tray, it was varied form 0–10° and the effect on location and wear scar dimension was assessed. Results were compared with the retrieved liner (obtained after 13 years in vivo). Results. The simulator inputs generated from the gait data were compared with ISO 14243–3 (Figure 1). The first contact force peak of the patient was significantly lower, while second contact force peak similar to ISO. There were minimal differences in the flexion/extension profiles. For stance phase, the anterior/posterior translation and internal/external rotation kinematics did not show similar patterns, but they did fall within similar ranges from zero. There was little similarity for the swing phase. The total wear scar area of the retrieval was measured to be 919.8 mm. 2. The average total wear scar of the tested components was 853.0 ± 59.8 mm. 2. (p= 26.28%) The outcome values of the tested components compared to the retrieval are shown in Figure 2. All offsets produced a smaller wear scar than the retrieval, but the 7° offset produced the closest area which was within 1 mm. 2. of the retrieval. The 7° offset also had the closed centroid offset angle, which was within 0.2° of the retrieval (Figure 3). On the retrieval, a small wear scar was observed on the anterior- medial aspect of the intracondylar eminence (not shown). Among the tested components, the 7° and 10° offsets recreated damage at this location. Discussion. Rotational alignment affected the wear scar size by as much as 15% in this study. Only, the 7° offset produced outcome values very similar to the retrieval, highlighting the importance of rotational mismatch for wear. It should be noted that ± 10° of rotational mismatch is clinically well tolerated [5] and therefore may occur frequently. All tested components had smaller wear scar areas than the retrieved liner. This suggests that other activities other than walking may have contributed to wear in vivo


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 125 - 125
1 Jan 2016
Watanabe S Sato T Tanifuji O Yamagiwa H Omori G Koga Y
Full Access

Introduction. Computed tomography (CT) based preoperative planning provides useful information for severe TKA and revision TKA cases, such as the amount of augmentation, length of stem extension and component alignment, to achieve correct alignment and joint line. In this study, we evaluated TKA alignment performed with CT preoperative planning. Materials and Methods. 7 primary TKAs for severe deformity and 3 revision TKAs were included. CT preoperative planning was performed with JIGEN (LEXI, Japan). Constrained condylar prosthesis (LCCK, Zimmer) were used in all case. For femoral component, axial alignment was decided by controlled IM rod insertion to femoral canal. Rotational alignment was decided according to anterior cortex that usually was not compromised. For tibial component, axial alignment was set to perpendicular to tibial mechanical axis. Coverage and joint line level were carefully decided. The amount of bone resection of bilateral distal and posterior femoral condyle and proximal tibia was measured, respectively. Stem extension length and offset were selected according to components position and canal filling. Amount of augmentation was also estimated bilateral distal and posterior femoral condyle, respectively. Postoperative component alignment was evaluated three-dimensionally with Knee-CAS (LEXI, Japan). Results. All femoral and tibial components were implanted within 5°in coronal and sagittal plane. All knees showed mechanical alignment within 5 degree from neutral. One of 10 TKAs needed femoral component size down, and two of 20 stems needed size change