Abstract
Objective
Rotational malalignment of the femoral component still causes patellofemoral complications that result in failures in total knee arthroplasty (TKA). To achieve correct rotational alignment, a couple of anatomical landmarks have been proposed. Theoretically, transepicondylar axis has been demonstrated as a reliable rotational reference line, however, intraoperative identification of the transepicondylar axis is challenging in some cases. Therefore, surgeons usually estimate the transepicondylar axis from posterior condylar axis (PCA) using twist angle determined by the preoperative X-rays and CT. While PCA is the most apparent landmark, radiographs are not able to detect posterior condylar cartilage. In most osteoarthritic knees, the cartilage thickness of the posterior condyle is different between medial and lateral condyles. The purpose of this study is to evaluate the effect of the posterior condylar cartilage on rotational alignment of the femoral component in large number of arthritic patients. Furthermore, we investigated whether the effect of posterior condylar cartilage is different between osteoarthritis (OA) and rheumatoid arthritis (RA).
Methods
Ninety-nine OA knees and 36 RA knees were included. Detailed information is summarized in Table 1. All cases underwent TKA using navigation system. The institutional review board approved the study protocol and informed consent was obtained from each participants. To evaluate the effect of posterior condylar cartilage, we measured two different condylar twist angle (CTA) using navigation system and intraoperative fluoroscopy-based multi-planner reconstruction (MPR) images obtained by a mobile C-arm. To uniform the SEA in two different measuring systems, we temporary inserted a suture anchors in medial and lateral prominence. The CTA that does not include the posterior condylar cartilage (MPR CTA) is evaluated on MPR images and the CTA that does include the posterior condylar cartilage (Navi. CTA) is calculated by navigation system. The difference between these two angles corresponds to the effect of posterior condylar cartilage on the rotation of the femoral component (Fig. 1). The paired or unpaired t test was used to compare the obtained data. The statistics were performed using GraphPad Prism 6. A P value of 0.05 or less is considered as a significant difference.
Results
The average MPR CTA in OA patients is 6.7 ± 2.1°, while the average MPR CTA in RA patients is 7.1 ± 2.0° (Fig 2A). On the other hand, the average Navi. CTA is 4.9 ± 2.1°, while the average Navi. CTA is 6.0 ± 2.1° (Fig. 2B). The difference of these two angles that corresponds to the cartilage remnant is 1.8 ± 1.4° in OA group and 1.1 ± 1.0° in RA groups. When we compared these angles between OA and RA population, the MPR CT – Navi CT was smaller in OA population than that of RA population (p < 0.05) (Fig. 2C).
Conclusion
These results has demonstrated that twist angle measured on the X-rays or CT that does not include the cartilage would be overestimated compared to the true twist angle that includes cartilage in osteoarthritic knee. The effect of posterior condylar cartilage has less impact on femoral rotation in RA population.