Abstract
Introduction
The Rotational alignment is an important factor for survival total knee Arthroplasty. Rotational malalignment causes knee pain, global instability, and wear of the polyethylene inlay. Also, the anterior cortex line was reported that more reliable and more easily identifiable landmark for correct tibial component alignment. The aims of the current study is to identify effect of inserting the tibial baseplate of using anterior cortex line landmark of TKA on stress/strain distributions within cortical bone and bone cement. Through the current study, final aim is to suggest an alternative position of tibia baseplate for reduction of TKA failures with surgical convenience.
Materials and Method
A three-dimensional tibia FE model with TKA was generated based on a traditional TKA surgical guideline. Here, a commercialized TKA (LOSPA, Corentc, Korea) was considered corresponded to a patient specific tibia morphology. Tibia baseplate was positioned at anterior cortex line. Alternative two positions were also considered based on tibia tuberosity 1/3 line and tibia tuberosity end line known as a gold standard (Fig. 1-A). Loading and boundary conditions for the FE analysis were determined based on five activities of daily life of persons with TKA (Fig. 1-B). FE model was additionally validated comparing with an actual mechanical test.
Results and Discussions
The, through comparing with strain distribution on the cortical bone measured from the actual mechanical test considering 0°, 30° 60°, 90°, 120° and 140° flexion with femoral rollback phenomenon (Fig. 2). Stress/strain on the cortical bone (medial region) of the proximal tibia for the baseplate positioned at anterior cortex line were a little better distributed than those at tibia tuberosity 1/3 line and tibia tuberosity end line although the stress/stain values were similar to each other (Fig. 3-A). Potential fracture risk of the bone cement for the baseplate positioned at anterior cortex line was lower than that at tibia tuberosity 1/3 line and tibia tuberosity end line, considering safety factor (N=3). Particularly, Potential fracture risk of the bone cement for the baseplate positioned at tibia tuberosity 1/3 line known as a gold standard was highest (over 20MPa for stair down activity) (Fig. 3-B).
Conclusion
Our results suggested that anterior cortex line landmark was feasible to apply positioning method on the tibial baseplate in terms of mechanical characteristics which were compared to tibia tuberosity 1/3 line and tibia tuberosity end line known as a gold standard. This study may be valuable by suggesting for the first time an alternative baseplate position for reduction of TKA failures with surgical convenience.