Advertisement for orthosearch.org.uk
Results 1 - 50 of 78
Results per page:
Bone & Joint 360
Vol. 13, Issue 3 | Pages 48 - 49
3 Jun 2024
Marson BA

The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Bone & Joint Research
Vol. 6, Issue 5 | Pages 259 - 269
1 May 2017
McKirdy A Imbuldeniya AM

Objectives. To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA). Methods. This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis. Results. There were statistically significant reductions in numbers of new patients seen face-to-face (140.4, . sd. 39.6 versus 461.6, . sd. 61.63, p < 0.0001), days to first orthopaedic review (5.2, . sd. 0.66 versus 10.9, . sd. 1.5, p < 0.0001), discharges (33.5, . sd. 3.66 versus 129.2, . sd. 7.36, p < 0.0001) and non-attendees (14.82, . sd. 1.48 versus 60.47, . sd. 2.68, p < 0.0001), in addition to a statistically significant increase in number of patients seen within 72-hours (46.4% 3873 of 8345 versus 5.1% 447 of 8771, p < 0.0001). There was a non-significant increase in consultation time of 1 minute 9 seconds (14 minutes 53 seconds . sd. 106 seconds versus 13 minutes 44 seconds . sd. 128 seconds, p = 0.0878). VFC saved the local CCG £67 385.67 in the first year and is set to save £129 885.67 annually thereafter. Conclusions. We have shown VFCs are clinically and cost-effective, with improvement across several clinical performance parameters and substantial financial savings for CCGs. To our knowledge this is the largest study addressing clinical practice implications of VFCs in England, using robust methodology to adjust for pre-existing trends. Further studies are required to appreciate whether our results are reproducible with local variations in the VFC model and payment tariffs. Cite this article: A. McKirdy, A. M. Imbuldeniya. The clinical and cost effectiveness of a virtual fracture clinic service: An interrupted time series analysis and before-and-after comparison. Bone Joint Res 2017;6:–269. DOI: 10.1302/2046-3758.65.BJR-2017-0330.R1


Bone & Joint Research
Vol. 5, Issue 10 | Pages 492 - 499
1 Oct 2016
Li X Li M Lu J Hu Y Cui L Zhang D Yang Y

Objectives. To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. Materials and Methods. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05. Results. There was no significant difference between the amount of tooth movement in the young group (0.96, standard deviation (. sd. ) 0.30mm) and that in the adult group (0.80mm, . sd. 0.28) (p > 0.05) after the seven-day force application. On the compression side, the expression of RANKL and TRAP-positive osteoclasts in both the young and the adult groups increased after the application of force for seven days, and then decreased at the end of the seven-day retention period. However, by the end of the period, the expression of RANKL on the compression side dropped to the control level in the young group (p > 0.05), while it was still higher than that on the control side in the adult group (p < 0.05). The expression of RANKL on the compression side did not show significant difference between the young and the adult groups after seven-day force application (p > 0.05), but it was significantly higher in the adult group than that in the young group after seven-day post-orthodontic retention (p < 0.05). Similarly, the decreasing trend of TRAP-positive osteoclasts during the retention period in the adult group was less obvious than that in the young group. Conclusions. The bone-resorptive activity in the young rats was more dynamic than that in the adult rats. The expression of RANKL and the number of osteoclasts in adult rats did not drop to the control level during the post-orthodontic retention period while RANKL expression and the number of osteoclasts in young rats had returned to the baseline. Cite this article: X. Li, M. Li, J. Lu, Y. Hu, L. Cui, D. Zhang, Y. Yang. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone Joint Res 2016;5:492–499. DOI: 10.1302/2046-3758.510.BJR-2016-0004.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 176 - 178
1 Jan 2010
Heidari N Pichler W Grechenig S Grechenig W Weinberg AM

Injection or aspiration of the ankle may be performed through either an anteromedial or an anterolateral approach for diagnostic or therapeutic reasons. We evaluated the success of an intra-articular puncture in relation to its site in 76 ankles from 38 cadavers. Two orthopaedic surgical trainees each injected methylene blue dye into 18 of 38 ankles through an anterolateral approach and into 20 of 38 through an anteromedial. An arthrotomy was then performed to confirm the placement of the dye within the joint. Of the anteromedial injections 31 of 40 (77.5%, 95% confidence interval (CI) 64.6 to 90.4) were successful as were 31 of 36 (86.1%, 95% CI 74.8 to 97.4) anterolateral injections. In total 62 of 76 (81.6%, 95% CI 72.9 to 90.3) of the injections were intra-articular with a trend towards greater accuracy with the anterolateral approach, but this difference was not statistically significant (p = 0.25). In the case of trainee A, 16 of 20 anteromedial injections and 14 of 18 anterolateral punctures were intra-articular. Trainee B made successful intra-articular punctures in 15 of 20 anteromedial and 17 of 18 anterolateral approaches. There was no significant difference between them (p = 0.5 and p = 0.16 for the anteromedial and anterolateral approaches, respectively). These results were similar to those of other reported studies. Unintended peri-articular injection can cause complications and an unsuccessful aspiration can delay diagnosis. Placement of the needle may be aided by the use of ultrasonographic scanning or fluoroscopy which may be required in certain instances


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1528 - 1532
1 Nov 2008
Verdegaal SHM Corver WE Hogendoorn PCW Taminiau AHM

Surgery is considered to be the most effective treatment for cartilaginous tumours. In recent years, a trend has emerged for patients with low-grade tumours to be treated less invasively using curettage followed by various forms of adjuvant therapy. We investigated the potential for phenol to be used as an adjuvant. Using a human chondrosarcoma-derived cartilage-producing cell line OUMS-27 as an in vitro model we studied the cytotoxic effect of phenol and ethanol. Since ethanol is the standard substance used to rinse phenol out of a bone cavity, we included an assessment of ethanol to see whether this was an important secondary factor with respect to cell death. The latter was assessed by flow cytometry. A cytotoxic effect was found for concentrations of phenol of 1.5% and of ethanol of 42.5%. These results may provide a clinical rationale for the use of both phenol and ethanol as adjuvant therapy after intralesional curettage in low-grade central chondrosarcoma and justify further investigation


Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 748 - 752
1 Jul 2002
Berlemann U Ferguson SJ Nolte L Heini PF

Vertebroplasty, which is the percutaneous injection of bone cement into vertebral bodies has recently been used to treat painful osteoporotic compression fractures. Early clinical results have been encouraging, but very little is known about the consequences of augmentation with cement for the adjacent, non-augmented level. We therefore measured the overall failure, strength and structural stiffness of paired osteoporotic two-vertebra functional spine units (FSUs). One FSU of each pair was augmented with polymethyl-methacrylate bone cement in the caudal vertebra, while the other served as an untreated control. Compared with the controls, the ultimate failure load for FSUs treated by injection of cement was lower. The geometric mean treated/untreated ratio of failure load was 0.81, with 95% confidence limits from 0.70 to 0.92, (p < 0.01). There was no significant difference in overall FSU stiffness. For treated FSUs, there was a trend towards lower failure loads with increased filling with cement (r. 2. = 0.262, p = 0.13). The current practice of maximum filling with cement to restore the stiffness and strength of a vertebral body may provoke fractures in adjacent, non-augmented vertebrae. Further investigation is required to determine an optimal protocol for augmentation


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 4 | Pages 665 - 669
1 Jul 1997
Verdonschot N Huiskes R

It has been suggested that the endurance of cemented femoral reconstructions in total hip arthroplasty is affected by the creep of acrylic cement, but it is not known to what extent cement creeps under loading conditions in vivo, or how this affects load transfer. We have simulated the long-term creep properties of acrylic cement in finite-element models of femoral stem constructs and analysed their effects. We investigated whether subsidence rates measured in vivo could be explained by creep of acrylic cement, and if polished, unbonded, stems accommodated creep better than bonded stems. Our findings showed that polished prostheses subsided only about 50 μm as a result of cement creep. The long-term prosthetic subsidence rates caused by creep of acrylic cement are therefore very small and do not explain the excessive migration rates which have sometimes been reported. Cement creep did, however, relax cement stresses and create a more favourable stress distribution at the interfaces. These trends were found around both the bonded and unbonded stems. Our results did not confirm that polished, unbonded, stems accommodated creep better than bonded stems in terms of cement and interface stress patterns


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 900 - 905
1 Aug 2003
Shardlow DL Stone MH Ingham E Fisher J

Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear. In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA. Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris. Radio-opaque additives are of value in surgical practice and clinical studies to quantify the relevance of these in vitro findings are required before the use of cement containing radio-opacifier is constrained


Bone & Joint 360
Vol. 8, Issue 4 | Pages 46 - 47
1 Aug 2019
Das A


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1019 - 1023
1 Nov 1997
Strecker W Keppler P Gebhard F Kinzl L

Corrective osteotomies are often planned and performed on the basis of normal anatomical proportions. We have evaluated the length and torsion of the segments of the lower limb in normal individuals, to analyse the differences between left and right sides, and to provide tolerance figures for both length and torsion. We used CT on 355 adult patients and measured length and torsion by the Ulm method. We excluded all patients with evidence of trauma, infection, tumour or any congenital disorder. The mean length of 511 femora was 46.3 ± 6.4 cm (±2. sd. ) and of 513 tibiae 36.9 ± 5.6 cm; the mean total length of 378 lower limbs was 83.2 ± 11.4 cm with a tibiofemoral ratio of 1 to 1.26 ± 0.1. The 99th percentile level for length difference in 178 paired femora was 1.2 cm, in 171 paired tibiae 1.0 cm and in 60 paired lower limbs 1.4 cm. In 505 femora the mean internal torsion was 24.1 ± 17.4°, and in 504 tibiae the mean external torsion was 34.9 ± 15.9°. For 352 lower limbs the mean external torsion was 9.8 ± 11.4°. The mean torsion angle of right and left femora in individuals did not differ significantly, but mean tibial torsion showed a significant difference between right (36.46° of external torsion) and left sides (33.07° of external torsion). For the whole legs torsion on the left was 7.5 ± 18.2° and 11.8 ± 18.8°, respectively (p < 0.001). There was a trend to greater internal torsion in femora in association with an increased external torsion in tibiae, but we found no correlation. The 99th percentile value for the difference in 172 paired femora was 13°; in 176 pairs of tibiae it was 14.3° and for 60 paired lower limbs 15.6°. These results will help to plan corrective osteotomies in the lower limbs, and we have re-evaluated the mathematical limits of differences in length and torsion


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 742 - 750
1 Jul 2001
Kim Y Kim J Cho S

We have reviewed 70 patients with bilateral simultaneous total hip arthroplasties to determine the rate of failure and to compare polyethylene wear and osteolysis between an implant with a cobalt-chrome head and Hylamer liner with that of a zirconia head and Hylamer liner. The mean thickness of the polyethylene liner was 11.0 mm (8.8 to 12.2) in the hip with a zirconia head and 10.7 mm (8.8 to 12.2) in that with a cobalt-chrome head. At follow-up at 6.4 years no acetabular or femoral component had been revised for aseptic loosening and no acetabular or femoral component was loose according to radiological criteria in both the cemented and cementless groups. The mean rate of linear wear and annual wear rate were highest in the 22 mm zirconia femoral head (1.25 mm (SD 1.05) and 0.21 mm (SD 0.18), respectively) and lowest in the 22 mm cobalt-chrome femoral head (0.70 mm (SD 0.39) and 0.12 mm (SD 0.07), respectively). The mean volumetric wear was highest in the 28 mm zirconia femoral head (730.79 mm. 3. ) and lowest in the 22 mm cobalt-chrome femoral head (264.67 mm. 3. ), but if the results were compared by size of the femoral head and type of material there was no statistical difference (p > 0.05). Sequential measurements of annual wear showed that the zirconia femoral head had a relatively higher rate of penetration than the cobalt-chrome head over the first three years; thereafter the rate of wear was reduced and compared favourably with that of cobalt-chrome heads. There was a statistically significant relationship between the wear of the polyethylene liner and the age of the patient, male gender and the degree of abduction angle of the cup, but not diagnosis, weight, hip score, range of movement, or amount of anteversion. Osteolysis was identified on both sides of the acetabulum in six patients (9%). Of 12 hips with acetabular osteolysis, six had a 28 mm cobalt-chrome femoral head and the remaining six a 28 mm zirconia head. Osteolysis was observed in zones 1A and 7A of the femur in two hips (3%) with a 28 mm zirconia head (cemented hip) and in four (6%) with a 28 mm cobalt-chrome femoral head (cementless hip). Our findings suggest that although the performance of a zirconia femoral head with a Hylamer liner was not statistically different from that of a cobalt-chrome femoral head and Hylamer liner, there was a trend for the zirconia head to be worse than the cobalt-chrome femoral head


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.


Bone & Joint Research
Vol. 8, Issue 1 | Pages 32 - 40
1 Jan 2019
Berger DR Centeno CJ Steinmetz NJ

Objectives

Platelet-rich plasma (PRP) is being used increasingly often in the clinical setting to treat tendon-related pathologies. Yet the optimal PRP preparations to promote tendon healing in different patient populations are poorly defined. Here, we sought to determine whether increasing the concentration of platelet-derived proteins within a derivative of PRP, platelet lysate (PL), enhances tenocyte proliferation and migration in vitro, and whether the mitogenic properties of PL change with donor age.

Methods

Concentrated PLs from both young (< 50 years) and aged (> 50 years) donors were prepared by exposing pooled PRP to a series of freeze-thaw cycles followed by dilution in plasma, and the levels of several platelet-derived proteins were measured using multiplex immunoassay technology. Human tenocytes were cultured with PLs to simulate a clinically relevant PRP treatment range, and cell growth and migration were assessed using DNA quantitation and gap closure assays, respectively.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 494 - 500
1 Jul 2018
Jiang L Zhu X Rong J Xing B Wang S Liu A Chu M Huang G

Objectives

Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA.

Methods

We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives

Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes.

Methods

A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 590 - 599
1 Oct 2017
Jefferson L Brealey S Handoll H Keding A Kottam L Sbizzera I Rangan A

Objectives

To explore whether orthopaedic surgeons have adopted the Proximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial results routinely into clinical practice.

Methods

A questionnaire was piloted with six orthopaedic surgeons using a ‘think aloud’ process. The final questionnaire contained 29 items and was distributed online to surgeon members of the British Orthopaedic Association and British Elbow and Shoulder Society. Descriptive statistics summarised the sample characteristics and fracture treatment of respondents overall, and grouped them by whether they changed practice based on PROFHER trial findings. Free-text responses were analysed qualitatively for emerging themes using Framework Analysis principles.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives

To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects.

Materials and Methods

Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


Bone & Joint 360
Vol. 6, Issue 5 | Pages 39 - 40
1 Oct 2017
Das A


Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives

We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change.

Methods

We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives

Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis.

Materials and Methods

A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 130 - 136
1 Apr 2016
Thornley P de SA D Evaniew N Farrokhyar F Bhandari M Ghert M

Objectives

Evidence -based medicine (EBM) is designed to inform clinical decision-making within all medical specialties, including orthopaedic surgery. We recently published a pilot survey of the Canadian Orthopaedic Association (COA) membership and demonstrated that the adoption of EBM principles is variable among Canadian orthopaedic surgeons. The objective of this study was to conduct a broader international survey of orthopaedic surgeons to identify characteristics of research studies perceived as being most influential in informing clinical decision-making.

Materials and Methods

A 29-question electronic survey was distributed to the readership of an established orthopaedic journal with international readership. The survey aimed to analyse the influence of both extrinsic (journal quality, investigator profiles, etc.) and intrinsic characteristics (study design, sample size, etc.) of research studies in relation to their influence on practice patterns.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.

Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 26 - 32
1 Feb 2016
Wendling A Mar D Wischmeier N Anderson D McIff T

Objectives

The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength.

Methods

Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. A-priorit-tests and univariate ANOVAs were used to compare elution and mechanical test results between the two mix groups and the control group.


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives

Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA).

Methods

Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


Bone & Joint Research
Vol. 4, Issue 2 | Pages 23 - 28
1 Feb 2015
Auston DA Werner FW Simpson RB

Objectives

This study tests the biomechanical properties of adjacent locked plate constructs in a femur model using Sawbones. Previous studies have described biomechanical behaviour related to inter-device distances. We hypothesise that a smaller lateral inter-plate distance will result in a biomechanically stronger construct, and that addition of an anterior plate will increase the overall strength of the construct.

Methods

Sawbones were plated laterally with two large-fragment locking compression plates with inter-plate distances of 10 mm or 1 mm. Small-fragment locking compression plates of 7-hole, 9-hole, and 11-hole sizes were placed anteriorly to span the inter-plate distance. Four-point bend loading was applied, and the moment required to displace the constructs by 10 mm was recorded.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 33 - 36
1 Feb 2016
Jenkins PJ Morton A Anderson G Van Der Meer RB Rymaszewski LA

Objectives

“Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway.

Methods

National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign.


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives

The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility.

Methods

The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated.


Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives

Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors.

Methods

We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint Research
Vol. 3, Issue 3 | Pages 51 - 59
1 Mar 2014
Kim HJ Braun HJ Dragoo JL

Background

Resveratrol is a polyphenolic compound commonly found in the skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated by resveratrol and has been shown to promote longevity and boost mitochondrial metabolism. We examined the effect of resveratrol on normal and osteoarthritic (OA) human chondrocytes.

Methods

Normal and OA chondrocytes were incubated with various concentrations of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24, 48 or 72 hours or for six weeks. Cell proliferation, gene expression, and senescence were evaluated.


Bone & Joint 360
Vol. 3, Issue 2 | Pages 28 - 29
1 Apr 2014
El-Hawary R


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 845 - 850
1 Jun 2014
Romanò CL Logoluso N Meani E Romanò D De Vecchi E Vassena C Drago L

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed.

In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups.

After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate.

Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes.

Cite this article: Bone Joint J 2014; 96-B:845–50.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 102 - 111
1 Jun 2013
Patel RA Wilson RF Patel PA Palmer RM

Objectives

To review the systemic impact of smoking on bone healing as evidenced within the orthopaedic literature.

Methods

A protocol was established and studies were sourced from five electronic databases. Screening, data abstraction and quality assessment was conducted by two review authors. Prospective and retrospective clinical studies were included. The primary outcome measures were based on clinical and/or radiological indicators of bone healing. This review specifically focused on non-spinal orthopaedic studies.


Bone & Joint Research
Vol. 1, Issue 11 | Pages 297 - 309
1 Nov 2012
McIlwraith CW Frisbie DD Kawcak CE

Osteoarthritis (OA) is an important cause of pain, disability and economic loss in humans, and is similarly important in the horse. Recent knowledge on post-traumatic OA has suggested opportunities for early intervention, but it is difficult to identify the appropriate time of these interventions. The horse provides two useful mechanisms to answer these questions: 1) extensive experience with clinical OA in horses; and 2) use of a consistently predictable model of OA that can help study early pathobiological events, define targets for therapeutic intervention and then test these putative therapies. This paper summarises the syndromes of clinical OA in horses including pathogenesis, diagnosis and treatment, and details controlled studies of various treatment options using an equine model of clinical OA.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 179 - 185
1 Sep 2013
Warwick DJ Shaikh A Gadola S Stokes M Worsley P Bain D Tucker AT Gadola SD

Objectives

We aimed to examine the characteristics of deep venous flow in the leg in a cast and the effects of a wearable neuromuscular stimulator (geko; FirstKind Ltd) and also to explore the participants’ tolerance of the stimulator.

Methods

This is an open-label physiological study on ten healthy volunteers. Duplex ultrasonography of the superficial femoral vein measured normal flow and cross-sectional area in the standing and supine positions (with the lower limb initially horizontal and then elevated). Flow measurements were repeated during activation of the geko stimulator placed over the peroneal nerve. The process was repeated after the application of a below-knee cast. Participants evaluated discomfort using a questionnaire (verbal rating score) and a scoring index (visual analogue scale).



The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model.

A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated.

Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months.

Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model.

The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1460 - 1465
1 Oct 2010
Rauh PB Clancy WG Jasper LE Curl LA Belkoff S Moorman CT

We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method.

Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury.