Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron
Objectives. This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. Materials and Methods. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. Results. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R. 2. = 0.37) with Young’s modulus obtained from the tensile testing. Conclusion. Our results indicate that SHG
Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron
Objectives. We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light
Objectives. During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes. Methods. The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal
Objectives. Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron
Objectives . The effects of disease progression and common tendinopathy treatments
on the tissue characteristics of human rotator cuff tendons have
not previously been evaluated in detail owing to a lack of suitable
sampling techniques. This study evaluated the structural characteristics
of torn human supraspinatus tendons across the full disease spectrum,
and the short-term effects of subacromial corticosteroid injections
(SCIs) and subacromial decompression (SAD) surgery on these structural
characteristics. . Methods . Samples were collected inter-operatively from supraspinatus tendons
containing small, medium, large and massive full thickness tears
(n = 33). Using a novel minimally invasive biopsy technique, paired
samples were also collected from supraspinatus tendons containing
partial thickness tears either before and seven weeks after subacromial
SCI (n = 11), or before and seven weeks after SAD surgery (n = 14).
Macroscopically normal subscapularis tendons of older patients (n
= 5, mean age = 74.6 years) and supraspinatus tendons of younger
patients (n = 16, mean age = 23.3) served as controls. Ultra- and
micro-structural characteristics were assessed using atomic force
microscopy and polarised light
We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal
Objectives. The purpose of this study was to evaluate chronological changes
in the collagen-type composition at tendon–bone interface during
tendon–bone healing and to clarify the continuity between Sharpey-like
fibres and inner fibres of the tendon. Methods. Male white rabbits were used to create an extra-articular bone–tendon
graft model by grafting the extensor digitorum longus into a bone
tunnel. Three rabbits were killed at two, four, eight, 12 and 26
weeks post-operatively. Elastica van Gieson staining was used to colour
5 µm coronal sections, which were examined under optical and polarised
light
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces in situ chondrocyte death following a standardised mechanical injury produced by a scalpel cut compared with the same assault and exposure to normal saline (0.9%, 285 mOsm). Human cartilage explants were exposed to normal (control) and hyperosmotic 0.9% saline solutions for five minutes before the mechanical injury to allow in situ chondrocytes to respond to the altered osmotic environment, and incubated for a further 2.5 hours in the same solutions following the mechanical injury. Using confocal laser scanning
Objectives. There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an Escherichia coli expression
system and purified. In vitro bioactivity was confirmed
using C2C12 cells and an alkaline phosphatase assay. The modified
solution-evaporation method . was used to fabricate α-TCP/PLGA
nanocomposite and this was characterised using X-ray diffraction
and scanning electron
Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron
The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning
We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron
Objectives. An experimental rabbit model was used to test the null hypothesis,
that there is no difference in new bone formation around uncoated
titanium discs compared with coated titanium discs when implanted
into the muscles of rabbits. Methods. A total of three titanium discs with different surface and coating
(1, porous coating; 2, porous coating + Bonemaster (Biomet); and
3, porous coating + plasma-sprayed hydroxyapatite) were implanted
in 12 female rabbits. Six animals were killed after six weeks and
the remaining six were killed after 12 weeks. The implants with
surrounding tissues were embedded in methyl methacrylate and grinded
sections were stained with Masson-Goldners trichrome and examined
by light
Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the osteoblast has been widely studied in an effort to understand the signalling pathways by which it responds to extracellular stimuli. Our aim in this study was to identify caveolae and their structural protein caveolin in normal human osteoblasts, and to determine which subtypes of caveolin were present. Confocal
Lesions within the articular cartilage layer of synovial joints do not heal spontaneously. Some repair cells may appear, but their failure to become established may be related to problems of adhesion to proteoglycan-rich surfaces. We therefore investigated whether controlled enzymatic degradation of surface proteoglycan molecules to a depth of about 1 μm, using chondroitinase ABC, would improve coverage by repair cells. We created superficial lesions (1.0 × 0.2 × 5 mm) in the articular cartilage of mature rabbit knees and treated the surfaces with 1 U/ml of chondroitinase ABC for four minutes. The defects were studied by histomorphometry and electron
The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron
Ketamine has been used in combination with a
variety of other agents for intra-articular analgesia, with promising results.
However, although it has been shown to be toxic to various types
of cell, there is no available information on the effects of ketamine
on chondrocytes. We conducted a prospective randomised controlled study to evaluate
the effects of ketamine on cultured chondrocytes isolated from rat
articular cartilage. The cultured cells were treated with 0.125
mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for
6 h, 24 hours and 48 hours, and compared with controls. Changes of
apoptosis were evaluated using fluorescence
Ischaemic preconditioning is a process by which exposure of a tissue to a short period of non-damaging ischaemic stress leads to resistance to the deleterious effects of a subsequent prolonged ischaemic stress. It has been extensively described in the heart, but few studies have examined the possibility that it can occur in skeletal muscle. We have used a rat model of ischaemia of one limb to examine this possibility. Exposure of the hind limb to a period of ischaemia of five minutes and reperfusion for five minutes significantly protected the tibialis anterior muscle against the structural damage induced by a subsequent period of limb ischaemia for four hours and reperfusion for one hour. This protection was evident on examination of the muscle by both light and electron
Tissue engineering is an increasingly popular method of addressing pathological disorders of cartilage. Recent studies have demonstrated its clinical efficacy, but there is little information on the structural organisation and biochemical composition of the repair tissue and its relation to the adjacent normal tissue. We therefore analysed by polarised light
We have studied the formation of collagen fibrils in ‘activated fibroblasts’ of tendo Achillis of rabbits. The tendon was in the process of regeneration after experimental partial tenotomy. Samples were taken from the peri-incisional region and analysed by transmission electron
Free patellar tendon grafts used for the intra-articular replacement of ruptured anterior cruciate ligaments (ACL) lack perfusion at the time of implantation. The central core of the graft undergoes a process of ischaemic necrosis which may result in failure. Early reperfusion of the graft may diminish the extent of this process. We assessed the role of peritendinous connective tissue in the revascularisation of the patellar tendon graft from the day of implantation up to 24 days in a murine model using intravital
Abundant implant-derived biomaterial wear particles are generated in aseptic loosening and are deposited in periprosthetic tissues in which they are phagocytosed by mononuclear and multinucleated macrophage-like cells. It has been stated that the multinucleated cells which contain wear particles are not bone-resorbing osteoclasts. To investigate the validity of this claim we isolated human osteoclasts from giant-cell tumours of bone and rat osteoclasts from long bones. These were cultured on glass coverslips and on cortical bone slices in the presence of particles of latex, PMMA and titanium. Osteoclast phagocytosis of these particle types was shown by light
We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron
Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital
Platelet-rich plasma (PRP) is being used increasingly often in the clinical setting to treat tendon-related pathologies. Yet the optimal PRP preparations to promote tendon healing in different patient populations are poorly defined. Here, we sought to determine whether increasing the concentration of platelet-derived proteins within a derivative of PRP, platelet lysate (PL), enhances tenocyte proliferation and migration Concentrated PLs from both young (< 50 years) and aged (> 50 years) donors were prepared by exposing pooled PRP to a series of freeze-thaw cycles followed by dilution in plasma, and the levels of several platelet-derived proteins were measured using multiplex immunoassay technology. Human tenocytes were cultured with PLs to simulate a clinically relevant PRP treatment range, and cell growth and migration were assessed using DNA quantitation and gap closure assays, respectively.Objectives
Methods
A major pathway of closed soft-tissue injury is failure of microvascular perfusion combined with a persistently enhanced inflammatory response. We therefore tested the hypothesis that hypertonic hydroxyethyl starch (HS/HES) effectively restores microcirculation and reduces leukocyte adherence after closed soft-tissue injury. We induced closed soft-tissue injury in the hindlimbs of 14 male isoflurane-anaesthetised rats. Seven traumatised animals received 7.5% sodium chloride-6% HS/HES and seven isovolaemic 0.9% saline (NS). Six non-injured animals did not receive any additional fluid and acted as a control group. The microcirculation of the extensor digitorum longus muscle (EDL) was quantitatively analysed two hours after trauma using intravital
Our aim was to examine the potential of autologous perichondral tissue to form a meniscal replacement. In 18 mature sheep we performed a complete medial meniscectomy. The animals were then divided into two groups: 12 had a meniscal replacement using strips of autologous perichondral tissue explanted from the lower rib (group G) and six (group C) served as a control group without a meniscal replacement. In all animals restriction from weight-bearing was achieved by means of transection and partial resection of tendo Achillis. Six animals (four from group G and two from group C) were each killed at 3, 6 and 12 months. The grafts and the underlying articular cartilage were removed and studied by gross macroscopic examination, light
Dupuytren’s disease is a chronic inflammatory process which produces contractures of the fingers. The nodules present in Dupuytren’s tissue contain inflammatory cells, mainly lymphocytes and macrophages. These express a common integrin known as VLA4. The corresponding binding ligands to VLA4 are vascular cell adhesion molecule-1 (VCAM-1) present on the endothelial cells and the CS1 sequence of the fibronectin present in the extracellular matrix. Transforming growth factor-beta (TGF-ß) is a peptide hormone which has a crucial role in the process of fibrosis. We studied tissue from 20 patients with Dupuytren’s disease, four samples of normal palmar fascia from patients undergoing carpal tunnel decompression and tissue from ten patients who had received perinodular injections of depomedrone into the palm five days before operation. The distribution of VLA4, VCAM-1, CS1 fibronectin and TGF-ß was shown by immunohistochemistry using an alkaline phosphorylase method for light
The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.Objectives
Methods
The intra-articular administration of tranexamic acid (TXA) has
been shown to be effective in reducing blood loss in unicompartmental
knee arthroplasty and anterior cruciate reconstruction. The effects
on human articular cartilage, however, remains unknown. Our aim,
in this study, was to investigate any detrimental effect of TXA
on chondrocytes, and to establish if there was a safe dose for its
use in clinical practice. The hypothesis was that TXA would cause
a dose-dependent damage to human articular cartilage. The cellular morphology, adhesion, metabolic activity, and viability
of human chondrocytes when increasing the concentration (0 mg/ml
to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were
analyzed in a 2D model. This was then repeated, excluding cellular
adhesion, in a 3D model and confirmed in viable samples of articular cartilage.Aims
Materials and Methods
The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.Objectives
Methods
To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Bone marrow-derived, autologous MSCs were seeded on Objectives
Materials and Methods
Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays.Objectives
Methods
Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.Objectives
Methods
Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).Objectives
Methods
Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.Objectives
Methods
Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay.Objectives
Methods
The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.Objectives
Methods
To study the effect of hyaluronic acid (HA) on local anaesthetic
chondrotoxicity Chondrocytes were harvested from bovine femoral condyle cartilage
and isolated using collagenase-containing media. At 24 hours after
seeding 15 000 cells per well onto a 96-well plate, chondrocytes
were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS,
1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0.
5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups
had conditions removed and 24-hour incubation. Cell viability was
assessed using PrestoBlue and confirmed visually using fluorescence
microscopy.Objective
Methods
This review briefly summarises some of the definitive
studies of articular cartilage by microscopic MRI (µMRI) that were
conducted with the highest spatial resolutions. The article has
four major sections. The first section introduces the cartilage
tissue, MRI and µMRI, and the concept of image contrast in MRI.
The second section describes the characteristic profiles of three
relaxation times (T1, T2 and T1ρ)
and self-diffusion in healthy articular cartilage. The third section
discusses several factors that can influence the visualisation of
articular cartilage and the detection of cartilage lesion by MRI
and µMRI. These factors include image resolution, image analysis
strategies, visualisation of the total tissue, topographical variations
of the tissue properties, surface fibril ambiguity, deformation
of the articular cartilage, and cartilage lesion. The final section
justifies the values of multidisciplinary imaging that correlates
MRI with other technical modalities, such as optical imaging. Rather
than an exhaustive review to capture all activities in the literature,
the studies cited in this review are merely illustrative.
The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.
The major problem with repair of an articular cartilage injury
is the extensive difference in the structure and function of regenerated,
compared with normal cartilage. Our work investigates the feasibility
of repairing articular osteochondral defects in the canine knee
joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate
(ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells
(BMSCs) and assesses its biological compatibility. The bone–cartilage scaffold was prepared as a laminated composite,
using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer
of polylactic acid–hydroxyacetic acid as the bony scaffold, and
sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous
scaffold. Ten-to 12-month-old hybrid canines were randomly divided
into an experimental group and a control group. BMSCs were obtained
from the iliac crest of each animal, and only those of the third
generation were used in experiments. An articular osteochondral
defect was created in the right knee of dogs in both groups. Those
in the experimental group were treated by implanting the composites
consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs.
Those in the control group were left untreated.Objectives
Methods
Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H2O2) and 50% zinc chloride (ZnCI2) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions. Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H2O2 and 50% ZnCI2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures. These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone.
The aim of this experimental study on New Zealand’s white rabbits
was to investigate the transplantation of autogenous growth plate
cells in order to treat the injured growth plate. They were assessed
in terms of measurements of radiological tibial varus and histological
characteristics. An experimental model of plate growth medial partial resection
of the tibia in 14 New Zealand white rabbits was created. During
this surgical procedure the plate growth cells were collected and
cultured. While the second surgery was being performed, the autologous
cultured growth plate cells were grafted at the right tibia, whereas
the left tibia was used as a control group. Objectives
Methods
The success of long-term transcutaneous implants
depends on dermal attachment to prevent downgrowth of the epithelium
and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn)
have independently been shown to regulate fibroblast activity and
improve attachment. In an attempt to enhance this phenomenon we
adsorbed Fn onto HA-coated substrates. Our study was designed to
test the hypothesis that adsorption of Fn onto HA produces a surface
that will increase the attachment of dermal fibroblasts better than
HA alone or titanium alloy controls. Iodinated Fn was used to investigate the durability of the protein
coating and a bioassay using human dermal fibroblasts was performed
to assess the effects of the coating on cell attachment. Cell attachment
data were compared with those for HA alone and titanium alloy controls
at one, four and 24 hours. Protein attachment peaked within one
hour of incubation and the maximum binding efficiency was achieved
with an initial droplet of 1000 ng. We showed that after 24 hours
one-fifth of the initial Fn coating remained on the substrates,
and this resulted in a significant, three-, four-, and sevenfold
increase in dermal fibroblast attachment strength compared to uncoated controls
at one, four and 24 hours, respectively.
When transferring tissue regenerative strategies
involving skeletal stem cells to human application, consideration needs
to be given to factors that may affect the function of the cells
that are transferred. Local anaesthetics are frequently used during
surgical procedures, either administered directly into the operative
site or infiltrated subcutaneously around the wound. The aim of
this study was to investigate the effects of commonly used local anaesthetics
on the morphology, function and survival of human adult skeletal
stem cells. Cells from three patients who were undergoing elective hip replacement
were harvested and incubated for two hours with 1% lidocaine, 0.5%
levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability
was quantified using WST-1 and DNA assays. Viability and morphology
were further characterised using CellTracker Green/Ethidium Homodimer-1
immunocytochemistry and function was assessed by an alkaline phosphatase
assay. An additional group was cultured for a further seven days
to allow potential recovery of the cells after removal of the local
anaesthetic. A statistically significant and dose dependent reduction in cell
viability and number was observed in the cell cultures exposed to
all three local anaesthetics at concentrations of 25% and 50%, and
this was maintained even following culture for a further seven days. This study indicates that certain local anaesthetic agents in
widespread clinical use are deleterious to skeletal progenitor cells
when studied
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
Osteoarthritis (OA) is a progressively debilitating disease that
affects mostly cartilage, with associated changes in the bone. The
increasing incidence of OA and an ageing population, coupled with
insufficient therapeutic choices, has led to focus on the potential
of stem cells as a novel strategy for cartilage repair. In this study, we used scaffold-free mesenchymal stem cells (MSCs)
obtained from bone marrow in an experimental animal model of OA
by direct intra-articular injection. MSCs were isolated from 2.8
kg white New Zealand rabbits. There were ten in the study group
and ten in the control group. OA was induced by unilateral transection
of the anterior cruciate ligament of the knee joint. At 12 weeks
post-operatively, a single dose of 1 million cells suspended in 1 ml
of medium was delivered to the injured knee by direct intra-articular
injection. The control group received 1 ml of medium without cells.
The knees were examined at 16 and 20 weeks following surgery. Repair
was investigated radiologically, grossly and histologically using
haematoxylin and eosin, Safranin-O and toluidine blue staining.Introduction
Methods
In order to ensure safety of the cell-based therapy for bone
regeneration, we examined BM cells obtained from a total of 13 Sprague-Dawley (SD) green
fluorescent protein transgenic (GFP-Tg) rats were culture-expanded
in an osteogenic differentiation medium for three weeks. Osteoblast-like
cells were then locally transplanted with collagen scaffolds to
the rat model of segmental bone defect. Donor cells were also intravenously infused
to the normal Sprague-Dawley (SD) rats for systemic biodistribution.
The flow cytometric and histological analyses were performed for
cellular tracking after transplantation.Objectives
Methods
Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation. Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.
Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p <
0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.
An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically. Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes.
The period of post-operative treatment before surgical wounds
are completely closed remains a key window, during which one can
apply new technologies that can minimise complications. One such
technology is the use of negative pressure wound therapy to manage
and accelerate healing of the closed incisional wound (incisional
NPWT). We undertook a literature review of this emerging indication
to identify evidence within orthopaedic surgery and other surgical
disciplines. Literature that supports our current understanding
of the mechanisms of action was also reviewed in detail. Objectives
Methods
We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from traumatic injuries to joints that could not be used in articular reconstruction were analysed for cell viability using the fluorescence live/dead assay and for apoptosis employing the TUNEL assay, and compared with cadaver control fragments. Chondrocyte death and apoptosis were significantly greater along the edge of the fracture and in the superficial zone of the osteochondral fragments. The middle and deep zones demonstrated significantly higher viability of the chondrocytes. These findings indicate the presence of both necrotic and apoptotic chondrocytes after joint injury and may provide further insight into the role of chondrocyte death in post-traumatic arthritis.
We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction.
This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.
Despite worldwide clinical use of bio-absorbable devices for internal fixation in orthopaedic surgery, the degradation behaviour and tissue replacement of these implants are not fully understood. In a long-term experimental study, we have determined the patterns of tissue restoration 36 and 54 months after implantation of polyglycolic acid and poly-laevo-lactic acid screws in the distal femur of the rabbit. After 36 months in the polyglycolic acid group the specimens showed no remaining polymer and loose connective tissue occupied 80% of the screw track. Tissue restoration remained poor at 54 months, the amounts of trabecular bone and haematopoietic elements being significantly lower than those in the intact control group. The amount of trabecular bone within the screw track at 54 months in the polyglycolic acid group was less than in the empty drill holes (p = 0.04). In the poly-laevo-lactic acid group, polymeric material was present in abundance after 54 months, occupying 60% of the cross-section of the core area of the screw track. When using absorbable internal fixation implants we should recognise that the degradation of the devices will probably not be accompanied by the restoration of normal trabecular bone.
Peri-tendinous injection of local anaesthetic,
both alone and in combination with corticosteroids, is commonly performed
in the treatment of tendinopathies. Previous studies have shown
that local anaesthetics and corticosteroids are chondrotoxic, but
their effect on tenocytes remains unknown. We compared the effects
of lidocaine and ropivacaine, alone or combined with dexamethasone,
on the viability of cultured bovine tenocytes. Tenocytes were exposed
to ten different conditions: 1) normal saline; 2) 1% lidocaine;
3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone
(dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex;
and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery
period, the viability of the tenocytes was quantified using the
CellTiter-Glo viability assay and fluorescence-activated cell sorting
(FACS) for live/dead cell counts. A 30-minute exposure to lidocaine
alone was significantly toxic to the tenocytes in a dose-dependent
manner, but a 30-minute exposure to ropivacaine or dexamethasone
alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher
doses of ropivacaine, but did not potentiate lidocaine tenocyte
toxicity. As seen in other cell types, lidocaine has a dose-dependent
toxicity to tenocytes but ropivacaine is not significantly toxic.
Although dexamethasone alone is not toxic, its combination with
0.5% ropivacaine significantly increased its toxicity to tenocytes.
These findings might be relevant to clinical practice and warrant
further investigation.
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.
We assessed the predictive value of the macroscopic and detailed microscopic appearance of the coracoacromial ligament, subacromial bursa and rotator-cuff tendon in 20 patients undergoing subacromial decompression for impingement in the absence of full-thickness tears of the rotator cuff. Histologically, all specimens had features of degenerative change and oedema in the extracellular matrix. Inflammatory cells were seen, but there was no evidence of chronic inflammation. However, the outcome was not related to cell counts. At three months the mean Oxford shoulder score had improved from 29.2 (20 to 40) to 39.4 (28 to 48) (p <
0.0001) and at six months to 45.5 (36 to 48) (p <
0.0001). At six months, although all patients had improved, the seven patients with a hooked acromion had done so to a less extent than those with a flat or curved acromion judged by their mean Oxford shoulder scores of 43.5 and 46.5 respectively (p = 0.046). All five patients with partial-thickness tears were within this group and demonstrated less improvement than the patients with no tear (mean Oxford shoulder scores 43.2 and 46.4, respectively, p = 0.04). These findings imply that in the presence of a partial-thickness tear subacromial decompression may require additional specific treatment to the rotator cuff if the outcome is to be improved further.
Surgery is considered to be the most effective treatment for cartilaginous tumours. In recent years, a trend has emerged for patients with low-grade tumours to be treated less invasively using curettage followed by various forms of adjuvant therapy. We investigated the potential for phenol to be used as an adjuvant. Using a human chondrosarcoma-derived cartilage-producing cell line OUMS-27 as an in vitro model we studied the cytotoxic effect of phenol and ethanol. Since ethanol is the standard substance used to rinse phenol out of a bone cavity, we included an assessment of ethanol to see whether this was an important secondary factor with respect to cell death. The latter was assessed by flow cytometry. A cytotoxic effect was found for concentrations of phenol of 1.5% and of ethanol of 42.5%. These results may provide a clinical rationale for the use of both phenol and ethanol as adjuvant therapy after intralesional curettage in low-grade central chondrosarcoma and justify further investigation.
Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA.
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.
Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry. Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted. The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones. Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones.
A retrospective series of 45 cases of chronic osteomyelitis collected over a period of 14 years was histologically classified into tuberculous osteomyelitis (25) and chronic non-granulomatous osteomyelitis (20). The tuberculous osteomyelitis group was divided into three subgroups: a) typical granulomas (13 cases); b) ill-defined granulomas (seven cases), and c) suspected granulomas (five cases). An in-house polymerase chain reaction amplifying the 245 bp nucleotide sequence, and capable of detecting 10 fg of DNA of Our preliminary study on tuberculous osteomyelitis shows that the polymerase chain reaction can be a very useful diagnostic tool, since a good correlation was seen between typical granulomas and polymerase chain reaction with a sensitivity of 84.6% and a specificity of 80%. In addition, our study shows that tuberculous osteomyelitis can be diagnosed in formalin-fixed paraffin-embedded tissues in the absence of typical granulomas.
We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures. A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks. In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect. Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.
Interfacial defects between the cement mantle and a hip implant may arise from constrained shrinkage of the cement or from air introduced during insertion of the stem. Shrinkage-induced interfacial porosity consists of small pores randomly located around the stem, whereas introduced interfacial gaps are large, individual and less uniformly distributed areas of stem-cement separation. Using a validated CT-based technique, we investigated the extent, morphology and distribution of interfacial gaps for two types of stem, the Charnley-Kerboul and the Lubinus SPII, and for two techniques of implantation, line-to-line and undersized. The interfacial gaps were variable and involved a mean of 6.43% (
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis
We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p <
0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors.
The aim of this randomised, controlled
In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts.
We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks. Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p <
0.0001; σu, p <
0.0005).
Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes. Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed.
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.