Objectives. The PROximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial has recently demonstrated that surgery is non-superior to non-operative treatment in the management of displaced proximal humeral fractures. The objective of this study was to assess current surgical practice in the context of the PROFHER trial in terms of patient demographics, injury characteristics and the nature of the surgical treatment. Methods. A total of ten consecutive patients undergoing surgery for the treatment of a proximal humeral fracture from each of 11 United Kingdom hospitals were retrospectively identified over a 15 month period between January 2014 and March 2015. Data gathered for the 110 patients included patient demographics, injury characteristics, mode of surgical fixation, the grade of operating surgeon and the cost of the surgical
Objectives. The monitoring of fracture healing is a complex process. Typically, successive radiographs are performed and an emerging calcification of the fracture area is evaluated. The aim of this study was to investigate whether different bone healing patterns can be distinguished using a telemetric instrumented femoral internal plate fixator. Materials and Methods. An electronic telemetric system was developed to assess bone healing mechanically. The system consists of a telemetry module which is applied to an internal locking plate fixator, an external reader device, a sensor for measuring externally applied load and a laptop computer with processing software. By correlation between externally applied load and load measured in the
Introduction. The objective of this study was to determine if a synthetic bone
substitute would provide results similar to bone from osteoporotic
femoral heads during in vitro testing with orthopaedic
implants. If the synthetic material could produce results similar
to those of the osteoporotic bone, it could reduce or eliminate
the need for testing of
Objectives. Osteochondral injuries, if not treated adequately, often lead
to severe osteoarthritis. Possible treatment options include refixation
of the fragment or replacement therapies such as Pridie drilling,
microfracture or osteochondral grafts, all of which have certain
disadvantages. Only refixation of the fragment can produce a smooth
and resilient joint surface. The aim of this study was the evaluation
of an ultrasound-activated bioresorbable pin for the refixation of
osteochondral fragments under physiological conditions. Methods. In 16 Merino sheep, specific osteochondral fragments of the medial
femoral condyle were produced and refixed with one of conventional
bioresorbable pins, titanium screws or ultrasound-activated pins.
Macro- and microscopic scoring was undertaken after three months. . Results. The healing ratio with ultrasound-activated pins was higher than
with conventional pins. No negative heat effect on cartilage has
been shown. Conclusion. As the material is bioresorbable, no further surgery is required
to remove the
Background. Approximately half of all hip fractures are displaced intracapsular fractures. The standard treatment for these fractures is either hemiarthroplasty or total hip arthroplasty. The recent National Institute for Health and Care Excellence (NICE) guidance on hip fracture management recommends the use of ‘proven’ cemented stem arthroplasty with an Orthopaedic Device Evaluation Panel (ODEP) rating of at least 3B (97% survival at three years). The Thompsons prosthesis is currently lacking an ODEP rating despite over 50 years of clinical use, likely due to the paucity of
Objectives. The use of two
Objectives. The purpose of this study was to refine an accepted contaminated
rat femur defect model to result in an infection rate of approximately
50%. This threshold will allow examination of treatments aimed at
reducing infection in open fractures with less risk of type II error. Methods . Defects were created in the stablised femurs of anaethetised
rats, contaminated with Staphylococcus aureus and
then debrided and irrigated six hours later. After 14 days, the
bone and
Objectives. To investigate the differences of open reduction and internal
fixation (ORIF) of complex AO Type C distal radius fractures between
two different models of a single
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.Objectives
Methods
Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) Objectives
Materials and Methods
Fractures of the proximal femur are one of the
greatest challenges facing the medical community, constituting a
heavy socioeconomic burden worldwide. Controversy exists regarding
the optimal treatment for independent patients with displaced intracapsular fractures
of the proximal femur. The recognised alternatives are hemiarthroplasty
and total hip replacement. At present there is no established standard
of care, with both types of arthroplasty being used in many centres.
The principal advantages of total hip replacement are a functional
benefit over hemiarthroplasty and a reduced risk of revision surgery.
The principal criticism is the increased risk of dislocation. We
believe that an alternative acetabular component may reduce the
risk of dislocation but still provide the functional benefit of
total hip replacement in these patients. We therefore propose to
investigate the dislocation risk of a dual-mobility acetabular component
compared with standard polyethylene component in total hip replacement
for independent patients with displaced intracapsular fractures
of the proximal femur within the framework of the larger WHiTE (Warwick
Hip Trauma Evaluation) Comprehensive Cohort Study. Cite this article:
Because of the contradictory body of evidence related to the
potential benefits of helical blades in trochanteric fracture fixation,
we studied the effect of bone compaction resulting from the insertion
of a proximal femoral nail anti-rotation (PFNA). We developed a subject-specific computational model of a trochanteric
fracture (31-A2 in the AO classification) with lack of medial support
and varied the bone density to account for variability in bone properties
among hip fracture patients.Objectives
Methods
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
Fractures of the proximal femur are one of the
greatest challenges facing the medical community, constituting a
heavy socioeconomic burden worldwide. The National Hip Fracture
Audit currently provides a framework for service evaluation. This
evaluation is based upon the assessment of process rather than assessment
of patient-centred outcome and therefore it fails to provide meaningful
data regarding the clinical effectiveness of treatments. This study
aims to capture data from the cohort of patients who present with
a fracture of the proximal femur at a single United Kingdom Major
Trauma Centre. Patient-centred outcomes will be recorded and provide
a baseline cohort within which to test the clinical effectiveness
of experimental interventions.
We aimed to further evaluate the biomechanical characteristics
of two locking screws Synthetic tubular bone models representing normal bone density
and osteoporotic bone density were used. Artificial fracture gaps
of 1 cm were created in each specimen before fixation with one of
two constructs: 1) two locking screws using a five-hole locking
compression plate (LCP) plate; or 2) three non-locking screws with
a seven-hole LCP plate across each side of the fracture gap. The
stiffness, maximum displacement, mode of failure and number of cycles
to failure were recorded under progressive cyclic torsional and
eccentric axial loading.Objectives
Methods