Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip simulator.Abstract
BACKGROUND
OBJECTIVE
Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural assessment to examine material behaviour changes during edge loading. A dynamic deformable FE model, matching the experimental conditions, was created to simulate the stress strain environment within liners. Five liners were tested for 4Mc (million cycles) of standard loading (ISO14242:1) followed by 3Mc of edge loading with dynamic separation (ISO14242:4) in a hip simulator. Microstructural measurements by Raman spectroscopy were taken at unloaded and highly loaded rim locations informed by FE results. Gravimetric and geometric measurements were taken every 1Mc cycles. Under edge loading, peak Mises stress and plastic deformation occur below the surface of the rim during heel strike. After 7Mc, microstructural analysis determined edge loaded regions had an increased crystalline mass fraction compared to unloaded regions (p<0.05). Gravimetric wear rates of 12.5mm3/Mc and 22.3mm3/Mc were measured for standard and edge loading respectively. A liner penetration of 0.37mm was measured after 7Mc. Edge loading led to an increase in gravimetric wear rate indicating a different wear mechanism is occurring. FE and Raman results suggest that changes to material behaviour at the rim could be possible. These methods will now be used to assess more liners and over a larger number of cycles. They have potential to explore the impact of edge loading on different surgical and patient variables.
Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental hip joint simulators have been used to assess tribology of total hip replacements and recently methods further developed to assess the natural hip joint mechanics. The aim of this study was to evaluate articular surfaces of human cadaveric joints following prolonged experimental simulation under a standard gait cycle. Four cadaveric male right hips (mean age = 62 years) were dissected, the joint disarticulated and capsule removed. The acetabulum and femoral head were mounted in an anatomical hip simulator (Simulation Solutions, UK). A simplified twin peak gait cycle (peak load of 3kN) was applied. Hips were submerged in Ringers solution (0.04% sodium azide) and testing conducted at 1 Hertz for 32 hours (115,200 cycles). Soft tissue degradation was recorded using photogrammetry at intervals throughout testing. All four hips were successfully tested. Prior to simulation, two samples exhibited articular surface degradation and one had a minor scalpel cut and a small area of cartilage delamination. The pre-simulation damage got slightly worse as the simulation continued but no new areas of damage were detected upon inspection. The samples without surface degradation, showed no damage during testing and the labral sealing effect was more obvious in these samples. The fact that no new areas of damage were detected after long simulations, indicates that the loading conditions and positioning of the sample were appropriate, so the simulation can be used as a control to compare mechanical degradation of the natural hip when provoked abnormal conditions or labral tissue repairs are simulated.
Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint. Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab). The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point. Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner. This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies.
Dual mobility (DM) total hip replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. Although DM THRs have shown good overall survivorship and low dislocation rates, the mechanisms which describe how these bearings function in-vivo are not fully understood. Therefore, the study aim was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment methods. Retrieved DM liners (n=18) were visually inspected for the presence of surface damage, whereby the internal and external surfaces were independently assigned a score of one (present) or zero (not present) for seven damage modes. The severity of damage was not assessed. The material composition of embedded debris was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation [1]. Scratching and pitting were the most common damage modes on either surface. Additionally, burnishing was observed on 50% of the internal surfaces and embedded debris was identified on 67% of the external surfaces. EDX analysis of the debris identified several materials including titanium, cobalt-chrome, iron, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners. The incidence of burnishing was three times greater for the internal surfaces, suggesting that this acts as the primary articulation site. The external surfaces sustained more observable damage as evidenced by a higher incidence of embedded debris, abrasion, delamination, and deformation. In conjunction with the highly variable damage patterns observed, these results suggest that DM kinematics are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted.
Dual mobility (DM) hip implants whereby the polyethylene liner is “free-floating” are being used increasingly clinically. The motion of the liner is not well understood and this may provide insight into failure mechanisms; however, there are no published methods on tracking liner motion while testing under clinically relevant conditions. The aim was to develop and evaluate a bespoke inertial tracking system for DM implants that could operate submerged in lubricant without line-of-sight and provide 3D orientation information. Trackers (n=5) adhered to DM liners were evaluated using a robotic arm and a six-degree of freedom anatomical hip simulator. Before each set of testing the onboard sensor suites were calibrated to account for steady-state and non-linearity errors. The trackers were subjected to ranges of motion from ±5° to ±25° and cycle frequencies from 0.35Hz to 1.25Hz and the outputs used to find the absolute error at the peak angle for each principle axis. In total each tracker was evaluated for ten unique motion profiles with each sequence lasting 60 cycles.Abstract
Objectives
Methods
Dual mobility (DM) total hip replacements (THRs) were introduced to reduce the risk of hip dislocation in at-risk patients. DM THRs have shown good overall survivorship and low rates of dislocation, however, the mechanisms which describe how these bearings function in-vivo are not fully understood. This is partly due to a lack of suitable characterisation methodologies which are appropriate for the novel geometry and function of DM polyethylene liners, whereby both surfaces are subject to articulation. This study aimed to develop a novel semi-quantitative geometric characterisation methodology to assess the wear/deformation of DM liners. Three-dimensional coordinate data of the internal and external surfaces of 14 in-vitro tested DM liners was collected using a Legex 322 coordinate measuring machine. Data was input into a custom Matlab script, whereby the unworn reference geometry was determined using a sphere fitting algorithm. The analysis method determined the geometric variance of each point from the reference surface and produced surface deviation heatmaps to visualise areas of wear/deformation. Repeatability of the method was also assessed.Abstract
OBJECTIVES
METHODS
Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded.Abstract
Objectives
Methods
The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms−1 and 0.85(SD 0.08)ms−1 respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups.Abstract
Objectives
Methods
Abnormal joint mechanics have been proposed as adversely affecting natural hip joint tribology, whereby increased stress on the articular cartilage from abnormal loading leads to joint degeneration. The aim of this project was to assess the damage caused by different loading conditions on the articular surfaces of the porcine hip joint in an experimental simulator. Porcine hip joints were dissected and mounted in a single station hip simulator (SimSol, UK) and tested under loading scenarios (that corresponded to equivalent of different body mass index's’ (BMI) in humans), as follows:“Normal” (n=4), the loading cycle consisted of a simplified gait cycle based on a scaled version of a simplified twin-peak human gait cycle, the peak load was 900N (representative of a healthy BMI). Representative of an “Overweight” BMI (n=3), as the normal cycle with a peak load of 1,130N Representative of an “Obese” BMI (n=1), as the normal cycle with a peak load of 1,340N Tests were conducted at 1Hz for 14,400 cycles in Ringers solution; photogrammetry was used to characterise the appearance of the cartilage and labrum pre, during and post simulation. the appearance and location of damage was recorded.Abstract
OBJECTIVES
METHODS
Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. A geometric model of a THR in situ was previously developed to predict impingement for different component orientations and joint motions of activities[2]. However, the consequence of any predicted impingement is unknown. This study aimed to develop an in-vitromethod to investigate the effects of different impingement scenarios. A ProSim electro-mechanical single-station hip simulator (Simulation Solutions) was used, and the 32mm diameter metal-on-polyethylene THRs (DePuy Synthes) were assessed. The THR was mounted in an inverted orientation, and the input (motion and loading) applied simulated a patient stooping over to pick an object from the floor[3]. The impingement severity was varied by continuing motion past the point of impingement by 2.5° or 5°, and compressive load applied in the medial-lateral direction was varied from 100N to 200N. Each test condition was applied for 40,000 cycles (n=3). Rim penetration was assessed using a CMM and component separation was measured during the tests.Abstract
Objectives
Method
Acetabular tissue damage is implicated in osteoarthritis (OA) and investigation of in situ acetabular soft tissues behaviour will improve understanding of tissue properties and interconnections. The study aim was to visualise acetabular soft tissues under load and to quantify displacements using computed tomography (CT) scans (XtremeCT, Scano Medical). A CT scan (resolution 82 μm) was performed on the disarticulated, unloaded porcine acetabulum. The femoral head was soaked in Sodium Iodide (NaI) solution and cling film wrapped to prevent transfer to the acetabular side. The joint was realigned, compressed using cable ties and re-scanned. The two images were down-sampled to 0.3 mm. Acetabular bone and soft tissues were segmented. Bony features were used to register the two background images, using Simpleware ScanIP 7.0 (Synopsys), to the same position and orientation (volume difference < 5%). Acetabular soft tissues displacements were measured by tracking the same points at the tissue edges on the two acetabular masks, along with difference in bone position as an additional error assessment. The use of radiopaque solution provided a clear contrast allowing separation of the femoral and acetabular soft tissues in the loaded image. The image registration process resulted in a difference in bone position in the areas of interest equivalent to image resolution (0.3 mm, a mean of 3 repeats by same user). A labral tip displacement of 1.7 mm and a cartilage thickness change from 1.5 mm unloaded to 0.9 mm loaded, were recorded. The combination of contrast enhancement, registration and focused local measurement was precise enough to reduce bone alignment error to that of image resolution and reveal local soft tissue displacements. These measurement methods can be used to develop models of soft tissues properties and behaviour, and therapy for hip tissue damage at early stage may be reviewed and optimised.
Wear particles produced by alumina ceramic-on-ceramic (CoC) bearings cause a minimal immunological response with low cytotoxicity and inflammatory potential1, 2. However, more comprehensive immunological studies are yet to be completed for the composite CoC (zirconia-toughened, platelet reinforced alumina) hip replacements due to difficulties in isolating the very low volume of clinically relevant wear debris generated by such materials Composite ceramic particles (commercial BIOLOX® delta powder) were obtained from CeramTec, Germany and clinically relevant CoCr wear particles were generated using a six station pin-on-plate wear simulator. L929 fibroblast cells were cultured with 50µm3 of CoCr wear debris or composite ceramic particles at low to high volumes ranging from 500µm3–0.5µm3 per cell and the cyctotoxic effects of the particles were assessed over a period of 6 days using the ATP-Lite™ cell viability assay. The composite ceramic particles were bimodal in size (0.1–2µm & 30–100nm) and showed mild cytotoxic effects when compared with equivalent particle volumes (50µm3) of clinically relevant CoCr nano-particles (10–120nm). The CoCr nano-particles had significant cytotoxic effects from day 1, whereas the composite ceramic particles only showed cytotoxic effects at particle concentrations of 50 and 500µm3 after 6 days. The increased cytotoxicity of the clinically relevant CoCr nano-particles may have been attributed to the release of Co and Cr ions. This study demonstrated the potential cytotoxic effects of model ceramic particles at very high volume concentrations, but it is unlikely that such high particle volumes will be experienced routinely
Numerous risk factors have been identified for patellar tendinopathy (PT), often in small population studies. The aim was to use an online questionnaire internationally to generate a large database and identify significant risk factors. Subjects were recruited from England, Spain and Italy with the questionnaire available in all three languages, with the questionnaire previously having been validated by Morton et al. (2014) as to be suitable for self-administration. The questionnaire can be viewed at: Introduction
Materials and Methods
The frictional torque of ceramic-on-ceramic bearings tended to increase with increasing the bearings size (32, 48, 56mm). However, the frictional torque was significantly lower than that measured on metal-on-metal bearings under well positioned and well lubricated conditions. Larger head size in total hip replacement theoretically provides increased range of motion and enhanced stability. However, there are potential clinical concerns regarding increased frictional torques with large diameter metal-on-metal bearings causing loosening of the acetabular cups and corrosion at the taper. The aim of this study was to determine the frictional torques of large diameter BIOLOX® delta ceramic-on-ceramic bearings.Summary Statement
Introduction
In vitro the introduction of microseparation and edge loading to hip simulator gait cycle has replicated clinically relevant wear rates and wear mechanisms in ceramic-on-ceramic bearings[1], and elevated the wear rates of MoM surface replacements (SR) to levels similar to those observed in retrievals[2]. The aim was to assess the wear of two different sized MoM total hip replacement bearings under steep cup inclination angles and adverse microseparation and edge loading conditions. Two tests were performed on the Leeds II hip joint simulator using two different size bearings (28mm and 36mm). Cups were mounted to provide inclination angles of 45 degrees (n=3) and 65 degrees (n=3). The first three million cycles were under standard gait conditions. Microseparation and edge loading conditions as described by Nevelos et al[1] were introduced to the gait cycle for the subsequent three million cycles. The lubricant was 25% new born calf serum. The mean wear rates and 95% confidence limits were determined and statistical analysis was performed using One Way ANOVA. Under standard gait conditions, when the cup inclination angle increased from 45 degrees to 65 degrees, the wear of size 28mm bearing significantly (p=0.004) increased by 2.7-fold, however, the larger bearings did not show any increase in wear (p=0.9). The introduction of microseparation conditions resulted in a significant (p=0.0001) increase in wear rates for both bearing sizes under both cup inclination angle conditions. Under microseparation conditions, the increase in cup inclination angle had no influence on the wear rate for both bearing sizes (Figure 1). With larger bearings, head-rim contact occurs at a steeper cup inclination angle providing an advantage over smaller bearings. The introduction of edge loading and microseparation conditions resulted in a significant increase in wear rates for both bearing sizes. The wear rates obtained in this study under combined increased cup inclination angle and microseparation were half of those obtained when SR MoM bearings were tested under similar adverse conditions[2]. This study shows the importance of prosthesis design and accurate surgical positioning of the head and acetabular cup in MoM THRs.
Tribology and wear of articular cartilage is associated with the mechanical properties, which are governed by the extracellular matrix (ECM). The ECM adapts to resist the loads and motions applied to the tissue. Most investigations take cartilage samples from quadrupeds, where the loading and motions are different to human. However, very few studies have investigated the differences between human and animal femoral head geometry and the mechanical properties of cartilage. This study assessed the differences between human, porcine, ovine and bovine cartilage from the femoral head; in terms of anatomical geometry, thickness, equilibrium elastic modulus and permeability. Diameter of porcine (3-6 months old), bovine (18-24 months old), ovine (4 years old) and human femoral heads were measured (n=6). Plugs taken out of the superior region of each femoral head and creep indentation was performed. The human femoral heads were obtained from surgery due to femoral neck fracture. Cartilage thickness was measured by monitoring the resistive force change as a needle traversed the cartilage and bone at a constant feed rate using a mechanical testing machine. The percentage deformation over time was determined by dividing deformation by thickness. A biphasic finite element model was used to obtain the intrinsic material properties of each plug. Data is presented as the mean ± 95% confidence limits. One-way ANOVA was used to test for significant differences (p < or = 0.05). Significant differences in average femoral head diameter were observed between all animals, where bovine showed the largest femoral head. Human cartilage was found to be significantly thicker than cartilage from all quadrupedal hips. Human cartilage had a significantly larger equilibrium elastic modulus compared to porcine and bovine cartilage. Porcine articular cartilage was measured to be the most permeable which was significantly larger than all the other species. No significant difference in permeability was observed between human and the other two animals: bovine and ovine (Table 1). The current study has shown that articular cartilage mechanical properties, thickness and geometry of the femoral heads differ significantly between different species. Therefore, it is necessary to consider these variations when choosing animal tissue to represent human.
Bone marrow lesions (BMLs) have been extensively linked to the osteoarthritis (OA) disease pathway in the knee. Semi-quantitative evaluation has been unable to effectively study the spatial and temporal distribution of BMLs and consequently little is understood about their natural history. This study used a novel statistical model to precisely locate the BMLs within the subchondral bone and compare BML distribution with the distribution of denuded cartilage. MR images from individuals (n=88) with radiographic evidence of OA were selected from the Osteoarthritis Initiative. Slice-by-slice, subvoxel delineation of the lesions was performed across the paired images using the criteria laid out by Roemer (2009). A statistical bone model was fitted to each image across the cohort, creating a dense set of anatomically corresponded points which allowed BML depth, position and volume to be calculated. The association between BML and denudation was also measured semi-quantitatively by visually scoring the lesions as either overlapping or adjacent to denuded AC, or not. At baseline 75 subjects had BMLs present in at least one compartment. Of the 188 compartments with BMLs 46% demonstrated change greater than 727mm cubed, the calculated smallest detectable difference. The majority of lesions were found in medial compartments compared to lateral compartments and the patella (Figure 1A). Furthermore, in the baseline images 76.9% of all BMLs either overlapped or were adjacent to denuded bone. The closeness of this relationship in four individuals is shown in Figure 1B. The distribution of lesions follows a clear trend with the majority found in the patellofemoral joint, medial femoro-tibial joint and medial tibial compartment. Moreover the novel method of measurement and display of BMLs demonstrates that there is a striking similarity between the spatial distribution of BMLs and denuded cartilage in subjects with OA. This co-location infers the lesions have a mechanical origin much like the lesions that occur in healthy patients as a direct result of trauma. It is therefore suggested that OA associated BMLs are in fact no different from the BMLs caused by mechanical damage, but occur as a result of localised disruption to the joint mechanics, a common feature of OA.