This study explored the relationship between the initial stability of the femoral component and
There is continued concern over complication rates (20–30% of cases) in locked proximal humeral plating. The most common sequelae of this is screw
We have investigated the role of the
We studied various aspects of graft impaction and
Abstract. Objectives. Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. A geometric model of a THR in situ was previously developed to predict impingement for different component orientations and joint motions of activities[2]. However, the consequence of any predicted impingement is unknown. This study aimed to develop an in-vitromethod to investigate the effects of different impingement scenarios. Method. A ProSim electro-mechanical single-station hip simulator (Simulation Solutions) was used, and the 32mm diameter metal-on-polyethylene THRs (DePuy Synthes) were assessed. The THR was mounted in an inverted orientation, and the input (motion and loading) applied simulated a patient stooping over to pick an object from the floor[3]. The impingement severity was varied by continuing motion past the point of impingement by 2.5° or 5°, and compressive load applied in the medial-lateral direction was varied from 100N to 200N. Each test condition was applied for 40,000 cycles (n=3). Rim
Extensor mechanism and abductor reconstructions in total joint arthroplasty are problematic. Growing tendon into a metallic implant would have great reconstructive advantages. With the introduction of porous metal implants, it was hoped that tendons could be directly attached to implants. However, the effects of the porous metal structure on tissue growth and pore
Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the acetabular cup liner. This has the potential to cause changes to the liner rim not accounted for in standard wear models. A greater understanding of the material behaviours could be beneficial to design and surgical guidance for THR devices. The aim of this research was to combine finite element (FE) modelling and experimental simulation with microstructural assessment to examine material behaviour changes during edge loading. A dynamic deformable FE model, matching the experimental conditions, was created to simulate the stress strain environment within liners. Five liners were tested for 4Mc (million cycles) of standard loading (ISO14242:1) followed by 3Mc of edge loading with dynamic separation (ISO14242:4) in a hip simulator. Microstructural measurements by Raman spectroscopy were taken at unloaded and highly loaded rim locations informed by FE results. Gravimetric and geometric measurements were taken every 1Mc cycles. Under edge loading, peak Mises stress and plastic deformation occur below the surface of the rim during heel strike. After 7Mc, microstructural analysis determined edge loaded regions had an increased crystalline mass fraction compared to unloaded regions (p<0.05). Gravimetric wear rates of 12.5mm. 3. /Mc and 22.3mm. 3. /Mc were measured for standard and edge loading respectively. A liner
In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the musculoskeletal system. Therefore, the aim of this work was to characterize the secretome obtained from adipose-derived MSCs (ASCs), and its modulation after pre-conditioning of the ASCs. Pre-conditioning was done by culturing cells in the presence of i) high levels of IFNγ, as proposed for the production of clinical grade secretome with enhanced regenerative potential, ii) low levels of inflammatory stimuli, mimicking conditions found in the osteoarthritis (OA) synovial fluid. Furthermore, EVs ability to migrate within cartilage, chondrocyte and synoviocytes obtained from OA patients was evaluated. The data showed that more than 50 cytokines / chemokines and more than 200 EV-microRNAs are detectable at various intensity levels in ASCs secretomes. The majority of the most abundantly present molecules are involved in the remodelling of the extracellular matrix and in the homeostasis and chemotaxis of inflammatory cells including macrophages, which in OA are often characterized by an M1 inflammatory polarization, promoting their transition to an M2 anti-inflammatory phenotype. Inflammatory priming with IFNγ and synovial fluid-like conditions were able to further increase the ability of the secretome to interact with inflammatory cells and modulate their migration. Finally, the
Tourniquet is widely used in orthopedic surgery to reduce intraoperative bleeding and improve visualization. We evaluated the effect of tourniquet application on both peri- and postoperative cefuroxime concentrations in subcutaneous tissue, skeletal muscle, calcaneal cancellous bone, and plasma. The primary endpoint was the time for which the free drug concentration of cefuroxime was maintained above the clinical breakpoint minimal inhibitory concentration (T>MIC) forStaphylococcus aureus (4 µg/mL). Ten patients scheduled for hallux valgus or hallux rigidus surgery were included. Microdialysis catheters were placed for sampling of cefuroxime concentrations bilaterally in subcutaneous tissue, skeletal muscle, and calcaneal cancellous bone. A tourniquet was applied on the thigh of the leg scheduled for surgery. Cefuroxime (1.5 g) was administered intravenously as a bolus 15 minutes prior to tourniquet inflation, followed by a second dose 6 hours later. The mean tourniquet duration (range) was 65 (58; 77) minutes. Dialysates and venous blood samples were collected for 12 hours. For cefuroxime the T>MIC (4 μg/mL) ranged between 4.8–5.4 hours across compartments, with similar results for the tourniquet and non-tourniquet leg. Comparable T>MIC and
Introduction. Beneath infection, instability and malalignment, aseptic tibial component loosening remains a major cause of failure in total knee arthroplasty (TKA) [1]. This emphasizes the need for stable primary and long-term secondary fixation of tibial baseplates. To evaluate the primary stability of cemented tibial baseplates, different pre-clinical test methods have been undergone: finite element analysis [2], static push-out [3,4] or dynamic compression-shear loading [5] until interface failure. However, these test conditions do not reflect the long-term endurance under in vivo loading modes, where the tibial baseplate is predominantly subjected to compression and shear forces in a cyclic profile [5,6]. To distinguish between design parameters the aim of our study was to develop suitable pre-clinical test methods to evaluate the endurance of the implant-cement-bone interface fixation for tibial baseplates under severe anterior (method I) and internal-external torsional (method II) shear test conditions. Materials & Methods. To create a clinically relevant cement
Summary Statement. Fretting and corrosion has been identified as a clinical problem in modular metal-on-metal THA, but remains poorly understood in modern THA devices with polyethylene bearings. This study investigates taper damage and if this damage is associated with polyethylene wear. Introduction. Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterise the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on
Introduction and Objective. Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin
The direction of wear in the acetabular socket has implications for the amount of debris that is generated during movement, for the magnitude of eccentric loading and for the incidence of impingement of the neck. We observed the direction of
Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. Objetive. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis. Materials and Methods. 82 hips implanted between 1992 and 1995 were prospectively evaluated. The mean follow-up was 20.6 years (range, 18 to 23). A hemispherical porous-coated acetabular cup matched to a proximally hydroxyapatite-coated anatomic stem and a 28 mm standard PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position and the possible appearance of loosening and osteolysis were recorded over time.
Objectives. Our objective was to perform a systematic review of the literature and conduct a meta- analysis to investigate the effect of initial varus or valgus displacement of proximal humerus on the outcomes of patients with proximal humerus fractures treated with open reduction and internal fixation. Methods. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement standards, we performed a systematic review. Electronic databases MEDLINE, EMBASE, CINAHL and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched to identify randomised and non-randomised studies comparing postoperative outcomes associated with initial varus versus initial valgus displacement of proximal humerus fracture. The Newcastle–Ottawa scale was used to assess the methodological quality and risk of bias of the selected studies. Fixed-effect or random-effects models were applied to calculate pooled outcome data. Results. We identified two retrospective cohort studies and one retrospective analysis of a prospective database, enrolling a total of 243 patients with proximal humerus fractures. Our analysis showed that initial varus displacement was associated with a higher risk of overall complication (RR 2.28, 95% CI 1.12–4.64, P = 0.02), screw
Summary Statement. This study assesses oxidation, mechanical behavior and revision reasons of 2. nd. generation HXLPE used in total hip and knee arthroplasty. While oxidation was low for both X3 and E1 HXLPEs, oxidative regional variations were detected in the sequentially annealed cohort. Introduction. First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both
Thermal osteonecrosis is a side effect when used Kirschner (K) wires and drills in orthopaedic surgeries. This osteonecrosis may endanger the fixation. Orthopaedic surgeons sometimes have to use unsharpened K-wires in emergent surgery. The thermal effect of used and unsharpened K wire is ambiguous to the bone. This experimental study aims to assess the thermal osteonecrosis while drilling bone with three different types of K-wires especially a previously used unsharpened wire and its thermographic measurements correlation. Two different speeds of rotation were chosen to investigate the effect of speed on thermal necrosis to the bone. A total of 16 New Zealand white rabbits weighing a mean of 2.90 kg (2.70 – 3.30 kg) were used. All rabbits were operated under general anaesthesia in a sterile operating room. Firstly, 4 cm longitudinal lateral approach was used to the right femur and then the femur was drilled with 1.0 mm trochar tip, spade tip and previously used unsharpened K-wires and 1.0 mm drill bit at 1450 rpm speed. Left femur was drilled with same three type K-wires and drill bit at 330 rpm speed. One cm distance was left among four
Introduction. Severe ‘discogenic’ back pain may be related to the ingrowth of nerves and blood vessels, although this is controversial. We hypothesise that ingrowth is greater in painful discs, and is facilitated in the region of annulus fissures. Methods. We compared tissue removed at surgery from 22 patients with discogenic back pain and/or sciatica, and from 16 young patients with scoliosis who served as controls. Wax-embedded specimens were sectioned at 7μm. Nerves and blood vessels were identified using histological stains, and antibodies to PGP 9.5 and CD31 respectively. Results. Blood vessels were identified in 77% of ‘painful’ discs compared to 44% of scoliotic discs (p=0.013), and they were more common in the anterior anulus compared to the posterior (p=0.026). Maximum
Crosslinking has been already used for about 80 years to enhance the longevity of polyethylene cables. The polymer alteration has been achieved with peroxide, silane or irradiation. The medical devices industry discovered the benefit of this technology for its tribological applications like hip or knee bearings in the 2000s as crosslinking improves considerably the abrasion resistance of the material. The more current methods used are Gamma and Beta irradiation. On the basis of economical (rising prices of Cobalt), environmental (the radioactive source can not be turned off), technological (low dose rate) drawbacks for Gamma respectively low
Modular hip prostheses were introduced to optimize the intra-surgical adaptation of the implant design to the native anatomy und biomechanics of the hip. The downside of a modular implant design with an additional modular interface is the potential susceptibility to fretting, crevice corrosion and wear. For testing hip implants with proximal femoral modularity according to ISO & ASTM, sodium chloride solutions are frequently used to determine the fatigue strength and durability of the stem-neck connection. The present study illustrate that the expansion of standard requirements of biomechanical testing is necessary to simulate metal ion release as well as fretting and crevice corrosion by using alternative test fluids. To assess the primary stability of tibial plateaus in vitro, different approaches had been undergone: cement