header advert
Results 1 - 50 of 1157
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1057 - 1063
1 Aug 2013
Zeng Y Shen B Yang J Zhou ZK Kang PD Pei FX

The purpose of this study was to undertake a meta-analysis to determine whether there is lower polyethylene wear and longer survival when using mobile-bearing implants in total knee replacement when compared with fixed-bearing implants. Of 975 papers identified, 34 trials were eligible for data extraction and meta-analysis comprising 4754 patients (6861 knees). We found no statistically significant differences between the two designs in terms of the incidence of radiolucent lines, osteolysis, aseptic loosening or survival. There is thus currently no evidence to suggest that the use of mobile-bearing designs reduce polyethylene wear and prolong survival after total knee replacement. Cite this article: Bone Joint J 2013;95-B:1057–63


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims. The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle. Patients and Methods. We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear. Results. The mean anteversion angle was 19.4° (-15.2° to 48°, . sd. 11.4°), the mean inclination angle 43.4° (27.3° to 60.5°, . sd. 6.6°), and the mean wear rate 0.055 mm/year (. sd. 0.060). Exactly half of the hips were positioned inside the ‘safe zone’. There was no difference (median difference, 0.012 mm/year; p = 0.091) in the rate of wear between acetabular components located within or outside the ‘safe zone’. When compared to acetabular components located inside the ‘safe zone’, the wear rate was no different for acetabular components that only achieved the target anteversion angle (median difference, 0.012 mm/year; p = 0.138), target inclination angle (median difference, 0.013 mm/year; p = 0.354), or neither target (median difference, 0.012 mm/year; p = 0.322). Conclusion. Placing the acetabular component within or outside the ‘safe zone’ did not alter the wear rate of HXLPE at long-term follow-up to a level that risked osteolysis. HXLPE appears to be a forgiving bearing material in terms of articular surface wear, but care must still be taken to position the acetabular component correctly so that the implant is stable. Cite this article: Bone Joint J 2018;100-B:891-7


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1695 - 1701
1 Nov 2021
Currier JH Currier BH Abdel MP Berry DJ Titus AJ Van Citters DW

Aims

Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance.

Methods

An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 38 - 43
1 Mar 2024
Buckner BC Urban ND Cahoy KM Lyden ER Deans CF Garvin KL

Aims

Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE.

Methods

From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.


Bone & Joint Research
Vol. 1, Issue 8 | Pages 180 - 191
1 Aug 2012
Stilling M Kold S de Raedt S Andersen NT Rahbek O Søballe K

Objectives

The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear.

Methods

A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 367 - 373
1 Mar 2010
Kendrick BJL Longino D Pandit H Svard U Gill HS Dodd CAF Murray DW Price AJ

The Oxford Unicompartmental Knee replacement (UKR) was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study involving this implant, which reported very low rates of wear in some specimens but abnormal patterns of wear in others. There has been no further investigation of these abnormal patterns. The bearings were retrieved from 47 patients who had received a medial Oxford UKR for anteromedial osteoarthritis of the knee. None had been studied previously. The mean time to revision was 8.4 years (. sd. 4.1), with 20 having been implanted for over ten years. The macroscopic pattern of polyethylene wear and the linear penetration were recorded for each bearing. The mean rate of linear penetration was 0.07 mm/year. The patterns of wear fell into three categories, each with a different rate of linear penetration; 1) no abnormal macroscopic wear and a normal articular surface, n = 16 (linear penetration rate = 0.01 mm/year); 2) abnormal macroscopic wear and normal articular surfaces with extra-articular impingement, n = 16 (linear penetration rate = 0.05 mm/year); 3) abnormal macroscopic wear and abnormal articular surfaces with intra-articular impingement +/− signs of non-congruous articulation, n = 15 (linear penetration rate = 0.12 mm/year). The differences in linear penetration rate were statistically significant (p < 0.001). These results show that very low rates of polyethylene wear are possible if the device functions normally. However, if the bearing displays suboptimal function (extra-articular, intra-articular impingement or incongruous articulation) the rates of wear increase significantly


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 79 - 79
1 Mar 2010
Vázquez AS Fernández AN Olay CC Suárez JC Lorenzo CS Vaquero DH
Full Access

Introduction and Objectives: Our aim is to determine the influence that the orientation and position of the components has on polyethylene wear in a non-cemented total hip replacement (THR) model. Materials and Methods: We studied a series of 50 THRs in which both components were coated with hydroxyapatite and polyethylene that had been sterilized by gamma radiation in an atmosphere of oxygen. Polyethylene wear was checked regularly throughout the study (mean 128 months, minimum 120 and maximum 139) using a computer program. We studied the relationship of wear with version and abduction of the acetabular component and the location of the center of rotation in the pre and postoperative periods as determined by X-rays of the teardrop and the tip of the greater trochanter. Results: The mean annual rate of wear was 0.17 mm (SD: 9.75). A statistically significant correlation was seen between the vertical angle of inclination of the acetabular component and a greater annual rate of polyethylene wear (Pearson correlation = 0.451, p = 0.001). No relationship was found between wear and the other variables studied. Discussion and Conclusions: Studies carried out over more than 10 years make it possible to assess the effect of the position of the components on polyethylene wear in THR. Although these results cannot be extrapolated to other types of friction or other surface pairs that undergo friction, the vertical position of the acetabular component favors wear of polyethylene sterilized in an atmosphere of air and should be avoided


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 64 - 64
1 Apr 2018
Shon W Sonje P Naik GL
Full Access

Background. Polyethylene wear in both cemented and uncemented total hip arthroplasty (THA) lead to generation of particles with their access to the interface which has been responsible for periprosthetic osteolysis and subsequent loosening of cup and stem. Many studies have been published studying the pattern of polyethylene wear and its relation to the type of implant (cemented/ uncemented cup or ceramic/metal head) used. No study in our knowledge has strictly focused on the effect of cemented versus uncemented stem on the polyethylene wear rates. We tried to compare the polyethylene wear rates reckoned with software (Poly Ware REV 7) of ultra high molecular weight polyethylene (UHMWPE) in hybrid and uncemented THA and its effect on complications of total hip replacements. Method. We retrospectively reviewed pre-matched 56 patients in uncemented group with 112 patients in hybrid group on the basis of polyethylene wear rate, revision rates and clinical issues, with mean follow up of 9.42 and 7.25 years (yrs.) respectively. Results. Mean polyethylene wear rate in uncemented group was 0.048 milli metres per year (mm/yr.) and it was 0.082 mm/yr. in hybrid. Wear rate in hybrid group ceramic head (0.072mm/yr.) was significant when compared to wear rate ceramic head in uncemented group (0.053mm/yr.), also we found significant difference of poly wear in the metallic group as well. There was no difference in stem loosening and cup osteolysis in low wear (<.05 mm/yr.) and high wear group (>.05mm/yr.) in both uncemented and hybrid THA. Conclusion. The revision was significantly higher in uncemented group but when adjusted with the age, it is equivocal. We found significant difference in polyethylene wear rates, but no significant difference in clinical performance and revisions among the two groups of uncemented THA and hybrid THA when compared on a mid-term 8 to 10 yrs. Follow up. Keywords. Total Hip Arthroplasty; Polywear; Uncemented THA; Hybrid THA


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 60 - 61
1 Jan 2004
Hernigou P Dechamps G
Full Access

Purpose: This study was conducted on explanted uni-compartmental prostheses with a flat polyethylene plateau without metal backing. We search for clinical factors influencing polyethylene wear. Material and methods: This series included 30 polyethylene inserts divided into two groups. Group A included revision procedures performed for a reason other than implant loosening (wear of the other compartment, femoropatellar problems). Group B implants were explanted after loosening. The duration of implantation of the 13 implants in group A was 126 months (mean, range 11–218 months); it was 167 months (range 137–224) in group B. Remaining insert thickness was measured with a micormetric device, mitutoyo, allowing palpation of the worn surface with a precision of 3 microns. The volume of the femoral penetration into the polyethylene was calculed in two ways to separate penetration related to polyethylene deformation from penetration related to polyethylene wear. The micrometric device palpated the surface of the polyethylene enabling calculation of the sum of the volumes corresponding to wear and deformation. To measure the volume corresponding to wear, the explanted pieces were weighed and the result was compared with implants of the same size which had never been implanted. Polyethylene wear was calculated from the weight loss and and polyethylene density. The difference between the two calculation methods was attributed to polyethylene deformation. Results: Mean residual thickness of the polyethylene in group A without loosening was 7.16 mm, compared with 4.5 mm in group B. The volumetric femoral penetration into the polyethylene was a mean 19 mm3 per year in group A and 65 mm3 per year in group B. This imprint obtained with the micormetric measuring device was greater than the wear determined by weighing. This difference was about 25%. The decreased thickness of the implant was thus undoubtedly due, for three quarters, to wear alone. One quarter being attributed to polyethylene deformation. In group A (without loosening), each supplementary year of implantation corresponded to a decrease in the rate of wear of about 12% per yar, which would suggest that the wear mechanism is an abrasion and that with time the femoral and tibial implants become more congruent decreasing the rate of wear. Inversely in group B, each supplementary year of implantation after onset of loosening was associated with a 9% increase in the annual rate of wear. Microscopic examination of the group A implants demonstrate that abraison was the main mechanism of wear. In group B, delamination was observed, particularly when the loosening was associated with anterior cruciate ligament tear or major persistent deformation. Discussion: The rates and mechanisms of polyethylene wear in unicompartmental prostheses are different for non-loosened implants and for loosened implants. Taking into account the fact that polyethylene deformation participates for about one quarter of the decreased thickness over time, adjunction of a metal back would appear indispensable for thin inserts


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 2 | Pages 249 - 253
1 Mar 1993
Cates H Faris P Keating E Ritter M

We examined radiographic polyethylene wear in 233 cemented total hip arthroplasties (201 patients) with either a metal-backed or a non-metal-backed acetabular cup. All patients had identical cemented one-piece titanium femoral stems with a femoral head diameter of 28 mm. The mean linear wear rate was 0.11 mm/yr in metal-backed sockets and 0.08 mm/yr in non-metal-backed sockets (p = 0.0002). The mean volumetric wear rate was 66.2 mm3/yr in the metal-backed sockets and 48.2 mm3/yr in the polyethylene sockets (p = 0.0002). The addition of metal backing to a cemented acetabular cup therefore resulted in a 37% increase in mean polyethylene wear rates which may partially explain the higher failure rate of cemented metal-backed cups. Linear regression analysis also implicated increased follow-up time (log), gross acetabular migration, metal backing and male gender in increasing polyethylene wear. We advocate the use of an all-polyethylene cup in cemented total hip arthroplasty. The increased polyethylene wear must also cause concern about the wear rate of uncemented metal-backed acetabular sockets


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 150 - 150
1 Feb 2017
Gruebl A Salak M Fellinger E Spittler A
Full Access

Introduction. It has been shown in vitro that human monocytes can phagocytose submicron polyethylene wear particles generated from total hip arthroplasties (THA) with highly cross-linked polyethylene inlays. The aim of our study was to detect the presence and possible phagocytosis of such particles in peripheral blood monocytes of patients with respective THA. Patients and methods. All patients were operated using the same implant, the cementless SL Plus stem; Bicon cup and a cross-linked polyethylene insert Rexpol (Smith and Nephew). Besides clinical and radiographic check-up, blood samples were collected at follow-up and analyzed by flow cytometry. Polyethylene can be identified by its auto fluorescence when stimulated by a laser with the wavelength of fluorescein isothiocyanate (FITC). Presence of wear particles in monocytes was identified by determination of their size and granularity. Some samples were scrutinized by confocal laser scanning microscopy to correlate the intracellular position of the particles. Blood samples of patients without total joint replacement served as controls. Results. 18 samples of patients with THA were compared to 18 controls. Flow cytometry didn't show any difference of size, granularity and auto fluorescence of the investigated cells between the two groups. Furthermore confocal laser scanning microscopy was unable to establish the intracellular position of the auto fluorescence. There were 11 female and 7 male patients with a mean age of 70,4 years at the time of surgery and an average body mass index of 32 (23 – 41). Average follow-up time was 6,5 years (6 – 8 years). 2 patients had been revised, one for a periprosthetic fracture postoperatively, the other for cup loosening at 5 years. Radiographically there were no signs of loosening. Conclusion. Flow cytometry and confocal laser scanning microscopy were unable to detect submicron polyethylene wear particles in human monocytes in vivo following THA. This could be due to a lack of sensitivity or/and specificity although the in vitro study showing phagocytosis of submicron particles in vitro applied the same methods. The analysis could be too early if the number of wear particles hasn't possibly reached a critical mass at 6.5 years. Potentially the conclusion of the in vitro study is inapplicable and human monocytes are unable to phagocytose polyethylene wear particles. In any case further research in this field seems necessary


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 123 - 124
1 Apr 2005
Durand J Limozin R Semay J Fessy M
Full Access

Purpose: Polyethylene wear in total hip arthroplasty remains the most limiting factor for implant survival. Several predictive factors are well identified, but the position of the articulating pieces remains to be studied in detail. We searched for a correlation between polyethylene wear and the position of the femoral and acetabular pieces, particularly the femoral offset. Material and methods: Sixty-six patients underwent total hip arthroplasty for osteoarthritis or osteonecrosis. The patients were reviewed at 10.8 years (four bilateral prostheses). The preoperative, immediate postoperative (1 month) and last follow-up (10 years) AP pelvis views were digitalized. A dedicated software traced the different axes for measurement. Wear at ten years, femoral offset, cup eccentration or medialisation, ascent or descent, and cup inclination were measured. Results: Mean polyethylene wear was 1.23 mm at ten years with linear curve of 0.11 mm/yr. Preoperative femoral offset was restored in 71.4% of the cases. Univariate regression analysis revealed that only femoral offset was correlated with less wear at ten years. Polyethylene wear at ten years fell from 1.26 mm for preoperative offset restitution less than 98% to 1.13 mm for restitution greater than 102%. Discussion: Image processing allowed greater accuracy in the measurement of polyethylene wear. The rate of wear reported in the literature ranges from 0.1 to .015 mm/yr. Restitution of femoral offset guarantees less wear due to the reduction in the resultant force applied on the articulation as well as stress on the implants. Furthermore hip stability is improved. Several factors are involved in production of wear debris and correct restitution of the centre of rotation is only one of the elements which reduce wear. Conclusion: Wear was not excessive in this series. Among the position parameters, only femoral offset had an influence, having a beneficial effect on polyethylene wear. This emphasises the importance of having a wide variety of implants available in order to respond to the different anatomic presentations of the femur


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 30 - 30
1 Mar 2017
Suzuki M Minakawa M Inagawa D Uetsuki K Nakamura J
Full Access

In total knee arthroplasty, polyethylene wear has been a major cause of revision surgery. However, it is sometimes difficult to determine the time of revision surgery in elderly people due to their concomitant diseases. Therefore, the brace for measuring polyethylene wear under computed tomography was developed. Methods. The brace works by strapping a femoral component tightly to a polyethylene insert by applying compression force between the sole of the foot and the thigh. Holes of 1, 2, 5, 10 mm in diameter and 0.1, 0.2, 0.5 and 1 mm in depth were created in the posteromedial part of polyethylene inserts. The inserts were provided from Teijin-nakashima Co. ltd. (Jodo, Okayama, Japan). The Hi-tech knee artificial joint (Teijin-nakashima Co. ltd.) was applied to a cadaveric knee and CT images of the knee were taken with a combination of insets with varying diameters and depths holes, using Aquilion ONE (Toshiba Medical Systems Corporation, Ohtawara, Japan). The finding conditions were as follows, Voltage; 120V, Current; 5A, slice thickness; 0.5 mm helical. The patient, who received total knee arthroplasty over 15 years ago, wore the brace and was examined using computed tomography. Afterward, the patient received revision surgery to replace the worn insert into new one. The removed insert was measured with a three-dimensional measuring machine (Cyclon, Mitsutoyo Co. ltd., Kawasaki, Japan). Results. At a 1.0 mm depth, all holes could be detected. At a 0.5 mm depth, holes of 2, 5, 10 mm in diameter could be detected. At a 0.1∼0.2 mm depth, there was no hole detected. After revision surgery, a three-dimensional measuring machine revealed a 1.8 mm thickness of the insert on the medial side. The CT reconstruction image showed a1.84 mm thickness similar to the virtually measured figure. Conclusion. The brace and CT imaging was useful for the detection of polyethylene wear


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 401 - 401
1 Apr 2004
Miura H Higaki H Nakanishi Y Mawatari T Moro-oka T Tsutomu T Iwamoto Y
Full Access

Polyethylene wear in total knee arthroplasty (TKA) is a complex and mutifactorial process. It is generally recognized that wear is directly related to a material wear factor, contact stress, and sliding distance. Conventional methods of predicting polyethylene wear in TKA mainly focus on peak contact stress or subsurface shear stress using finite element method analysis. By incorporating kinematics and contact stress, a new predictor for polyethylene wear in TKA (“Wear Index”) has been developed. The Wear Index was defined by multiplying deformation by femoro-tibial sliding velocity. The purpose of this study was to determine the predictive value of the Wear Index for polyethylene wear in TKA using both a numeric and an in vitro model. Four commercially available total knee prostheses were modeled for this study. Deformation and sliding velocity were calculated based on the three-dimensional geometry of the components and the gait kinematic inputs using Hertz’s formula. One specimen of each of the four types of total knee prostheses was mounted on a custom-designed knee simulator. Vertical loads and flexion-extension uni-axial motion were simulated using computer controlled servohydraulic actuators. The same gait kinematic inputs used in the theoretical study were used in the simulation test. After the simulations, the surface of the tibial insert was examined microscopically and macroscopically and compared with the theoretically generated Wear Index. This study showed a high correlation between the numeric model and the simulation. The depth of wear on the tibial insert correlated significantly with the Wear Index. Microscopic findings also demonstrated a good correlation between the Wear Index and observed wear patterns. Sliding velocity is an important factor for understanding wear in TKA. In conclusion, this study suggests that the Wear Index is a reliable predictor of polyethylene wear in TKA, as it incorporates both contact stress and kinematics in its calculation


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 437 - 438
1 Apr 2004
Rasquinha V Mohan V Bevilacqua B Rodriguez J Ranawat C
Full Access

Introduction: Polyethylene wear debris is the main contributing factor that leads to aseptic loosening and osteolysis. The main objective of this study was to evaluate the role of hydroxyapatite (HA) in third-body polyethylene wear in total hip arthroplasty. Materials: 199 primary cementless THA’s (174 patients) performed by a single surgeon were enrolled in a prospective randomized study comprising hydroxyapatite and non-hydroxyapatite coated femoral implants. The femoral component had metaphyseal-diaphyseal fit design with proximal plasma sprayed titanium circumferential porous coating. The hydroxyapatite coating was 50 – 75 micrometers over the porous surface with the components of identical design. The acetabular component was plasma sprayed titanium porous coated shell without hydroxyapatite. T he polyethylene liners were machined molded from ram extruded Hi-fax 1900H polyethylene resin gamma-sterilized in argon (inert) gas. Clinical and Radiographic evaluation was performed employing HSS scores and Engh criteria. Results: At a mean follow-up of 5 years, the radiographs of 83 HA and 73 Non-HA hips were evaluated by two independent observers utilizing computer-assisted wear analysis on digitized standardized radiographs described by Martell et al (1997). The radiographs were also evaluated for osteolysis or aseptic loosening. The mean linear wear rate in HA group was 0.19mm/yr and in the non-HA group was 0.21mm/yr, which was not significant (p> 0.05). There was no case of osteolysis or aseptic loosening of any component. Both groups had comparable outcomes in terms of HSS scores, walking ability and sports participation. Discussion: This study has attempted to demonstrate through an appropriately controlled in vivo study that hydroxyapatite does not play a significant role in third-body polyethylene wear in THA at a mean follow-up of five years. The concern of three-body wear with hydroxyapatite coating is no greater than porous coated cementless implants


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 404 - 405
1 Apr 2004
Silva M Jackson W Shepherd E Rosa MD Schmalzried T
Full Access

Introduction: The Step Activity Monitor (SAM) is a microprocessor worn on the ankle that measures ambulatory activity in real time. Methods: Activity magnitudes, speed parameters and activity patterns were analyzed in 31 patients with 37 primary total hips. Wear was measured from digitized radiographs using a validated two-dimensional, edge detection-based computer algorithm. Results: On average, patients walked 5.6 hours per day (range: 1.9–9.8); averaging 5,266 gait cycles (range: 1,737–11,805), at 20 cycles/minute (range: 12.7–32.8) with a maximum speed of 63 cycles/minute (range: 45.0–88.0). Fast and very fast walking (30–49 and > 50 cycles/minute) accounted for 9.4% and 4.4% of total walking time. Patients started and stopped walking about 66 times per day (range: 34–113), with about 81 cycles between stops (range: 28.1-200.1) in average active intervals of 5.3 minutes (range: 3.3–10.3). There was no difference in the average number of gait cycles between females and males. However, polyethylene wear per million cycles was significantly higher in males (p=0.006). Even after adjustment for greater height and weight in males, their wear rate was still significantly higher (p< 0.01). Males walked at a higher average speed (p=0.07), spent 33.9% more time walking fast or very fast, had 4% more starts/stops per day, with 13% less strides between stops. The percentage of time spent walking slow (5–9 cycles/minute) was negatively correlated to wear (p< 0.05). Discussion and Conclusion: The SAM allows assessment of patterns and intensity of joint use. Similar to a set of automobile tires, polyethylene wear is a function of the amount and type of use; faster walking with more frequents starting and stopping is associated with a higher polyethylene wear rate. As the clinical performance of crosslinked polyethylenes is being monitored, it is critical to consider the influence of the amount and type of patient activity on wear


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 222 - 222
1 Nov 2002
Yu T Chien J Chen I
Full Access

Materials and Methods: This study included careful analysis of 24 knees with polyethylene wear in which revision surgery was performed. Preoperative evaluations included (1) single-leg standing AP, lateral and stress view, (2) dynamic weight-bearing lateral radiographs, and (3) manual test under anesthesia. Intraoperatively, (1) morphologic change of the worn inserts, (2) rotational alignment of tibia-femoral articulation (3) motion behavior of the joint following trial insertion was observed. Based on the above evaluation, 20 knees were revised with 3-component revision by constrained PS knees. The remaining 3 knees received isolated insert exchange. Results: During the follow-up of 2–6 years, good and excellent results were obtained in all 21 patients who received three-component revision with Osteonics series IV constrained PS prosthesis. The mean HSS score was 92 and the mean ROM was 112 degrees. In the three patients receiving exchange of a thicker polyethylene only, two failed with the same mechanism 15 months and 23 months later and received re-revision. The X-ray of the remaining patient at 5-year F/U revealed impending failure. Discussion: Based on our preoperative plain/dynamic radiographs and intraoperative findings, we postulate that tibial polyethylene wear is attributed to retained PCL in the absence of ACL, excessive posterior slope of tibial cut, rotational mismatch of tibia-femoral rotation and abnormal condylar lift-off in weight-bearing phase. With passage of time and progression of wear, secondary ligamentous decompensation and multidirectional instability may develop as a result of abnormal kinematics. Therefore, by isolated exchange of insert, the failure mechanism remains unchanged and secondary ligamentous instability persists. Eventually the new insert will fail again. Conclusion: In revision surgery of tibial polyethelene wear, both the primary cause of failure and the secondary ligamentous instability must be addressed. The author strongly advocate that, in addition to reversal of the primary failure mechanism by 3-component revision, the use of a constrained PS prosthesis is mandatory to overcome the secondary soft tissue decompensation


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 411 - 411
1 Jul 2010
Kendrick BJL Simpson D Bottomley NJ Marks B Pandit H Beard D Gill HS Dodd CA Murray DW Price AJ
Full Access

Purpose: This study was designed to establish the poly-ethylene wear rates in the Oxford medial unicompert-mental knee replacement. Introduction: The Oxford meniscal bearing knee was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study of the Oxford UKA, which reported very low wear rates in some specimens, but abnormal patterns of wear in others, including impingement. There has been no further investigation of these abnormal wear patterns. Methods: Forty-seven bearings were retrieved from patients who had received a medial Oxford UKA for anteromedial osteoarthritis of the knee, none of which had previously been studied. Mean time to revision was 8.4 years (SD 4.1) and 20 had been implanted for over 10 years. The macroscopic pattern of polyethylene wear and the linear penetration (dial gauge measurement) was recorded for each bearing. Results: The mean linear penetration rate (LPR) was 0.07mm/year. The patterns of wear fell into 4 categories, each with a different LPR; 1) No abnormal macroscopic appearance, n=16 (LPR = 0.01mm/year), 2) Abnormal macroscopic wear with extra-articular impingement, n=16 (LPR = 0.05mm/year), 3) Abnormal macroscopic wear with intra-articular impingement, n=6 (LPR = 0.10mm/year), 4) Abnormal macroscopic wear with impingement and signs of incongruous articulation, n=9 (LPR = 0.14mm/year). The differences in LPR were statistically significant (p< 0.05). Conclusion: The results show that very low polyethylene wear rates are possible if the device functions normally. However if the bearing displays abnormal function (extra-articular, intra-articular impingement or incongruous articulation) wear rates increase significantly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2018
MacDonald S Howard J Goyal P Yuan X Lanting B Teeter M Naudie D McCalden R
Full Access

Lewinnek's safe zone recommendation to minimise dislocations was a target of 5–25° for anteversion angle and 30–50° for inclination angle. Subsequently, it was demonstrated that mal-positioning of the acetabular cup can also lead to edge loading, liner fracture, and greater conventional polyethylene wear. The purpose of this study was to measure the effect of acetabular cup position on highly crosslinked polyethylene wear in total hip arthroplasty (THA) at long-term follow-up. We identified all patients that underwent primary THA with a minimum of 10 years follow-up using an institutional database in London, Ontario, Canada. Patients with a single implant design consisting of a 28 mm cobalt chromium head and highly crosslinked polyethylene liner (ram extruded, GUR 1050, 100 kGy gamma irradiated, remelted, ethylene oxide sterilised) were selected for inclusion. In total, 85 hips from 79 recruited patients were analysed. Patients underwent a supine radiostereometric analysis (RSA) exam in which the x-ray sources and detectors were positioned to obtain an anterior-posterior and cross-table lateral radiograph. Acetabular cup anteversion angle, inclination angle, and 3D penetration rate (including wear and creep) were measured from the stereo radiograph pairs. At a mean follow-up of 13 years (range, 10–17 years) the mean penetration rate was 0.059 mm/year (95% CI: 0.045 to 0.073 mm/year). Mean anteversion angle was 18.2° (range, −14 to 40°) and mean inclination angle was 43.6° (range, 27 to 61°). With respect to the Lewinnek safe zone, 67% hips met the target for anteversion angle, 77% met the target for inclination angle, and 51% met the target for both. There was no correlation between anteversion angle and penetration rate (r = −0.14, p = 0.72) or between inclination angle and penetration rate (r = 0.11, p = 0.35). There was also no difference (p = 0.07) in penetration rate between hips located within the Lewinnek safe zone for both anteversion angle and inclination angle (mean 0.057 mm/year, 95% CI: 0.036 to 0.079 mm/year) and those outside the safe zone (mean 0.062 mm/year, 95% CI: 0.042 to 0.083 mm/year). Acetabular cup position had no effect on the wear rate of highly crosslinked polyethylene at long-term follow-up. Although care should still be taken to correctly position the acetabular cup for stability, highly crosslinked polyethylene is a forgiving bearing material that can withstand a wide range of cup positions without negatively impacting longevity due to wear


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 417 - 417
1 Apr 2004
Rasquinha V Mohan V Bevilacqua B Rodriguez J Ranawat C
Full Access

Introduction: Polyethylene wear debris is the main contributing factor that leads to aseptic loosening and osteolysis. The main objective of this study was to evaluate the role of hydroxyapatite (HA) in third-body polyethylene wear in total hip arthroplasty. Materials: 199 primary cementless THA’s (174 patients) performed by a single surgeon were enrolled in a prospective randomized study comprising Hydroxyapatite and non-hydroxyapatite coated femoral implants. The femoral component had metaphyseal-diaphyseal fit design with proximal plasma sprayed titanium circumferential porous coating. The hydroxyapatite coating was 50 – 75 micrometers over the porous surface with the components of identical design. The acetabular component was plasma sprayed titanium porous coated shell without hydroxyapatite


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 411 - 411
1 Nov 2011
Ranawat A Koob T Koenig J Cooper H Foo L Potter H Ranawat C
Full Access

Introduction: Computer-based wear analysis is currently the most accurate method for determining the in vivo wear rates of polyethylene liners during total hip arthroplasty. MRI of a total hip is emerging as the best method for determining the intra-articular volume of particulate debris. The purpose of this study is to determine if there is a correlation between polyethylene wear and the development of particle load in patients with highly crosslinked (HXLP) liners. Materials and Methods: 20 well-functioning total hips (7 metal heads against HXLP liners and 13 ceramic heads against HXLP liners) in 18 young active individuals were analyzed using the following criteria: femoral head penetration of the liner was measured by Roman (ROntgen Monographic ANalysis) software and particulate load was calculated by MRI criteria as described by Potter et al. Clinical and radiographic analyses were performed using HSS, WOMAC, and criteria defined by DeLee, Charnley, and Engh. The average age of the patients was 57 (Range 45–67) and average follow-up was 1.6 y (range 1.0 – 3.0 y). Results: All implants appeared well osteointegrated with no radiographic evidence of osteolysis. All patients had well-functioning total hips with a greater than one mile daily walking tolerance. A trend towards correlation was observed between increased polyethylene wear and increased particulate volumes. Average HXLP wear was 0.03 mm (range −0.19 to 0.27 mm) and average particle volume was 841 (range 6951 to 0). One patient in particular recorded 0.27 mm of polyethylene wear, mild particle disease and a particle disease volume of 3321 at 1.6 years follow-up. However, statistical significance could not be achieved with these data points. Conclusions: There appears to be a relationship between polyethylene wear as measured by computer-based systems and particulate volume as measured by MRI. Limitations of the current methodology include the inability of computer-based systems to detect precise levels of minimal wear with HXLP liners, and the highly sensitive MRI images which may be detecting more than just wear debris


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 16 - 16
1 Nov 2021
McCalden R Salipas A Teeter M Somerville L Naudie D MacDonald S
Full Access

The purpose of this study was to precisely measure the 10-year polyethylene wear rate of primary total hips using Radiostereometric analysis (RSA) comparing Oxidized Zirconium (OxZi) to cobalt chrome (CoCr) femoral heads articulating with highly cross-linked polyethylene (XLPE). RSA was performed on 46 patients who underwent total hip arthroplasty − 23 who received OxZi femoral heads and 23 who received CoCr heads in combination with XLPE at a minimum of 10 years follow-up. All patients had identical THR systems implanted except for the femoral head utilized. The Centre Index method was utilised to assess total wear rates (from index surgery until final evaluation) using a dedicated RSA Software program (UmRSA Digital Measure v.2.2.1). In addition, the Martell technique was used to subtract head penetration occurring in the first 1–2 years (i.e. bedding-in phase) to allow calculation of the ‘steady state’ wear rates. There were no significant differences in demographics (i.e age, BMI, gender) between the groups. The average time from surgery of the RSA examinations was 11.7 and 12.6 years for the CoCr and OxZi groups respectively. Using the Centre Index Method to calculate total head penetration, wear rates were slightly higher in the OxZi group (0.048 +/− 0.021mm/year) compared to the CoCr group (0.035 +/− 0.017mm/year) with no statistical difference between the groups (p= 0.02). After correction for the bedding-in period, there was no statistically significant difference in mean ‘steady-state’ wear rate between OxZi (0.031 +/− 0.021mm/year) and CoCr (0.024 +/− 0.019mm/year) at 10 year follow up (p= 0.24). A comparison of preoperative and postoperative SF12, HHS, and WOMAC scores showed no statistical difference between the groups. RSA demonstrated the 10 year in-vivo wear rates of both bearing combinations to be well below the threshold for osteolysis. There was no significant difference between either the total or ‘steady-state’ wear rates of the OxZi and CoCr groups at 10 years


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_19 | Pages 12 - 12
1 Nov 2017
Makaram N Clement N Hoo T Nutton R Burnett R
Full Access

The Low Contact Stress (LCS) mobile-bearing total knee replacement (TKR) was designed to minimize polyethylene wear, aseptic loosening and osteolysis. However, registry data suggests there is a significantly greater revision rate associated with the LCS TKR. The primary aim of this study was to assess long-term survivorship of the LCS implant. Secondary aims were to assess survival according to mechanism of failure and identify predictors of revision. We retrospectively identified 1091 LCS TKRs that were performed between 1993 and 2006. There was incomplete data available 33 who were excluded. The mean age of the cohort was 69 (SD 9.2) years and there were 577 TKRs performed in females and 481 in males. Mean follow up was 14 years (SD 4.3). There were 59 revisions during the study period: 14 for infection, 18 for instability, and 27 for polyethylene wear. 392 patients died during follow up. All cause survival at 10-year was 95% (95%CI 91.7–98.3) and at 15-year was 93% (95%CI 88.6–97.8). Survival at 10-years according to mechanism of failure was: infection 99% (95%CI 94–100%), instability 98% (95%CI 94–100%), and polyethylene wear 98% (95%CI92–100). Of the 27 with polyethylene wear only 19 had associated osteolysis requiring component revision, the other 8 had simple polyethylene exchanges. Cox regression analysis, adjusting for confounding variables, identified younger age was the only predictor of revision (hazard ratio 0.96, 95%CI 0.94–0.99, p=0.003). The LCS TKR demonstrates excellent long-term survivorship with a low rate of revision for osteolysis, however the risk is increased in younger patients


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 977 - 982
1 Jul 2009
Terrier A Merlini F Pioletti DP Farron A

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm. 3. for the anatomical prosthesis, but 44.6 mm. 3. for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required


Bone & Joint Research
Vol. 8, Issue 2 | Pages 65 - 72
1 Feb 2019
Cowie RM Aiken SS Cooper JJ Jennings LM

Objectives. Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. Methods. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry. Results. There was no significant difference (p  >  0.05) between the wear rate of implants challenged with CS-BVF (3.3 mm. 3. /MC (95% confidence interval (CI) 1.8 to 4.8)) and the wear rate of those not challenged (2.8 mm. 3. /MC (95% CI 1.3 to 4.3)). However, scratching the cobalt-chrome (CoCr) significantly (p < 0.001) increased the wear rate (20.6 mm. 3. /MC (95% CI 15.5 to 25.7)). The mean surface roughness of implants challenged with CS-BVF was equivalent to negative controls both after damage simulation (p = 0.98) and at the conclusion of the study (p = 0.28). Conclusion. When used close to articulating surfaces, a low-hardness, high-purity CS-BVF had no influence on wear. When trapped between the articulating surfaces of a total knee arthroplasty, CS-BVF did not scratch the surface of CoCr femoral components, nor did it increase the wear of UHMWPE tibial inserts compared with undamaged negative controls. Cite this article: R. M. Cowie, S. S. Aiken, J. J. Cooper, L. M. Jennings. The influence of a calcium sulphate bone void filler on the third-body damage and polyethylene wear of total knee arthroplasty. Bone Joint Res 2019;8:65–72. DOI: 10.1302/2046-3758.82.BJR-2018-0146.R1


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 38 - 38
1 Mar 2013
Shon WY Suh DH Chun SK
Full Access

Introduction. Periprosthetic osteolysis following total hip arthroplasty is caused mainly by polyethylene wear particles and necessitates revision surgery at some stage even in the presence of well-fixed implants. Therefore, methods to estimate the polyethylene wear become important, with manual wear measurement methods as the main outcome measurement even in the presence of computer-assisted measurement methods on account of easy availability and simplicity in their use with reasonable accuracy. The purposes of this study were to quantify the accuracy and reproducibility of the slide presentation software method on clinical radiographs and to compare it with that of the previously described Livermore's method, and to determine the usefulness of the slide presentation software methods for highly cross linked polyethylene wear measurement. Materials and Methods. 81 hips out of 61 patients who underwent primary total hip arthroplasty between October 2000 and January 2006 were retrospectively evaluated for polyethylene wear by two independent observers using the Livermore's and the slide presentation software methods. All the hips were implanted with highly cross linked polyethylene acetabular liners with cementless acetabular components. The 28 mm sized cobalt chrome alloy femoral heads were used in all cases. The mean age of the patients was 50.8 years(range, 27–73 years), and the mean follow-up period was 6.6 years (range, 2–11 years). Paired radiographs were analyzed using the Livermore's and the slide presentation software method. For the Livermore's methods, radiographs were magnified to 200%, printed, and readings taken with digital calipers with an accuracy of 0.01 mm(Figure 1). For the slide presentation software method, we used Microsoft Office PowerPoint software(Microsoft Corp., Redmond, WA, USA) as described in a previous our study(Figure 2). Results. The mean polyethylene wear rate in 81 hips measured by the Livermore's method was found to be 0.071±0.12 and 0.081±0.09 mm/year by observer 1 and 2 respectively. The mean polyethyelene wear rate measured by slide presentation software method was found to be equally 0.069±0.07 mm/year by observer 1 and 2. Interobserver and intraobserver variance were evaluated using Pearson correlation coefficient. Correlation coefficients for interobserver variance were 0.802 for the Livermore's method and 0.979 for the slide presentation software method. Correlation coefficient for intraobserver variance were 0.777 for the Livermore's method and 0.965 for the slide presentation software method in observer 1, 0.303 for the Livermore's method and 0.941 for the slide presentation software method. The mean time consumed in each radiographic measurement with the Livermore's method was 15.52 minutes (range, 10.67–22 minutes) as compared to 9.55 minutes (range, 5.42–13.5 minutes) measured with the slide presentation software method (p < 0.001). Conclusion. The slide presentation software method was more accurate in serial intra-observer measurements and more reproducible in inter-observer readings for polyethylene wear than the traditional Livermore method, and was simple to use and less time consuming. Not all orthopaedic surgeons have access to CT for measuring polyethylene wear, hence the use of this type of manual method becomes a necessity on account of its easy availability and repeatability in serial measurements


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 655 - 660
1 Jul 2003
Tanaka K Tamura J Kawanabe K Shimizu M Nakamura T

We examined the behaviour of alumina ceramic heads in 156 cemented total hip arthroplasties, at a minimum follow-up of eight years. They were divided into three groups according to the size of the femoral head; 22, 26, and 28 mm. We measured polyethylene wear radiologically using a computer-aided technique. The linear wear rate of polyethylene sockets for the 28 mm heads was high (0.156 mm/year), whereas those for the 22 and 26 mm heads were relatively low (0.090 and 0.098 mm/year, respectively). Moreover, the surface roughness data of retrieved femoral heads clearly showed maintenance of an excellent surface finish of the current alumina. We conclude that the alumina ceramic femoral heads currently used are associated with a reduced rate of polyethylene wear


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 336 - 336
1 May 2009
Devane P Horne G
Full Access

Early migration of the acetabular and femoral component after total hip replacement has shown to be a good predictor of implant failure. The only current technique available for this measurement is RSA. An entirely new technique for the measurement of component migration and polyethylene wear has been developed. Required are a single CT of the patients’ pelvis and femur, and routine serial postoperative antero-posterior (AP) and lateral radiographs. A CT scan of the patients pelvis and proximal femur is performed either pre or post-operatively. This CT is used to build a solid model of the patients’ bony anatomy. CAD models of the femoral and acetabular component are obtained from the manufacturer and all four solid models are imported into custom software. Ray tracer (RT) technology is the computer generation of images of a solid model placed between a camera and a screen. It has been adapted to reproduce the radiological setup used to take clinical AP and lateral radiographs. The four solid models (pelvis, acetabular component, femoral component, femoral shaft) are each placed in the RT. Manipulation of each solid model is performed (6 degrees of freedom, x, y, z translation, and rotation about the x, y, z axis) using Artificial Intelligence, until an outline of the solid model generated by the ray tracer is identical to the outline of the AP and lateral radiograph of that patient. Change in relative positions of each solid model over time (pelvis acetabular component represents acetabular migration, acetabular component femoral stem represents polyethylene wear, and femoral stem femur represents femoral migration) are recorded. Validation to measure accuracy of the technique has been performed using computer models, and femoral and acetabular prostheses implanted into a cadaver. Despite significant variations in the position of the pelvis and leg during the obtaining of post-operative radiographs, this new technique was able to measure polyethylene wear and component migration with accuracy similar to that of RSA (0.25 mm in the AP plane). Further testing and validation is required, but this technique offers promise for the future in being able to retrospectively measure component migration and poly-ethylene wear, using a single CT scan and routine clinical postoperative radiographs


Introduction and Aims: Polyethylene wear after total hip arthroplasty with an uncemented titanium coated non-modular acetabular component was measured using a computer-assisted technique and correlated with clinical outcomes. Polyethylene wear measurements using post-operative radiographs and recent supine and standing radiographs were compared to see if there was a difference. To date, there is no definitive evidence in the literature that indicates a difference. Method: Fifty-five patients who had total hip arthroplasties using a non-modular titanium-backed Mathys (Protec, Switzerland) press-fit acetabular component in 1992–1993 were included in this study. Patients who had a revision were excluded. The patients were contacted and reviewed in clinic. Each patient completed an Oxford Hip Score. They also had a cross-table lateral, supine and standing AP radiographs. The radiographs were digitised and analysed using a computer-assisted method (PolyWare) of measuring polyethylene wear. Correlations were sought between the rate of polyethylene wear and clinical outcome using the Oxford Hip Score. Polyethylene wear measurements using supine and standing radiographs were also compared to determine if there was a significant difference. Results: Early results showed a trend indicating a difference in measured polyethylene wear rates comparing supine and standing radiographs. Previous experience at this institution measuring polyethylene wear using the same computer-assisted technique has shown that leg position has an effect on polyethylene wear measurements; weightbearing radiographs with the leg maximally internally and externally rotated resulted in an increase in polyethylene wear calculation of volumetric wear by 35% as compared to calculations with supine radiographs. A non-cylindrical wear tract was proposed to be the reason for the difference. There is no definitive answer in the literature as to the significance of the effect of supine versus standing radiographs on the measurement of polyethylene wear. Polyethylene wear rate did not seem to be related to clinical outcome as detected by the Oxford hip score. Conclusion: Early results indicate a difference in polyethylene wear measurement comparing standing and supine radiographs. Polyethylene wear rates using the Mathys acetabular component do not seem to be related to clinical symptoms as detected by the Oxford Hip Score


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 85 - 85
1 Feb 2017
Kretzer J Schroeder M Mueller U Sonntag R Braun S
Full Access

The numbers of anatomic total shoulder joint replacements (ATSR) is increasing during the past years with encouraging clinical results. However, the survivorship of ATSR is lower as compared to total knee and hip replacements. Although the reasons for revision surgery are multifactorial, wear-associated problems like loosening are well-known causes for long-term failure of ATSR. Furthermore there is lack of valid experimental wear tests for ATSR. Therefore the purpose of this study was to define experimental wear testing parameters for ATSR and to perform a wear study comparing ceramic and metallic humeral heads. Kinetic and kinematic data were adopted from in-vivo loading measurements of the shoulder joint (. orthoload.com. ) and from several clinical studies on shoulder joint kinematics. As activity an ab/adduction motion of 0 to 90° in combination with an ante/retroversion while lifting a load of 2 kg has been chosen. Also a superior-inferior translation of the humeral head has been considered. The wear assessment was performed using a force controlled AMTI joint simulator for 3×10. 6. cycles (Fig. 1) and polyethylene wear has been assed gravimetrically. The studied ATSR (Turon. TM. , DJO Surgical, USA) resulted in a polyethylene wear rate of 62.75 ± 1.60 mg/10. 6. cycles in combination with metallic heads. The ceramic heads significantly reduced the wear rate by 26.7 % to 45.99 ± 1.31 mg/10. 6. (p<0.01). The wear scars dimensions were in good agreement to clinical retrievals. This study is the first that experimentally studied the wear behavior of ATSR based on clinical and biomechanical data under load controlled conditions. In term of wear the analyzed ATSR could clearly benefit from ceramic humeral heads. However, in comparison to experimental wear studies of total knee and hip replacements the wear rate of the studied ATSR was relatively high. Therefore further research may focus on optimized wear conditions of ATSR and the hereby described method may serve as a tool to evaluate a wear optimization process


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 144 - 144
1 Apr 2005
Hernigou P Deschamps G
Full Access

Purpose: Postoperative undercorrection is recommended for unicompartmental prostheses. The long-term effects of this undercorrection on polyethylene wear and recurrent deformation have not been evaluated to date. We studied the influence of undercorrection on polyethyl-ene wear and the risk of recurrent deformation in uni-compartmental prostheses reviewed at more than 14 years (14–22 years). Material and methods: Forty unicompartmental prostheses with a polyethylene plateau without a metal back were evaluated at last follow-up. We assessed radiographs performed under fluoroscopic control to obtain a ray tangential to the polyethylene plateau. This film was used to assess penetration of the femoral component into the polyethylene. Goniometry, performed at last follow-up was compared with the postoperative goniometry to measure recurrent deformation. We retained only unicompartmental prostheses with preservation of the anterior cruciate at implantation in order to rule out possible influence of the absence of this ligament. Results: There was a significant relationship (p< 0.05) between residual postoperative varus and rate of femoral component penetration into the polyethylene. Mean polyethylene wear was 0.15 mm per year for unicompartmental prosthesis with postoperative varus greater than 10°. There was also a correlation (p< 0.01) between recurrent deformation (difference between the last follow-up and postoperative goniometry) and postoperative varus. Schematically, deformation was correlated with penetration of the femoral component into the polyethylene. Finally, recurrent deformation and rate of penetration of the femoral component into the polyethylene was greater with thinner polyethylene inserts (p< 0.05). Discussion: While undercorrection appears to be desirable for unicompartmental prostheses, it should be moderate. Excessive postoperative varus raises the risk of more rapid polyethylene wear and recurrent deformation. Furthermore, even for minimal undercorrection, the correction achieved postoperatively does not remain constant and varus defomation tends to recur. This phenomenon probably has a protective effect on the contra-lateral femorotibial compartment but in the long-term exposes to the risk of wear and recurrent deformation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 60 - 60
1 Apr 2018
Garcia-Rey E Cimbrelo EG
Full Access

Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. Objetive. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) after twenty years analysing polyethylene wear and the appearance of osteolysis. Materials and Methods. 82 hips implanted between 1992 and 1995 were prospectively evaluated with a mean follow-up of 20.6 years (range, 18 to 23). A hemispherical porous-coated acetabular cup matched to a proximally hydroxyapatite-coated anatomic stem and a 28 mm standard PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position and the possible appearance of loosening and osteolysis were recorded over time. Penetration of the prosthetic head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter. Results. Six cups were revised due to wear and four due to late dislocation. All cups were radiographically well-fixed and all stems showed radiographic ingrowth. Six un-revised hips showed osteolysis on the acetabular side and two on the proximal femoral side. Creep at one year was 0.30 (±0.23) mm. Mean total femoral head penetration was 1.23 mm at 10 years, 1.52 mm at 15 years and 1.92 mm at 23 years. Overall mean wear was 0.12 (± 0.1) mm/year and 0.09 (±0.06) mm/year after the creep period. Mean wear was 0.08 (± 0.06) mm/year in hips without osteolysis and 0.14 (±0.03) mm/year in revised hips or with osteolysis (p<0.001). Conclusions. Although continued durable fixation can be observed with a porous-coated cups and a proximally hydroxyapatite-coated anatomic stem, true wear continues to increase at a constant level over time. PE wear remains as the main reason for revision surgery and osteolysis in uncemented THR after twenty years


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 533 - 533
1 Aug 2008
Gordon A Hamer AJ Stockley I Wilkinson JM
Full Access

Introduction: The concept that aseptic loosening is a function of polyethylene wear has led to the introduction of cross-linked polyethylene in THA. We studied the relationship between polyethylene wear rate and aseptic loosening to model the potential effects of wear-reducing strategies on the failure rate for each prosthetic component. Methods: 350 subjects who had previously undergone Charnley THA were divided into 3 groups: Controls (n=273); isolated femoral stem looseners (n=43); and isolated cup looseners (n=34). Polyethylene wear was measured using a validated method (EBRA). The relationship between wear rate and loosening was examined using logistic regression analysis, and estimates of the effect of wear rate modulation made using odds-ratios (OR ). Results: The median annual wear rate in the controls (0.07mm) was lower than both stem looseners (0.09mm, p=0.002) and cup looseners (0.18mm, p< 0.001). The OR of cup loosening increased 4.7 times per standard deviation (SD) increase in wear rate above the reference (control) population (p< 0.001). The OR of stem loosening increased 1.7 times per SD, but was not independent of other risk factors (p> 0.05). The potential reduction in risk of loosening was calculated using the following formula: (OR ^SD2)/(OR ^SD1), where 1 and 2 are the predicted mean z-score wear rates of modified versus conventional polyethylene. Thus, for a 25% or 50% reduction in wear rate, the incidence of cup loosening may reduce by 71% and 293%, respectively. The rate of stem loosening may reduce by 7% and 17%, respectively. Discussion: The use of cross-linked-polyethylene has the potential for a major impact on the incidence of cemented cup loosening. However their effect on femoral stem loosening may be limited


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 524 - 524
1 Nov 2011
Laval G Dohn P Amzallag J Jalil R Fillippini P Poignard A Hernigou P
Full Access

Purpose of the study: The alumina-polyethylene bearing has been used for many years but no study has evaluated polyethylene wear and osteolysis with a 32 mm head with a follow-up exceeding 20 years. Material and methods: Thirty-six arthroplasties implanted between 1983 and 1985 (26 patients, mean age 54 years, range 35–65 years) were studied. The same cemented implants were used in all cases, with no loosening. Penetration of the head into the polyethylene was measured annually on digital radiographs and with computer assistance. Osteolysis was quantified in mm. 2. on the merckel. Results: At 20 years follow-up (minimum) or more, penetration of the femoral head into the cup was on average 0.07mm/y. The characteristic feature of the wear curve was the perfect stability after the third year and the absence of any increase over time. Extrapolation of the straight part of the curve to the origin determined the creep. True wear was limited: 0.05mm/y. It was not modified by the polyethylene thickness (eight 52mm cups, twenty-three 50mm and five 48mm). Corresponding volumetric wear was estimated at 640 mm3 at maximum follow-up. At last follow-up, osteolysis measured in mm. 2. on the meckel was 65 mm. 2. on average. In general, this osteolysis appeared around the second year with an imprint on the merckel; it then increased linearly and regularly to the 20th year. Acetabular osteolysis was nevertheless greater than that observed with the Al/Al bearing of controlateral hips implanted at the same period when evaluated on the scan for both hips (20 cases). Discussion: The alumina-polyethylene bearing enables long implant survival for at least 20 years, even for relatively thin polyethylene thicknesses. The characteristic feature of the bearing is the linear polyethylene wear which does not increase with time but remains constant, undoubtedly in relation to the absence of any change in the roughness of the head despite the very long follow-up. Osteolysis remains minimal, but superior to that observed with Al/Al bearings implanted during the same period in controlateral hips


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 9 - 9
1 Apr 2018
Garcia-Rey E Carbonell R Cordero J Gomez-Barrena E
Full Access

Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. Objetive. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis. Materials and Methods. 82 hips implanted between 1992 and 1995 were prospectively evaluated. The mean follow-up was 20.6 years (range, 18 to 23). A hemispherical porous-coated acetabular cup matched to a proximally hydroxyapatite-coated anatomic stem and a 28 mm standard PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position and the possible appearance of loosening and osteolysis were recorded over time. Penetration of the prosthetic head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter. Results. Six cups were revised due to wear and four due to late dislocation. All cups were radiographically well-fixed and all stems showed radiographic ingrowth. Six un-revised hips showed osteolysis on the acetabular side and two on the proximal femoral side. Creep at one year was 0.30 (±0.23) mm. Mean total femoral head penetration was 1.23 mm at 10 years, 1.52 mm at 15 years and 1.92 mm at 23 years. Overall mean wear was 0.12 (± 0.1) mm/year and 0.09 (±0.06) mm/year after the creep period. Mean wear was 0.08 (± 0.06) mm/year in hips without osteolysis and 0.14 (±0.03) mm/year in revised hips or with osteolysis (p<0.001). Conclusions. Although continued durable fixation can be observed with a porous-coated cups and a proximally hydroxyapatite-coated anatomic stem, true wear continues to increase at a constant rate over time. PE wear remains as the main reason for revision surgery and osteolysis in uncemented THR and does not stop after twenty years


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 361 - 365
1 May 1997
Shih C Lee P Chen J Tai C Chen L Wu JS Chang WH

We made a clinical study of polyethylene wear in 240 hips of 187 patients having primary total hip arthroplasties from 1989 to 1990, using uncemented Osteonics components, with a head size of 26 mm. We excluded cups with anteversion of over 20° and measured linear wear by a new method using a digitiser and special software of our design. Follow-up was from two to five years (mean 4.3). The mean age at operation was 50.3 years, with more men than women (1.4:1). The mean linear wear per year was 0.15 mm; this did not increase with the longevity of the prosthesis (p = 0.54). In 59 hips showing evidence of osteolysis, the mean linear wear rate was significantly higher at 0.23 mm/year (p < 0.001). The mean linear wear rate also correlated significantly with age at the time of operation (p = 0.008), but we found no significant correlations with body-weight, gender, aetiology of the disease, thickness of polyethylene, or cup position. Our new method of measurement is time-saving and reproducible. The results confirm the greater rate of linear wear of polyethylene in patients showing osteolysis and in those who are younger


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 25 - 25
1 Jan 2011
Kampa R Hacker A Griffiths E Rosson J
Full Access

We assessed polyethylene wear and osteolysis in 15 patients (30 hips) undergoing staged bilateral total hip arthroplasty, who had a cemented hip arthroplasty on one side and a hybrid arthroplasty on the other. All factors apart from mode of acetabular component fixation were matched. Wear was measured radiographically using Livermore’s technique. The mean clinical and radiological follow-up was 11.2 years for the cemented arthroplasties and 10.7 years for the hybrid arthroplasties. Mean annual linear wear rate for the cemented cups was 0.09mm/year, and 0.14mm/year for the uncemented cups. This difference was statistically significant (p=0.03), confirming previous reports that polyethylene wear in uncemented cups is greater than in cemented cups. Polyethylene wear in the uncemented cup exceeded wear in the cemented cup by more than > 0.1mm/year in 5 patients, 4 of whom had a BMI of greater than 30. No periacetabular osteolysis was noted. Femoral osteolysis was present in 5 hybrid arthroplasties and 2 cemented arthroplasties. Zone 7 femoral osteolysis occurred in 3 patients on the side of the hybrid arthroplasty, multifocal femoral osteolysis not involving zone 7 was seen in 2 patients in both hips


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 421 - 421
1 Apr 2004
Short A O’Brien S Price A Murray D McLardy-Smith P
Full Access

Polyethylene wear remains an important cause of failure in knee replacements. Retrieval studies, simulators and simple X-ray methods produce wear data that may be inaccurate or unrealistic. We have developed an accurate RSA system for measuring wear in-vivo. Using this system we have found wear rate in a fixed bearing TKR to be about 0.1mm/yr[. 1. ]. In this abstract we extend the study to fully congruent mobile bearings. Four Oxford uni-compartmental knee replacements, with excellent clinical results were studied ten years after implantation. RSA X-rays were taken in double leg stance with the knee in full extension and 15 and 30 degrees flexion. Following RSA calibration, silhouettes of the components on the stereo X-rays were extracted using a Canny edge detector and were matched to silhouettes projected using CAD models to determine the 3D component position. The average minimum thickness of the bearing was determined and was compared with the measured minimum thickness of 14 unused bearings to calculate linear penetration. The average linear penetration after average 10 years implantation (range 8.5 to 10.25 years) was 0.16 mm (SD 0.13 mm). The average penetration rate was 0.017 mm/year (SD 0.011 mm/year). The maximum linear penetration rate was 0.027 mm/year. The penetration rate is similar to that obtained in a retrieval study [. 2. ]. Compression of the bearing is minimal due to 6sqcm of contact area. This study therefore demonstrates that polyethylene wear on the upper and lower surfaces is minimal in fully congruous mobile bearing knee replacements


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 48 - 48
1 Jan 2017
Pegg E Alotta G Barrera O
Full Access

Polyethylene wear of joint replacements can cause severe clinical complications, including; osteolysis, implant loosening, inflammation and pain. Wear simulator testing is often used to assess new designs, but it is expensive and time consuming. It is possible to predict the volume of polyethylene implant wear from finite element models using a modification of Archard's classic wear law [1–2]. Typically, linear elastic isotropic, or elasto-plastic material models are used to represent the polyethylene. The purpose of this study was to investigate whether use of a viscoelastic material model would significantly alter the predicted volumetric wear of a mobile-bearing unicompartmental knee replacement. Tensile creep-recovery experiments were performed to characterise the creep and relaxation behaviour of the polyethylene (moulded GUR 4150 samples machined to 180×20×1 mm). Samples were loaded to 3 MPa stress in 4 minutes, and then held for 6 hours, the tensile stress was removed and samples were left to relax for 6 hours. The mechanical test data was used fit to a validated three–dimensional fractional Maxwell viscoelastic constitutive material model [3]. An explicit finite element model of a mobile–bearing unicompartmental knee replacement was created, which has been described previously [4]. The medial knee replacement was loaded to 1200 N over a period of 0.2 s. The bearing was meshed using quadratic tetrahedral elements (1.5 mm seeding size based on results of a mesh convergence study), and the femoral component was represented as an analytical rigid body. Wear predictions were made from the contact stress and sliding distance using Archard's law, as has been described in the literature [1–2]. A wear factor of 5.24×10. −11. was used based upon the work by Netter et al. [2]. All models were created and solved using ABAQUS finite element software (version 6.14, Simulia, Dassault Systemes). The fractional viscoelastic material model predicted almost twice as much wear (0.119 mm. 3. /million cycles) compared to the elasto-plastic model (0.069 mm. 3. /million cycles). The higher wear prediction was due to both an increased sliding distance and higher contact pressures in the viscoelastic model. These preliminary findings indicate the simplified elasto-plastic polyethylene material representation can underestimate wear predictions from numerical simulations. Polyethylene is known to be a viscoelastic material which undergoes creep clinically, and it is not surprising that it is necessary to represent that viscoelastic behaviour to accurately predict implant wear. However, it does increase the complexity and run time of such computational studies, which may be prohibitive


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 59 - 59
1 Mar 2008
O’Brien J Burnett R Yuan X MacDonald S McCalden R Bourne R Rorabeck C
Full Access

Isolated liner exchange in revision total hip arthroplasty for the treatment of polyethylene wear is an increasingly common surgical procedure. Twenty-four hips underwent this procedure via the direct lateral approach and were prospectively followed clinically and radiographically. Accessible osteolytic lesions were curetted and bone grafted. At a mean follow-up of forty months, a significant clinical improvement was observed. One cup collapsed into an osteolytic lesion postoperatively; all other lesions regressed. No dislocations have occurred. Isolated liner exchange via the direct lateral approach may reduce dislocation rates while avoiding the morbidity associated with the removal of well-fixed components. The purpose of this study was to evaluate the clinical and radiographic results of isolated liner exchange in revision total hip arthroplasty (THA) for osteolysis and polyethylene wear via the direct lateral surgical approach. Retention of well-fixed implants avoids unnecessary bone loss at revision surgery. Previous studies report a significant dislocation rate with isolated liner exchange. Revision via the direct lateral surgical approach may reduce the dislocation rate in surgery for acetabular osteolysis. Twenty-four hips that underwent an isolated liner exchange revision procedure via the direct lateral approach were prospectively followed. Accessible osteolytic lesions were curetted and bone grafted. Harris Hip Score, WOMAC Index, and radiographic analysis were recorded. The area of osteolytic lesions was calculated using a computer imaging technique. At mean follow-up of forty months, all except one of the osteolytic lesions had regressed in size. Mean Harris Hip scores improved from sixty-nine to eighty-three and WOMAC indices improved from thirty-seven to twenty-four. No dislocations have occurred. One cup collapsed into an osteolytic lesion postoperatively, requiring an acetabular revision procedure. Isolated liner exchange is a promising technique that avoids the removal of well-fixed acetabular implants. The increased dislocation rate associated with revision THA may be reduced and osteolytic lesions may be debrided and bone grafted through the direct lateral approach. Isolated liner exchange via the direct lateral approach reduces the dislocation rate in THA. Retention of wellfixed implants and bone grafting is a procedure that preserves bone stock and addresses osteolytic lesions at revision surgery


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 17
1 Mar 2002
Kellett CF Short A Price A Kyberd P Murray D
Full Access

Introduction: Polyethylene wear can be an important cause of knee replacement failure. Method: Six TKRs in young, active patients with excellent Oxford Knee Scores and Knee Society Scores, mean 76 months post knee replacement and 5 control patients, 2 weeks post TKR, were selected. Each patient had weight bearing stereo radiographs of at 0, 15, 30, 45 and 60 degrees of flexion while standing in a calibration grid. These x-rays were analysed using our Radio Stereometric Analysis (RSA) system. The three-dimensional shape of the TKR (manufacturer’s computer aided design model) was matched to the TKR silhouette on the calibrated stereo radiographs for each angle of flexion. The relative positions of the femoral and tibial components in space were then determined and the linear and volumetric penetration was calculated using Matlab software. Results: The accuracy of the system was found to be 0.3mm (CAD model tolerance 0.25mm). The mean linear wear in the control patients was 0.02mm (range −0.19 to +0.23mm). Average linear penetration in the study group was found to be 0.6 mm at 6 years, giving an overall linear wear rate of 0.1mm/year. Average penetration volume at 76 months was 399mm. 3. The average volumetric wear rate was 63mm. 3. /year. Conclusion: It is possible to measure volumetric wear in vivo using RSA. Volumetric wear rate was found to be 63mm. 3. per year. Studies on retrieved normally functioning hip replacements have shown volumetric wear rates of 35mm. 3. per year. However, clinical outcomes of knee replacements are comparable to those of hip replacements, suggesting that the knee has a more effective mechanism for dealing with polyethylene wear particles. *Oxford Hip and Knee Group: P McLardy-Smith, C Dodd, D Murray & R Gundle


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 2 | Pages 263 - 266
1 Mar 1994
Hernandez Keating E Faris P Meding J Ritter M

We measured polyethylene wear in 231 porous-coated uncemented acetabular cups. We divided the hips into two groups according to the fixation of the femoral component, by cementing (n = 97) or press-fit (n = 134). Follow-up was from three to five years. The patients in two sub-groups were matched for weight, diagnosis, sex, age and length of follow-up. The linear wear rate of cups articulated with uncemented femoral components (0.22 mm/year) was significantly higher than the wear rate (0.15 mm/year) of cups articulated within cemented femoral components (p < 0.05). These results can be compared with previously reported wear rates of 0.08 mm/year for cemented all-polyethylene cups and 0.11 mm/year for cemented metal-backed cups. The higher wear rates of uncemented arthroplasties could jeopardize the long-term results of this type of hip replacement


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 34 - 34
1 Apr 2018
Kim H Kim M Yoo J Kim K
Full Access

Isolated liner and head exchange procedure has been an established treatment method for polyethylene wear and osteolysis when the acetabular component remains well-fixed. In this study, its mid-term results were evaluated retrospectively in 34 hips. Among the consecutive patients operated upon from September 1995, 2 patients (3 hips) were excluded because of inadequate follow-up and the results of remaining 34 hips of 34 patients were evaluated. They were 20 men and 14 women with a mean age of 49 years at the time of index surgery. Conventional polyethylene liner was used in 26 cases and highly cross-linked polyethylene liner was used in 8 cases. In 3 cases, liner was cemented in the metal shell because compatible liner could not be used. After a minimum follow-up of 5 years (range, 5∼20.2), re-revision surgery was necessary in 10 cases (29.4%); 8 for wear and osteolysis, 2 for acetabular loosening. In all re-revision cases, conventional polyethylene was used. There was no failure in the cases in which highly cross-linked polyethylene was used. There was no case complicated with dislocation. The results of this study suggest more promising results with the use of highly cross-linked polyethylene in isolated liner exchange


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 34 - 34
1 Aug 2018
García-Rey E García-Cimbrelo E Cordero-Ampuero J
Full Access

We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) after twenty years, analysing polyethylene wear and osteolysis. 82 hips implanted between 1992 and 1995 were prospectively evaluated. Mean follow-up was 20.6 years (18–23). A hemispherical porous-coated cup matched to a proximally hydroxyapatite-coated anatomic stem. A 28mm PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position, eventual loosening and osteolysis were recorded over time. Penetration of the head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter. Six cups were revised due to wear and four cups because of late dislocation. All stems showed osseointegration and all cups appeared radiographically well-fixed. Six unrevised hips showed osteolysis on the acetabular side and two hips on the proximal femur. Creep at one year was 0.30±0.23 mm. Mean total femoral head penetration was 1.23mm at ten years, 1.52mm at 15 years and 1.92mm at 23 years. Overall mean wear was 0.12±0.1 mm/year and 0.09±0.06 mm/year after the creep period. Mean wear was 0.08±0.06 mm/year in hips without osteolysis and 0.14±0.03 mm/year in hips revised or hips with osteolysis (p<0.001). Although continued durable fixation can be observed with porous-coated cups and proximally hydroxyapatite-coated anatomic stems, true wear continues to increase at a constant level over time. PE wear remains as the main reason for osteolysis and revision surgery in uncemented THR after twenty years


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 225 - 225
1 Mar 2010
Selvarajah E Hooper G Inglis G Woodfield T Devane P
Full Access

The early results with highly cross-linked polyethylene have been encouraging and have increased the ability to use larger head diameters to improve the range of motion and decrease the dislocation rate, the commonest cause of early complications following total hip arthroplasty (THA). Wear rates with 32 mls heads have been satisfactory however there have been very few independent studies looking at early polyethylene wear in 36 mm heads. This study assessed the rate of polyethylene wear of a 36mm ceramic femoral head and a highly cross-linked polyethylene (X3 Stryker) liner in THA. This prospective study reviewed 100 consecutive THAs in young patients (mean age 58 years) who had undergone THA with the same 36mm ceramic femoral head and highly cross linked polyethylene liner. All patients received the same femoral stem (ABG, Stryker) and acetabular cup (Trident, Stryker). Two surgeons performed all procedures. Patients were assessed radiologically immediately postoperatively, at 10 weeks and at one year. Validated computer software (Polyware) was used to assess both volumetric and linear wear. At one year the mean two-dimensional linear wear rate was 0.51 mm/yr. Mean three-dimensional linear vector wear rate was 0.59 mls per year with a mean volumetric wear rate of 322.6 mms per three years. Cup size ranged from 52–62 mms and the correlation coefficient between cup size and three-dimensional linear wear rate was −0.100. The correlation coefficient between cup size and volumetric wear rate was −0.009 confirming no significant correlation between cup size and wear. Larger size femoral heads are associated with a higher volumetric wear compared to linear wear rate when using conventional polyethylene. This study demonstrated much higher early linear wear rates compared to other studies using 28 and 32 mms heads. This higher rate may be associated with the creep phenomenon and early bedding-in in the early stages after a THA and although this is of concern these results should be interpreted with caution


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 470 - 475
1 Apr 2011
Kendrick BJL Simpson DJ Kaptein BL Valstar ER Gill HS Murray DW Price AJ

The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 259 - 265
1 Mar 1999
Smith PN Ling RSM Taylor R

We have studied the influence of weight-bearing on the measurement of wear of the polyethylene acetabular component in total hip arthroplasty using two techniques. The measured vertical wear was significantly greater when radiographs were taken weight-bearing rather than with the patient supine (p = 0.001, method 1; p = 0.007, method 2). Calculations of rates of linear wear of the acetabular component were significantly underestimated (p < 0.05) when radiographs were taken supine. There are two reasons for this. First, a change in pelvic orientation when bearing weight ensures that the thinnest polyethylene is brought into relief, and secondly, the head of the femoral component assumes the position of maximal displacement along its wear path. Interpretation of previous studies on both linear and volumetric polyethylene wear in total hip arthroplasty should be reassessed in the light of these findings


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims. Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years. Patients and Methods. A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up. Results. In total, 73 patients (82%) completed the seven-year visit. Mean seven-year linear proximal penetration was -0.07 mm (. sd. 0.16) and 0.00 mm (. sd. 0.22) for the VEPE and ModXLPE cohorts, respectively (p = 0.116). PROMs (p = 0.310 to 0.807) and radiolucency incidence (p = 0.330) were not different between the polyethylene cohorts. The mean proximal shell migration rate was 0.04 mm per year (. sd. 0.09). At seven years, patients with radiolucency (34%) demonstrated greater migration (mean difference: 0.6 mm (. sd. 0.2); p < 0.001). PROMs were lower for patients with radiolucency and greater proximal migration (p = 0.009 to p = 0.045). No implants were revised for aseptic loosening. Conclusion. This is the first randomized controlled trial to report seven-year RSA results for VEPE. All wear rates were below the previously reported osteolysis threshold (0.1 mm per year). PTC shells demonstrated acceptable primary stability through seven years, as indicated by low migration and lack of aseptic loosening. However, patients with acetabular radiolucency were associated with higher shell migration and lower PROM scores. Cite this article: Bone Joint J 2019;101-B:760–767


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 148 - 148
1 Sep 2012
Gottliebsen M Rahbek O Soballe K Stilling M
Full Access

Background. An increasing number of hip prostheses are inserted without bone cement. Experimental research has shown that hydroxyapatite (HA) coated implants are strongly fixated in the bone, which is believed to reduce the likelihood of prosthetic loosening. However, in recent years, there has been much debate about the role of HA particles in third-body polyethylene (PE) wear and formerly we have shown the revision rate to be high among older-design HA coated cups. Purpose. We hypothesized increased PE wear-rate using HA coated acetabular components in comparison with non-HA coated components (control group). Materials and Methods. We performed a retrospective comparative clinical study based on two patient populations identified in the Danish Hip Arthroplasty Registry (October 2006). All patients had primary total hip arthroplasty (THA) between 1997 and 2001 with cementless Mallory-Head acetabular components. One group received HA coated acetabular components (75 patients, 77 hips). The other group received identical components without HA (70 patients, 73 hips). In all cases the liner was similar and 28 mm metal femoral heads were used. All patients were invited for a radiographic follow-up in 2007. The AP radiographs were analysed for two-dimensional (2D) polyethylene wear using the semi-automated PolyWare software. All cases of non-responders, stem revisions, hip dislocations and patients with less than 5 years of follow-up were excluded from the analysis. Findings/Results. The 2D linear PE wear-rate of 0.18 mm/year (SD 0.09) was higher (P<0.001) in the group with HA coated cups (n = 54) compared with 0.12 mm/year (SD 0.07) in the group of non-HA coated cups (n = 35). The Effect size of the difference in linear PE wear-rate, established as Cohen's d, was large (0.9). The time of follow-up was similar (p = 0.11) in the HA group (7.2 years) versus the non-HA group (7.6 years). There was no case-mix concerning distribution of gender and operated side in the groups; however, the mean age was lower (P = 0.001) in the HA group (57 years) compared with the non-HA group (63 years). Conclusions. We found a significantly increased PE wear rate in HA coated acetabular components at midterm follow-up. The patients with HA coated cups were younger on average, and this might partly explain the findings because the activity level expectedly is higher in younger patients. Still an effect size of 0.9 is large and should raise concern and supplement considerations in future clinical decisions on component selection. A randomized (RSA) study on newer type crosslinked polyethylene liners is recommended to bring about more information on the clinical performance and longevity of HA coated acetabular components


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 53 - 53
1 Jan 2003
Desai VV Newman JH Ashraf T Beard D
Full Access

The purpose of this study was to determine the rate of polyethylene wear in a fixed bearing knee replacement in order to establish a norm against which mobile bearing implants can be judged. Method: Eighteen all polyethylene tibial components were retrieved when a St Georg Sled unicompartmental replacement was being revised. This prosthesis has a biconvex femoral component and a totally flat tibia; thus point loading occurs on at implantation. The implants had been in situ between 6 and 110 months, revision was predominantly for progression of the arthritic process. Linear wear was measured using an electronic micrometer and volumetric wear by creating a mould of the defect using dental wax, and subsequently weighing the wax. Results: All components developed dishing which varied in orientation but matched the alignment of the femoral component. A near congruous articulation was thus produced correctly aligned for that particular arthroplasty. The mean linear penetrative wear for the group was 0.33mm (0.09mm per year) and the volumetric wear 124mm³ (26mm³ per year). The rate of wear seemed greatest during the second year. Conclusion: The wear rate for this totally non congruous implant was much less than anticipated. The linear penetrative wear is comparable to that reported for Charnley hip replacement though more than for a fully congruent mobile UKR. The volumetric wear is much lower than that thought to cause osteolysis. The surprisingly low wear rate suggests that the need for mobile bearing UKRs, with their greater technical demands, should be questioned