Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A NOVEL NEW METHOD FOR MEASUREMENT OF COMPONENT MIGRATION & POLYETHYLENE WEAR IN THA



Abstract

Early migration of the acetabular and femoral component after total hip replacement has shown to be a good predictor of implant failure. The only current technique available for this measurement is RSA. An entirely new technique for the measurement of component migration and polyethylene wear has been developed. Required are a single CT of the patients’ pelvis and femur, and routine serial postoperative antero-posterior (AP) and lateral radiographs.

A CT scan of the patients pelvis and proximal femur is performed either pre or post-operatively. This CT is used to build a solid model of the patients’ bony anatomy. CAD models of the femoral and acetabular component are obtained from the manufacturer and all four solid models are imported into custom software. Ray tracer (RT) technology is the computer generation of images of a solid model placed between a camera and a screen. It has been adapted to reproduce the radiological setup used to take clinical AP and lateral radiographs. The four solid models (pelvis, acetabular component, femoral component, femoral shaft) are each placed in the RT. Manipulation of each solid model is performed (6 degrees of freedom, x, y, z translation, and rotation about the x, y, z axis) using Artificial Intelligence, until an outline of the solid model generated by the ray tracer is identical to the outline of the AP and lateral radiograph of that patient. Change in relative positions of each solid model over time (pelvis acetabular component represents acetabular migration, acetabular component femoral stem represents polyethylene wear, and femoral stem femur represents femoral migration) are recorded. Validation to measure accuracy of the technique has been performed using computer models, and femoral and acetabular prostheses implanted into a cadaver.

Despite significant variations in the position of the pelvis and leg during the obtaining of post-operative radiographs, this new technique was able to measure polyethylene wear and component migration with accuracy similar to that of RSA (0.25 mm in the AP plane).

Further testing and validation is required, but this technique offers promise for the future in being able to retrospectively measure component migration and poly-ethylene wear, using a single CT scan and routine clinical postoperative radiographs.

Correspondence should be addressed to Associate Professor N. Susan Stott at Orthopaedic Department, Starship Children’s Hospital, Private Bag 92024, Auckland, New Zealand