header advert
Results 1 - 100 of 567
Results per page:
Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 107 - 107
1 Jan 2016
Walker D Struk A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) has had rapidly increasingly utilization since its approval for U.S. use in 2004. RTSA accounted for 11% of extremity market procedure growth in 201. Although RTSA is widely used, there remain significant challenges in determining the location and configuration of implants to achieve optimal clinical and functional results. The goal of this study was to measure the 3D position of the shoulder joint center, relative to the center of the native glenoid face, in 16 subjects with RTSA of three different implant designs, and in 12 healthy young shoulders. CT scans of 12 healthy and 16 pre-operative shoulders were segmented to create 3D models of the scapula and humerus. A standardized bone coordinate system was defined for each bone (Figure 1). For healthy shoulders, the location of the humeral head center was measured relative to the glenoid face center. For the RTSA shoulders, a two-step measurement was required. First, 3D models of the pre-operative bones were reconstructed and oriented in the same manner as for healthy shoulders. Second, 3D model-image registration was used to determine the post-operative implant positioning relative to the bones. The 3D position and orientation of the implants and bones were determined in a sequence of six fluoroscopic images of the arm during abduction, and the mean implant-to-bone relationships were used to determine the surgical positioning of the implants (Figure 2). The RTSA center of rotation was defined as the offset from the center of the implant glenosphere to the center of the native glenoid face. The center of rotation in RTSA shoulders varied over a much greater range than the native shoulders (Table 1 (Figure 3)). Lateral offset of the joint center in RTSA shoulders was at least 6 mm smaller than the smallest joint center offset in the healthy shoulders. The center of rotation in RTSA shoulders was significantly more inferior than in healthy shoulders. The range of anterior/posterior placement of the rotation center for RTSA shoulders was bounded by the range for normal shoulders. How to best position RTSA implants for optimal patient outcomes remains a topic of great debate and research interest. We found that the 3D joint center position can vary over a supraphysiologic range in shoulders with RTSA, and that this variation is primarily in the coronal plane. By relating these geometric variations to muscle, shoulder and clinical function, we hope to establish methods and strategies for predictably obtaining the best clinical and functional outcomes for RTSA patients on a per-subject basis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 29 - 29
1 May 2016
Banks S Kefala V Cyr A Shelburne K Rullkoetter P
Full Access

“How does the knee move?” is a question of fundamental importance for treatment of knee injuries and knee replacement design. Unfortunately, we lack unambiguous and comprehensive knee function data sets and/or consensus on how healthy knees move. One can just as easily find reports stating the natural knee has a center of axial rotation in the medial compartment of the knee as in the lateral. This is due to technical and practical issues: It is extremely difficult to accurately measure knee motions during ambulatory activities and, when that can be done, very few studies have examined a range of weightbearing activities in the same study cohort. The purpose of this study is to report knee kinematics in a cohort of healthy older subjects whose motions were examined during four different movements, three of them weightbearing ambulation, using a high-speed stereoradiographic system. Six healthy consenting subjects (age = 61 ± 5 years, body mass = 75 ± 8 kg, BMI = 27 ± 4) were observed using a high-speed stereoradiographic system while completing four tasks. Subjects were instructed to perform an unloaded, seated knee extension from high flexion to full extension; to walk at a self selected pace; to step down from a 7 inch platform; and to walk and perform a 90° direction change (pivoting). Stereoradiographic images (1080 × 1080 pixels) were acquired at 100 images/second using 40cm image intensifiers and pulsed x-ray exposures. The three-dimensional knee kinematics were measured using the XROMM software suite (. xromm.org. , Brown University). Post-processing of the kinematics was performed in custom Matlab programs, and included fitting spheres to the posterior condylar surfaces of each knee, and then tracking the motions of the sphere centers relative to a fixed tibial reference frame (Figure 1). The motions of these flexion-facet centers, were used to determine an average center of axial rotation (CoR) over each activity as previously reported by Banks and Hodge. Average CoRs for all four activities were in the posterior-medial quadrant of the knee, with the CoR for open-chain knee extension being the most medial and gait the most lateral (Table 1, Figure 2). One-way ANOVA showed average CoRs are different (p « 0.001). There was considerable variation in individual CoRs, for example, with two knees showing lateral CoRs for gait and the remaining knees having medial CoRs. It should not be surprising that natural knee motions vary with dynamic activity, yet knee kinematics often are presented as being one stereotypic, monolithic pattern of motion. Our data show that the same healthy subjects performing different dynamic activities manifest different knee motions, with open-chain knee extension having the most medial CoR and gait the most lateral. This finding is consistent with previous reports comparing stair climbing and gait in knees with various implant designs. Additional experimental data and, ultimately, validated numerical simulations should facilitate an increasingly accurate process for designing improved treatments for diseased and damaged knees


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 103 - 103
1 Sep 2012
Ede MN Ross E Rischke B Joellenbeck B Hipp J Kari Z
Full Access

Purpose. To determine if clinical outcomes are correlated with center of rotation (COR) in patients implanted with a viscoelastic total disc replacement (VTDR). Methods. Fifty patients with single-level, symptomatic lumbar DDD between L4 and S1 were enrolled in a clinical trial of a VTDR across three surgical centres. A comprehensive, independent review and statistical analysis of both clinical and radiographic outcomes was performed and analyzed for correlations. Data from preoperative through 2 years were available. The COR was calculated for the index levels and compared to data for an asymptomatic population. Each COR coordinate was classified as abnormal if outside of the 95% confidence interval for an asymptomatic population. Results. At most recent follow-up, 69% of the patients had achieved at least a 15 point Oswestry Disability Index (ODI) improvement. 76% of the patients achieved at least a 10 point improvement. At most recent follow-up, 78% of cases had a normal COR-X and 92% had a normal COR-Y. Results from three statistical tests show the association between COR-X and outcomes. 1) Based on latest available time point for each patient, the improvement in ODI score was significantly better for patients with a normal anterior-posterior (AP) coordinate of the COR (P=0.03). 2) Anterior COR corresponded with anterior placement of the device in the disc space, and patients were almost 7 times less likely to achieve at least a 15 point improvement in the ODI score if the COR was positioned too anteriorly. 3) This effect was also seen in the average AP coordinate of the COR for patients who achieved a 15 point ODI improvement. Conclusions. A viscoelastic TDR can restore a normal COR. This is the first study to show that restoration of a normal COR correlates with a significant and clinically relevant improvement in patient disability


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 11 - 11
1 Jun 2012
Newton Ede M Ross ERS Rischke B Joellenbeck B Hipp J Zimmers K
Full Access

Purpose. To determine if clinical outcomes are correlated with center of rotation (COR) in patients implanted with a viscoelastic total disc replacement (VTDR). Methods. Fifty patients with single-level, symptomatic lumbar DDD between L4 and S1 were enrolled in a clinical trial of a VTDR across three surgical centres. A comprehensive, independent review and statistical analysis of both clinical and radiographic outcomes was performed and analyzed for correlations. Data from preoperative through 2 years were available. The COR was calculated for the index levels and compared to data for an asymptomatic population. Each COR coordinate was classified as abnormal if outside of the 95% confidence interval for an asymptomatic population. Results. At most recent follow-up, 69% of the patients had achieved at least a 15 point Oswestry Disability Index (ODI) improvement. 76% of the patients achieved at least a 10 point improvement. At most recent follow-up, 78% of cases had a normal COR-X and 92% had a normal COR-Y. Results from three statistical tests show the association between COR-X and outcomes. 1) Based on latest available time point for each patient, the improvement in ODI score was significantly better for patients with a normal anterior-posterior (AP) coordinate of the COR (P=0.03). 2) Anterior COR corresponded with anterior placement of the device in the disc space, and patients were almost 7 times less likely to achieve at least a 15 point improvement in the ODI score if the COR was positioned too anteriorly. 3) This effect was also seen in the average AP coordinate of the COR for patients who achieved a 15 point ODI improvement. Conclusions. A viscoelastic TDR can restore a normal COR. This is the first study to show that restoration of a normal COR correlates with a significant and clinically relevant improvement in patient disability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 109 - 109
1 Mar 2017
Reitman R Pierrepont J Shimmin A McMahon S Kerzhner E
Full Access

Introduction. Restoration of the femoral head centre during THR should theoretically improve muscle function and soft tissue tension. The aim of this study was to assess whether 3D planning and an accurately controlled neck osteotomy could help recreate hip anatomy. Methods. 100 consecutive THR patients received OPS. TM. 3D femoral planning. For each patient a 3D stem+head position was pre-operatively planned which restored the native head height, restored global offset after cup medialisation and reproduced anterior offset, in the superior-inferior, medial-lateral and anterior-posterior directions respectively. The femoral osteotomy was planned preoperatively and controlled intra-operatively with a patient specific guide. All procedures were performed through a posterior approach with a TriFit/Trinity uncemented implant combination. Post-op implant position was determined from CT. Results. The mean difference between planned and achieved head height was 0.9mm (−1.2mm to 4.6mm). The mean difference between planned and achieved medial offset was −0.9mm (−6.2mm to 3.1mm). The mean difference between planned and achieved anterior offset was 3.2mm (−0.4mm to 6.6mm). Resultant 3D change between the planned and achieved head centre was 4.4mm (0.6mm to 9.1mm). The change in anterior offset was strongly correlated (r=0.78) to the change in achieved stem anteversion in comparison to the plan; mean values of 16.3° and 10.5° respectively. Conclusions. In this single centre pilot study, femoral centre of rotation was accurately reproduced by using 3D templating and controlling the femoral neck osteotomy with a patient-specific guide


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 560 - 560
1 Nov 2011
Varin D Speirs A Benoit D Beaulieu M Lamontagne M Beaulé PE
Full Access

Purpose: A functional centre of rotation (CoR) is often required in biomechanical analysis of the hip or as a landmark in computer guided surgery. It was previously shown that circumduction motions predict a CoR that is inferior and lateral to the geometric centre of the hip bearing surfaces. It is therefore necessary to establish the best method for determining the CoR to improve surgical planning. The objective of this study was to compare the predicted CoR from circumduction and star motions, and to compare these to the geometric centre of the joint. Method: Eight cadaveric hips from four cadavers were tested. Prior to testing, CT scans of the cadavers were made from the iliac crest to the tibial plateau; the alpha angle for all hips was less than 50° so all hips were considered ‘normal’. Reflective marker arrays were rigidly mounted on the femoral diaphysis and iliac spine using 4mm Steinman pins. A five-camera Vicon system (Oxford, UK) was used to track the motions of the arrays during manipulation of the lower limb. To determine the functional hip centre, trials consisting of five cycles each of circumduction, flexion-extension and abduction-adduction were performed on each lower limb; three trials of each motion were performed. The range of motion was approximately 45° in the coronal and sagittal planes. For the ‘star’ motion, the flexion-extension and abduction-adduction trial data were combined. Following the trials the hip was dissected to expose the articular surfaces of the femoral head and acetabulum. These surfaces were traced using a pointer equipped with reflective markers to determine the geometric centre. To calculate the functional centre, the 3D coordinates of the markers were used to construct a local-to-global 3D transform for each frame throughout the trial. The geometric centre was calculated using a least-squares sphere fit (Gauss-Newton) of the trace data, calculated in the respective local coordinate systems. The coordinates of the functional centres were then transformed to an anatomic coordinate system, using the geometric centre as the origin. All calculations were performed using Matlab (Mathworks, Inc, MA, USA). A t-test was performed in each anatomic direction to detect differences in CoR predicted by the two motions. Results: Both the circumduction and star motions resulted in a similar CoR. Differences were 0.41±2.25mm in the anterior-posterior direction; 0.09±0.72mm in the superior-inferior direction; and 0.21±0.82mm in the medial-lateral direction, none of which were significant (p> 0.5). The overall mean distance between the CoR predicted by the two motions was 2.0±1.3mm. The functional centre was also found to be lateral and inferior to the geometric centre, and was consistent for each motion. Results for the acetabulum showed similar trends. Conclusion: This study has shown that circumduction and star motions are equivalent in predicting the hip functional CoR; differences were small compared to the dimensions involved in studies such as gait analyses. However, both motions predicted a CoR that was inferior and lateral to the spherical centre of the femoral head, suggesting that the hip does not act as a true ball-and-socket joint with congruent spherical bearing surfaces. This may have important consequences in studies at the scale of the hip joint, especially for pathological conditions such as femoroacetabular impingement


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 190 - 190
1 Sep 2012
Nguyen B Taylor J
Full Access

Purpopse. Few Cervical Total Disc Replacement (TDR) devices are engineered to address both the Center of Balance (COB) and the Center of Rotation (COR) of the cervical motion segments. The COB is the axis in the intervertebral disc through which the axial compressive load is transmitted. TDRs placed posterior of this point tend to fall into kyphosis while devices placed anterior of this point tend to fall into lordosis. Thus from a “balancing” point of view the ideal placement would be at the COB. However, the COR position has been shown to be posterior and inferior to the disc space. It has also been shown that constrained devices tend to lose motion when there is a mismatch between device and anatomic centers. Mobile core devices may be placed at the COB since their unconstrained rotations and translations allow for the device COR to follow the anatomic COR, but they rely heavily on the facet joints and other anatomic features to resist the paradoxiacal motion. The TriLobe cervical TDR (Figure 2) was engineered for both the COB and COR. The purpose of this study was to compare the 3D kinematic and biomechanical performance of the TriLobe to a ball and trough(BT) cervical TDR in an augmented pure moment cadaveric study to find the ideal AP implant placement. Materials and methods. Specimen were CT imaged for three-dimensional reconstruction. Visual, CT, and DEXA screening was utilized to verify that specimens are free from any defects. Specimens were prepared by resecting all nonligamentous soft tissue leaving the facet joint capsules and spinal ligaments intact. C2 and T1 were potted to facilitate mounting in the testing apparatus (7-axis Spine Tester, Univ. of Utah, Salt Lake City, UT). OptoTRAK motion tracking flags were attached to each vertebra including C2/C3 and T1 to track the 3D motion of each vertebra. •. Specimens C2–T1. •. Treatment Level C5–C6. •. Insertion of fixture pins under fluoro. •. Load Control Testing to 2.5Nm in FE, LB, AR at 0.5Hz. •. 15 Pre-cycles in load control in FE / LB / AR (2.5Nm). •. Test implants in load control in FE / LB / AR to 2.5Nm for 4 cycles with data recorded for all cycles. Results. [Results Table - Figure 1]. Discussion. This study showed that the TriLobe had better control of motion compared to the ball and trough both in ROM and varibility for FE, LB, and AR. The TriLobe had better control of limiting kyphosis over the ball and trough by 41% of the flexion motion. The neutral zone slope, an measure for device stability, showed that the TriLobe was 51% more stable than the BT. AP placement of devices showed there was a general trend of decreasing stability from anterior to posterior placement; however, statistical significance was not established


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 120 - 120
1 Aug 2012
Holleyman R Gikas P Tyler P Coward P Carrington R Skinner J Briggs T Miles J
Full Access

Background. The position of the hip-joint centre of rotation (HJC) within the pelvis is known to influence functional outcome of total hip replacement (THR). Superior, lateral and posterior relocations of the HJC from anatomical position have been shown to be associated with greater joint reaction forces and a higher incidence of aseptic loosening. In biomechanical models, the maximum force, moment-generating capacity and the range of motion of the major hip muscle groups have been shown to be sensitive to HJC displacement. This clinical study investigated the effect of HJC displacement and acetabular cup inclination angle on functional performance in patients undergoing primary THR. Methods. Retrospective study of primary THR patients at the RNOH. HJC displacement from anatomical position in horizontal and vertical planes was measured relative to radiological landmarks using post-operative, calibrated, anterior-posterior pelvic radiographs. Acetabular cup inclination angle was measured relative to the inter-teardrop line. Maximum range of passive hip flexion, abduction, adduction, external and internal rotation were measured in clinic. Patient reported functional outcome was assessed by Oxford Hip Score (OHS) and WOMAC questionnaires. Data analysed using a linear regression model. Results. 109 THRs were studied in 104 patients (69 Female). Mean age at THR=63 years (22-88). Mean follow-up=17 months (11-39 months). Median OHS=16, WOMAC=8. Increasing vertical HJC displacement (in either superior or inferior direction) from anatomical position was associated with worsening OHS (p<0.05) and WOMAC scores (p<0.05) and a reduced range of passive hip flexion (p<0.05). No relationship was found between either horizontal HJC displacement or acetabular cup inclination angle and patient functional outcome. Conclusion. A significant relationship was identified between increasing vertical displacement of the HJC and worsening patient functional outcome. This supports current opinion regarding the disadvantageous consequences of a superiorly displaced HJC in terms of survivorship and function. We therefore advocate an anatomical restoration of HJC position wherever possible


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 18 - 18
1 Apr 2018
Guan S Gray H Schache A Feller J de Steiger R Pandy M
Full Access

INTRODUCTION. Accurate knowledge of knee joint kinematics following total knee arthroplasty (TKA) is critical for evaluating the functional performance of specific implant designs. Biplane fluoroscopy is currently the most accurate method for measuring 3D knee joint kinematics in vivo during daily activities such as walking. However, the relatively small imaging field of these systems has limited measurement of knee kinematics to only a portion of the gait cycle. We developed a mobile biplane X-ray (MoBiX) fluoroscopy system that enables concurrent tracking and imaging of the knee joint for multiple cycles of overground gait. The primary aim of the present study was to measure 6-degree-of-freedom (6-DOF) knee joint kinematics for one complete cycle of overground walking. A secondary aim was to quantify the position of the knee joint centre of rotation (COR) in the transverse plane during TKA gait. METHODS. Ten unilateral posterior-stabilised TKA patients (5 females, 5 males) were recruited to the study. Each subject walked over ground at their self-selected speed (0.93±0.12 m/s). The MoBiX imaging system tracked and recorded biplane X-ray images of the knee, from which tibiofemoral kinematics were calculated using an image processing and pose-estimation pipeline created in MATLAB. Mean 6-DOF tibiofemoral joint kinematics were plotted against the mean knee flexion angle for one complete cycle of overground walking. The joint COR in the transverse plane was calculated as the least squares intersection of the femoral flexion axis projected onto the tibial tray during the stance and swing phases. The femoral and tibial axes and 6-DOF kinematics were defined in accordance with the convention defined by Grood and Suntay in 1983. RESULTS AND DISCUSSION. The offset in secondary joint motions at a given flexion angle was greater at larger knee flexion angles than at smaller flexion angles for abduction, anterior drawer, and lateral shift, whereas the opposite was true for external rotation. Significant variability was observed between subjects for the COR. The mean COR was on the lateral side during stance, consistent with results reported in the literature for the intact knee. Interestingly, the mean COR was on the medial side during swing. CONCLUSIONS. Our results suggest that secondary joint motions in the TKA knee, specifically, external rotation, abduction, anterior drawer and lateral shift, are determined not only by implant geometry and ligament anatomy but also by external loading, and are therefore task-dependent. The mean COR in the transverse plane shifted from the lateral to the medial side of the knee as the leg transitioned from stance to swing. Mobile dynamic X-ray imaging is a valuable tool for evaluating the functional performance of knee implants during locomotion over ground


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 90 - 90
1 Jun 2012
Hasan S Fleckenstein CM
Full Access

The reverse ball and socket shoulder replacement, employing a humeral socket and glenosphere, has revolutionized the treatment of patients with arthritis and rotator cuff insufficiency. The RSP (DjO Surgical, Inc., Austin, Texas) is one such device, characterized by a lateral center of rotation and approved for use in the United States since 2004. Multiple studies by the implant design team have documented excellent outcomes and low revision rates for the RSP, but other published outcomes data are relatively sparse. The objective of this study is to report on the complications and early outcomes in the first consecutive 60 RSPs implanted in 57 patients by a single shoulder replacement surgeon between 2004 and 2010. Forty-four patients were female and mean age at the time of reverse shoulder arthroplasty was 75 years (range 54 to 92 years). The RSP was used as a primary arthroplasty in 42 shoulders and to revise a failed prosthetic shoulder arthroplasty in 18 shoulders. During the study period, 365 shoulder replacements were implanted so that the RSP was used selectively, accounting for only 17% of all shoulder arthroplasties (8.4% for 2004-2007, 24.2% for 2008-2010). Most patients had pseudoparalysis and profound shoulder dysfunction so that mean pre-operative active forward elevation was to 45°, active abduction to 43°, active internal rotation to the buttock, and the mean pre-operative Simple Shoulder Test (SST) score was 1 out of 12. At final follow-up, mean active forward elevation had improved to 101° (p<0.0001), active abduction to 91° (p<0.0001), active internal rotation to the lumbosacral junction (p<0.001), and the mean final SST score was 7 out of 12. There were 16 complications in 14 patients, including 7 reoperations in 6 patients (11%): 3 closed reductions for dislocation, 2 open revisions for instability and for a dissociated liner in the same patient, one evacuation of a hematoma, and one open reduction and internal fixation of a post-operative scapular spine fracture. Two additional scapular spine or acromion fractures and one acromioclavicular joint separation developed postoperatively that impacted outcome adversely but did not require re-operation. None of the glenoid baseplates or humeral stems has been revised and no deep infections have occurred. Experience with reverse shoulder arthroplasty appears to influence the reoperation rate, as 3 of the reoperations occurred following the first 15 reverse shoulder arthroplasties. Overall improvements in active motion and self-assessed shoulder function were comparable to those reported previously. Final active motion results were somewhat lower than those reported previously, which may relate to the selection of predominately pseudoparalytic patients for reverse shoulder arthroplasty in this series. Use of the RSP device for reverse shoulder arthroplasty leads to improved motion and function in carefully selected older patients with pseudoparalysis or a failed shoulder replacement. Re-operations and complications occur but the learning curve may not be as steep as previously reported. This may relate to specific features of the implant system used in this series, as well as to surgeon experience


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 496 - 496
1 Aug 2008
Flavin R FitzPatrick D Stephens MM
Full Access

Introduction: The foot is a very complex structure acting as the platform for all gait patterns. At present, little is known about the exact biomechanics of the foot due to the difficulties in modeling all of the components of the foot accurately. This has made it virtually impossible to develop a complete understanding of the aetiology of many diseases of the foot including hallux rigidus. We hypothesize that sagittal plane incongruency of the rotation of the 1. st. Metatarsophalangeal Joint (MTPJ), or an increase in the tension of the intrinsic plantar flexors is responsible for the development of hallux rigidus. Materials & Methods: Ground reaction forces and kinematic data from gait analysis together with anthropometric data from MRI scans of a 24 y.o. female were used to create a Mimics model of the articulation of a normal 1st MTPJ during a gait cycle. The centre of rotation was calculated by triangulating the articular surfaces. Finite element analysis was performed on the model and on similar models with the hypothesized;. joint incongruency,. an increased tension in the Flexor Hallicus Brevis and. an increased tension in the plantar fascia. Results: The results demonstrated a significant increase in the peak stresses, contact areas and stress distributions between the incongruent models compared to the congruent models. Discussion: To the best of our knowledge this is the most accurate FE model of the 1st MTPJ calculated. Hallux Rigidus is a very common forefoot disorder, with multiple etiologies and treatments advocated. This model demonstrates that an increased tension in the plantar flexors results in a reduced ROM with increased contact stresses on the joint surface. Conclusion: While it is known Hallux Rigidus has a multi-factorial etiology, the authors feel the above study demonstrates an important inherent etiology


Introduction. Lateralizing the center of rotation (COR) of reverse total shoulder arthroplasty (rTSA) has the potential to increase functional outcomes of the procedure, namely adduction range of motion (ROM). However, increased torque at the bone-implant interface as a result of lateralization may provoke early implant loosening, especially in situations where two, rather than four, fixation screws are used. The aim of this study was to utilize finite element (FE) models to investigate the effects of lateralization and the number of fixation screws on micromotion and adduction ROM. Methods. Four patient-specific scapular geometries were developed from CT data in 3D Slicer using a semi-automatic threshold technique. A generic glenoid component including the baseplate, a lateralization spacer, and four fixation screws was modelled as a monoblock. Screws were simplified as 4.5 mm diameter cylinders. The glenoid of each scapula was virtually reamed after which the glenoid component was placed. Models were meshed with quadratic tetrahedral elements with an edge length of 1.3 mm. The baseplate and lateralization spacer were assigned titanium material properties (E = 113.8 GPa and ν = 0.34). Screws were also assigned titanium material properties with a corrected elastic modulus (56.7 GPa) to account for omitted thread geometry. Cortical bone was assigned an elastic modulus of 17.5 GPa and Poisson's ratio of 0.3. Cancellous bone material properties in the region of the glenoid were assigned on an element-by-element basis using previously established equations to convert Hounsfield Units from the CT data to density and subsequently to elastic modulus [1]. Fixed displacement boundary conditions were applied to the medial border of each scapula. Contact was simulated as frictional (μ = 0.8) between bone and screws and frictionless between bone and baseplate/spacer. Compressive and superiorly-oriented shear loads of 686 N were applied to the baseplate/spacer. Lateralization of the COR up to 16 mm was simulated by applying the shear load further from the glenoid surface in 4 mm increments (Fig. 1A). All lateralization levels were simulated with four and two (superior and inferior) fixation screws. Absolute micromotion of the baseplate/spacer with respect to the glenoid surface was averaged across the back surface of the spacer and normalized to the baseline configuration considered to be 0 mm lateralization and four fixation screws. Adduction ROM was measured as the angle between the glenoid surface and the humeral stem when impingement of the humeral cup occurred (Fig. 1B). Results. Lateralization (p = 0.015) and reducing the number of fixation screws (p = 0.008) significantly increased micromotion (Fig. 2). Lateralization significantly increased adduction ROM (p = 0.001). Relationships between lateralization, the number of fixation screws, micromotion, and adduction ROM were shoulder-specific (Fig. 3). Conclusions. Lateralizing the COR of rTSA can improve functional outcomes of the procedure, however may compromise long-term survival of the implant by increasing micromotion. Our results indicate that the trade-offs of lateralizing should be considered on a patient-specific basis, taking into account factors such as quality and availability of bone stock


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 12 - 12
1 Jan 2004
Aamodt A Haugan K Benum P
Full Access

CT-based, customised femoral stem enables optimal reconstruction of hip mechanics and leg length. However, traditional planning and execution of cup insertion may jeopardise these biomechanical parameters. The aim of this study was to examine the agreement of the preoperative planning of cup position and the final position of the cup.

Thirty total hip replacements with an uncemented acetabular cup (Duraloc, DePuy) or a cemented cup (Elite-Plus, DePuy) were included. A customised femoral stem was used in all hips. On the preoperative X-rays the planned position and orientation of the cup had been marked prior to the surgery. The pre- and postoperative X-ray images were then digitised and scaled. The planned and final positions of the cup centre in the frontal plane was then measured relative to a horizontal line defined by the tear-drops and to a vertical line through the centre of the tear-drop on the operated side. In addition the concurrence between the planned and final cup size was examined.

In the horizontal direction the cups were positioned 1.4 (7.6) mm (median, ±2SD) more medial than planned on the preoperative X-rays. In the vertical direction the corresponding figures were 1.2 (6.6) mm (median, ±2SD) and the cups were usually placed more cranially than was planned. The maximum discrepancy between the planned and final position was 10,6 mm in the horizontal direction (medial) and 7.1 mm in the vertical direction (cranial). In 63% of the hips there was agreement between the size of the cup planned preoperatively and the cup that was finally inserted. In 25% of the hips the final cup was larger and in 12% the final cup was smaller.

In most cases the acetabular cups were inserted within a few millimetres of the planned position. The combination of a standard uncemented or cemented cup with a custom femoral stem enables the surgeon to restore hip mechanics and leg length.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 298 - 298
1 Jul 2008
Venu KM Samsani S Nunn D
Full Access

Introduction: Several techniques have been described for revision of acetabulum associated with severe superior bony defects. An Oblong cup inserted without bone cement has the advantage of restoration of the centre of hip rotation and maintenance of bone stock. The aim of this study was to analyse the medium-term results of acetabular revision using Oblong cup for severe superior bony defects. Methods: Thirty-five acetabular revisions using porous coated Oblong cups (S-Rom, Depuy) in 34 patients were performed by the senior author between 1998–2001. All patients were followed-up clinically and thirty-one hips were analysed radiologically for a mean duration of 39.6 months (range 18 to 60). The clinical assessment was performed using Harris hip score and subjective patient’s satisfaction. The acetabular defects were classified according to the method described by Paprosky et al. The position of the acetabular implant, restoration of the centre of hip rotation and the extent of osseo-integration of the acetabular shell were assessed in the post-operative radiographs. Results: The mean Harris hip score has improved from a preoperative value of 40.6 to 69.4 post-operatively. According to the Leprosy’s method, two acetabula were classified as type 2B, 12 as type 3A and 17 as 3B. The post-operative radiographs showed a mean abduction angle of the Oblong cups of 54.2 degrees (range 40–80). Osseointegration was achieved in 29(94%) of cups. Three cups showed early migration, of which two eventually stabilised and osseointegrated by 12 months. The centre of rotation of hip improved from a mean lateral migration of 8.3 mm and superior migration of 23.5 mm in the pre-operative radiographs to 2.8 mm and 4.3 mm respectively post-operatively. Discussion: Acetabular revision using porous coated oblong cup for severe superior acetabular defects provides satisfactory medium-term results with predictable restoration of hip centre of rotation


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims. Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. Methods. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed. Results. CTAC positioning was generally accurate, with minor deviations in cup inclination (mean 2.7°; SD 2.84°), anteversion (mean 3.6°; SD 5.04°), and rotation (mean 2.1°; SD 2.47°). Deviation of the hip centre of rotation (COR) showed a mean vector length of 5.9 mm (SD 7.24). Flange positions showed small deviations, with the ischial flange exhibiting the largest deviation (mean vector length of 7.0 mm; SD 8.65). Overall, 83% of the implants were accurately positioned, with 17% exceeding malpositioning thresholds. CTACs used in tumour resections exhibited higher positioning accuracy than rTHA cases, with significant differences in inclination (1.5° for tumour vs 3.4° for rTHA) and rotation (1.3° for tumour vs 2.4° for rTHA). The use of intraoperative navigation appeared to enhance positioning accuracy, but this did not reach statistical significance. Conclusion. This study demonstrates favourable CTAC positioning accuracy, with potential for improved accuracy through intraoperative navigation. Further research is needed to understand the implications of positioning accuracy on implant performance and long-term survival. Cite this article: Bone Jt Open 2024;5(4):260–268


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1597 - 1603
1 Dec 2016
Meermans G Doorn JV Kats J

Aims

One goal of total hip arthroplasty is to restore normal hip anatomy. The aim of this study was to compare displacement of the centre of rotation (COR) using a standard reaming technique with a technique in which the acetabulum was reamed immediately peripherally and referenced off the rim.

Patients and Methods

In the first cohort the acetabulum was reamed to the floor followed by sequentially larger reamers. In the second cohort the acetabulum was only reamed peripherally, starting with a reamer the same size as the native femoral head. Anteroposterior pelvic radiographs were analysed for acetabular floor depth and vertical and horizontal position of the COR.


Bone & Joint Open
Vol. 1, Issue 5 | Pages 152 - 159
22 May 2020
Oommen AT Chandy VJ Jeyaraj C Kandagaddala M Hariharan TD Arun Shankar A Poonnoose PM Korula RJ

Aims. Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips. Methods. In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months). Results. The mean VCOR was 17.43 mm (9.5 to 27 mm) and horizontal centre of rotation (HCOR) was 24.79 mm (17.2 to 37.6 mm). Dislocation at three months following acetabulum reconstruction required femoral shortening for offset correction and hip centre restoration in one hip. Mean horizontal offset was 39.72 (32.7 to 48.2 mm) compared to 42.89 (26.7 to 50.6 mm) on the normal side. Mean Harris Hip Score (HHS) of 22.64 (14 to 35) improved to 79.43 (68 to 92). Mean pre-operative shortening was 3.95 cm (2 to 8 cm). Residual limb length discrepancy was 1.5 cm (0 to 2 cm). Sciatic neuropraxia in two patients recovered by six months, and femoral neuropraxia in one hip recovered by 12 months. Mean Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 13.92 (9 to 19). Mean 12-item short form survey (SF-12) physical scores of 50.6 and mental of 60.12 were obtained. Conclusion. THA with subtrochanteric shortening is valuable in complex hips with high dislocation. The restoration of the hip centre of rotation and offset is important in these hips. Level of evidence IV. Femoral shortening useful in conditions other than DDH and septic sequelae. Restoration of hip centre combined with offset to be planned and ensured


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 6 - 6
23 Jun 2023
Callary S Barends J Solomon LB Nelissen R Broekhuis D Kaptein B
Full Access

The best treatment method of large acetabular bone defects at revision THR remains controversial. Some of the factors that need consideration are the amount of residual pelvic bone removed during revision; the contact area between the residual pelvic bone and the new implant; and the influence of the new acetabular construct on the centre of rotation of the hip. The purpose of this study was to compare these variables in two of the most used surgical techniques used to reconstruct severe acetabular defects: the trabecular metal acetabular revision system (TMARS) and a custom triflanged acetabular component (CTAC). Pre- and post-operative CT-scans were acquired from 11 patients who underwent revision THR with a TMARS construct for a Paprosky IIIB defect, 10 with pelvic discontinuity, at Royal Adelaide Hospital. The CT scans were used to generate computer models to virtually compare the TMARS and CTAC constructs using a semi-automated method. The TMARS construct model was calculated using postoperative CT scans while the CTAC constructs using the preoperative CT scans. The bone contact, centre of rotation, inclination, anteversion and reamed bone differences were calculated for both models. There was a significant difference in the mean amount of bone reamed for the TMARS reconstructions (15,997 mm. 3. ) compared to the CTAC reconstructions (2292 mm. 3. , p>0.01). There was no significant difference between overall implant bone contact (TMARS 5760mm. 2. vs CTAC 5447mm. 2. , p=0.63). However, there was a significant difference for both cancellous (TMARS 4966mm. 2. vs CTAC 2887mm. 2. , p=0.008) and cortical bone contact (TMARS 795mm. 2. vs CTAC 2560mm. 2. , p=0.001). There was no difference in inclination and anteversion achieved. TMARS constructs resulted on average in a centre of rotations 7.4mm more lateral and 4.0mm more posterior. Modelling of two different reconstructions of Paprosky IIIB defects demonstrated potential important differences between all variables investigated


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1067 - 1074
1 Dec 2021
El-Bakoury A Khedr W Williams M Eid Y Hammad AS

Aims. After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients. Methods. A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort. Results. The median (interquartile range (IQR)) Oxford Hip Score (OHS) improved significantly from 9.5 (7 to 11.5), (95% confidence interval (CI) (8 to 10.6)) to 40 (39 to 44), (95% CI (40 to 43)) postoperatively at the latest follow-up (p < 0.001). It was worth noting that the initial acetabular fracture type (simple vs complex), previous acetabular treatment (ORIF vs conservative), fracture union, and restoration of anatomical centre of rotation (COR) did not affect the final OHS. The reconstructed centre of rotation (COR) was restored in 29 (72.5%) patients. The mean abduction angle in whom acetabular fractures were managed conservatively was statistically significantly higher than the surgically treated patients 42.6° (SD 7.4) vs 38° (SD 5.6)) (p = 0.032). We did not have any case of acetabular or femoral loosening at the time of the last follow-up. We had two patients with successful two-stage revision for infection with overall eight-year survival rate was 95.2% (95% CI 86.6% to 100%) with revision for any reason at a median (IQR) duration of follow-up 50 months (16 to 87) months following THA. Conclusion. Delayed cementless acetabular THA in patients with previous failed acetabular fracture treatments produces good clinical outcomes (PROMS) with excellent survivorship, despite the technically demanding nature of the procedure. The initial fracture treatment does not influence the outcome of delayed THA. In selected cases of acetabular fractures (either nondisplaced or with secondary congruency), the initial nonoperative treatment neither resulted in large acetabular defects nor required additional acetabular reconstruction at the time of THA. Cite this article: Bone Jt Open 2021;2(12):1067–1074


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1311 - 1318
3 Oct 2020
Huang Y Gao Y Li Y Ding L Liu J Qi X

Aims. Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis. Methods. A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis. Results. The ASIS on the dislocated side was located inferiorly and anteriorly compared to the healthy side (coordinates on the y-axis and z-axis; p = 0.001; p = 0.031). The centre of hip rotation on the dislocated side was located inferiorly and medially compared to the healthy side (coordinates on the x-axis and the y-axis; p < 0.001; p = 0.003). The affected hemipelvis tilted anteriorly in the sagittal plane (mean 8.05° (SD 3.57°)), anteriorly rotated in the transverse plane (mean 3.31° (SD 1.41°)), and tilted obliquely and caudally in the coronal plane (mean 2.04° (SD 0.81°)) relative to the healthy hemipelvis. The affected hemipelvis was significantly smaller in the length, width, height, and volume than the healthy counterpart. (p = 0.014; p = 0.009; p = 0.035; p = 0.002). Conclusion. Asymmetric abnormalities were identified on the affected hemipelvis in patients with the unilateral Crowe-IV DDH using 3D imaging techniques. Improved understanding of the morphological changes may influence the positioning of the acetabular component at THA. Acetabular component malpositioning errors caused by anterior tilt of the affected hemi pelvis and the abnormal position of the affected side centre of rotation should be considered by orthopaedic surgeons when undertaking THA in patients with Crowe-IV DDH. Cite this article: Bone Joint J 2020;102-B(10):1311–1318


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article: Bone Joint J 2024;106-B(4):312–318


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1180 - 1188
1 Oct 2022
Qu H Mou H Wang K Tao H Huang X Yan X Lin N Ye Z

Aims. Dislocation of the hip remains a major complication after periacetabular tumour resection and endoprosthetic reconstruction. The position of the acetabular component is an important modifiable factor for surgeons in determining the risk of postoperative dislocation. We investigated the significance of horizontal, vertical, and sagittal displacement of the hip centre of rotation (COR) on postoperative dislocation using a CT-based 3D model, as well as other potential risk factors for dislocation. Methods. A total of 122 patients who underwent reconstruction following resection of periacetabular tumour between January 2011 and January 2020 were studied. The risk factors for dislocation were investigated with univariate and multivariate logistic regression analysis on patient-specific, resection-specific, and reconstruction-specific variables. Results. The dislocation rate was 13.9% (n = 17). The hip COR was found to be significantly shifted anteriorly and inferiorly in most patients in the dislocation group compared with the non-dislocation group. Three independent risk factors were found to be related to dislocation: resection of gluteus medius (odds ratio (OR) 3.68 (95% confidence interval (CI) 1.24 to 19.70); p = 0.039), vertical shift of COR > 18 mm (OR 24.8 (95% CI 6.23 to 128.00); p = 0.001), and sagittal shift of COR > 20 mm (OR 6.22 (95% CI 1.33 to 32.2); p = 0.026). Conclusion. Among the 17 patients who dislocated, 70.3% (n = 12) were anterior dislocations. Three independent risk factors were identified, suggesting the importance of proper restoration of the COR and the role of the gluteus medius in maintaining hip joint stability. Cite this article: Bone Joint J 2022;104-B(10):1180–1188


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 11 - 18
1 Jan 2019
Kayani B Konan S Thakrar RR Huq SS Haddad FS

Objectives. The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, component inclination, component version, and leg-length correction. Materials and Methods. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (. sd. 5.2) vs 67.5 years (. sd. 5.8) (p = 0.25); body mass index (27.4 kg/m. 2. (. sd. 2.1) vs 26.9 kg/m. 2. (. sd. 2.2); p = 0.39); and laterality of surgery (right = 28, left = 22 vs right = 12, left = 13; p = 0.78). All operative procedures were undertaken by a single surgeon using the posterior approach. Two independent blinded observers recorded all radiological outcomes of interest using plain radiographs. Results. The correlation coefficient was 0.92 (95% confidence interval (CI) 0.88 to 0.95) for intraobserver agreement and 0.88 (95% CI 0.82 to 0.94) for interobserver agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p < 0.001) and vertical (p < 0.001) centres of rotation, and improved preservation of the patient’s native combined offset (p < 0.001) compared with conventional THA. Robotic THA improved accuracy in positioning of the acetabular component within the combined safe zones of inclination and anteversion described by Lewinnek et al (p = 0.02) and Callanan et al (p = 0.01) compared with conventional THA. There was no difference between the two treatment groups in achieving the planned leg-length correction (p = 0.10). Conclusion. Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular component positioning within the safe zones of inclination and anteversion compared with conventional manual THA


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving anatomical reconstruction. Accuracy of achieved placement contributed to reduced complications with no injury to vital structures by screw fixation. Cite this article: Bone Joint J 2022;104-B(10):1110–1117


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 2 - 2
1 Aug 2020
Matache B King GJ Watts AC Robinson P Mandaleson A
Full Access

Total elbow arthroplasty (TEA) usage is increasing owing to expanded surgical indications, better implant designs, and improved long-term survival. Correct humeral implant positioning has been shown to diminish stem loading in vitro, and radiographic loosening in in the long-term. Replication of the native elbow centre of rotation is thought to restore normal muscle moment arms and has been suggested to improve elbow strength and function. While much of the focus has been on humeral component positioning, little is known about the effect of positioning of the ulnar stem on post-operative range of motion and clinical outcomes. The purpose of this study is to determine the effect of the sagittal alignment and positioning of the humeral and ulnar components on the functional outcomes after TEA. Between 2003 and 2016, 173 semi-constrained TEAs (Wright-Tornier Latitude/Latitude EV, Memphis, TN, USA) were performed at our institution, and our preliminary analysis includes 46 elbows in 41 patients (39 female, 7 male). Patients were excluded if they had severe elbow deformity precluding reliable measurement, experienced a major complication related to an ipsilateral upper limb procedure, or underwent revision TEA. For each elbow, saggital alignment was compared pre- and post-operatively. A best fit circle of the trochlea and capitellum was drawn, with its centre representing the rotation axis. Ninety degree tangent lines from the intramedullary axes of the ulna and humerus, and from the olecranon tip to the centre of rotation were drawn and measured relative to the rotation axis, representing the ulna posterior offset, humerus offset, and ulna proximal offset, respectively. In addition, we measured the ulna stem angle (angle subtended by the implant and the intramedullary axis of the ulna), as well as radial neck offset (the length of a 90o tangent line from the intramedullary axis of the radial neck and the centre of rotation) in patients with retained or replaced radial heads. Our primary outcome measure was the quickDASH score recorded at the latest follow-up for each patient. Our secondary outcome measures were postoperative flexion, extension, pronation and supination measured at the same timepoints. Each variable was tested for linear correlation with the primary and secondary outcome measures using the Pearson two-tailed test. At an average follow-up of 6.8 years (range 2–14 years), there was a strong positive correlation between anterior radial neck offset and the quickDASH (r=0.60, p=0.001). There was also a weak negative correlation between the posterior offset of the ulnar component and the qDASH (r=0.39, p=0.031), and a moderate positive correlation between the change in humeral offset and elbow supination (r=0.41, p=0.044). The ulna proximal offset and ulna stem angle were not correlated with either the primary, or secondary outcome measures. When performing primary TEA with radial head retention, or replacement, care should be taken to ensure that the ulnar component is correctly positioned such that intramedullary axis of the radial neck lines up with the centre of elbow rotation, as this strongly correlates with better function and less pain after surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 49 - 49
1 May 2016
Mohammed A
Full Access

Background. External fixation for a fracture-dislocation to a joint like the elbow, while maintaining joint mobility is currently done after identifying the center of rotation under X-ray guidance, when applying either a mono-lateral or a circular fixator. Current treatment. using the galaxy fixation system by Orthofix, the surgeon needs to correctly identify the center of rotation of the elbow under X-ray guidance on lateral views. If the center of rotation of the fixator is not aligned with that of the elbow joint, the assembly will not work, i.e. the elbow will be disrupted on trying to achieve flexion or extension movements. Figures (A, B, C and D) summarize the critical steps in identifying the centre of rotation (Courtesy of Orthofix Orthopedics International). New design. This new idea aims to propagate the principle of sliding external fixation applied on the extensor side of a joint, with the limbs of the fixator being able to slide in and out during joint extension and flexion respectively, without hindering the joint movement. Taking the ulno-humeral joint as an example, it is enough to apply the sliding external fixator in line with the subcutaneous border of the ulna, and the pins in the sagital plane, without the need to use x-ray guidance to identify the center of rotation, which simplifies the procedure, and makes it less technically demanding. The sliding external fixator over the elbow involves two bars which accommodate half pins fixation with headless grip screws to hold the pins, identical to the Rancho cubes technique by Smith & Nephew, these slide snugly into sleeves, those sleeves linked together through a hinge behind the elbow, and the bars are spring loaded to the hinge through the inside of the sleeves, which means they will slid into the sleeves in extension and out in flexion. Length of the sleeve should prevent the bars from dislodgement, and the cross section of both the bars and the sleeves have to correspond to each other for the sleeves to accommodate the bars within them and to prevent rotational instability within the construct itself. Summary. Applying an external fixator on the extensor surface is an idea could lead to major changes in external fixation product design, the ulno-humeral joint is taken as an example, and other joints could also be addressed taking in consideration joint size and anatomical structures at risk. The sliding technique makes the application easier, without the need to X-ray guided identification of the center of rotation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 19 - 19
1 Apr 2019
Zhou Y Huang Y Tang H Guo S Yang D Zhou B
Full Access

Background. Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the ischiopubic fixation of the acetabular components, nor did any authors report the use of porous metal augments in the ischium and/or pubis to reinforce ischiopubic fixation of the acetabular cup. The aims of this study were to introduce the concept of extended ischiopubic fixation into the ischium and/or pubis during revision total hip arthroplasty [Fig. 2], and to determine the early clinical outcomes and the radiographic outcomes of hips revised with inferior extended fixation. Methods. Patients who underwent revision THA utilizing the surgical technique of extended ischiopubic fixation with porous metal augments secured in the ischium and/or pubis in a single institution from 2014 to 2016 were reviewed. 16 patients were included based on the criteria of minimum 24 months clinical and radiographic follow-up. No patients were lost to follow-up. The median duration of follow-up for the overall population was 37.43 months. The patients' clinical results were assessed using the Harris Hip Score (HHS), Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index and Short form (SF)-12 score and satisfaction level based on a scale with five levels at each office visit. All inpatient and outpatient records were examined for complications, including infection, intraoperative fracture, dislocation, postoperative nerve palsy, hematoma, wound complication and/or any subsequent reoperation(s). The vertical and horizontal distances of the center of rotation to the anatomic femoral head and the inclination and anteversion angle of the cup were measured on the preoperative and postoperative radiographs. All the postoperative plain radiographs were reviewed to assess the stability of the components. Results. At the most recent follow-up, 11 (68.8%) patients rated their satisfaction level as “very satisfied” and 4 (25.0%) were “satisfied.” The median HHS improved significantly and the WOMAC global score decreased significantly at the latest follow-up (? 0.001). No intraoperative or postoperative complications were identified. All constructs were considered to have obtained bone ingrowth fixation. The median vertical distance between the latest postoperative center of rotation to the anatomic center of the femoral head improved from 14.7±10.05 mm preoperatively to 6.77±9.14 mm at final follow-up (p=0.002). The median horizontal distance between the latest postoperative center of rotation to the anatomic center of femoral head improved from 6.3±12.07 mm laterally preoperatively to 2.18±6.98 mm medially at the most recent follow-up (p=0.013) postoperatively. The median acetabular cup abduction angle improved from 55.04°±10.11° preoperatively to 44.43°± 5.73° at the most recent follow-up postoperatively (p=0.001). However, there was no difference in the median cup anteversion angles preoperatively (9.15°±5.36°) to postoperatively (9.66°±3.97°) (P=0.535). Conclusions. Early follow-up of patients reconstructed with the technique of extended ischiopubic fixation with porous metal augments demonstrated satisfactory clinical outcomes, restoration of the center of rotation and adequate biological fixation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 95 - 95
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Summary. The mathematical model has proven to be highly accurate in measuring leg length before and after surgery to determine how leg length effects hip joint mechanics. Introduction. Leg length discrepancy (LLD) has been proven to be one of the most concerning problems associated with total hip arthroplasty (THA). Long-term follow-up studies have documented the presence of LLD having direct correlation with patient dissatisfaction, dislocation, back pain, and early complications. Several researchers sought to minimize limb length discrepancy based on pre-operative radiological templating or intra-operative measurements. While often being a common occurrence in clinical practice to compensate for LLD intra-operatively, the center of rotation of the hip joint has often changes unintentionally due to excessive reaming. Therefore, the clinical importance of LLD is still difficult to solve and remains a concern for clinicians. Objective. The objective of this study is two-fold: (1) use a validated forward-solution hip model to theoretically analyze the effects of LLD, gaining better understanding of mechanisms leading to early complication of THA and poor patient satisfaction and (2) to investigate the effect of the altered center of rotation of the hip joint regardless LLD compensation. Methods. The theoretical mathematical model used in this study has been previously validated using fluoroscopic results from existing implant designs and telemetric devices. The model can be used to theoretically investigate various surgical alignments, approaches, and procedures. In this study, we analyzed LLD and the effects of the altered center of rotation regardless of LLD compensation surgeons made. The simulations were conducted in both swing and stance phase of gait. Results. During swing phase, leg shortening lead to loosening of the hip capsular ligaments and subsequently, variable kinematic patterns. The momentum of the lower leg increased to levels where the ligaments could not properly constrain the hip leading to the femoral head sliding from within the acetabular cup (Figure 1). This piston motion led to decreased contact area and increased contact stress within the cup. Leg lengthening did not yield femoral head sliding but increased joint tension and contact stress. A tight hip may be an influential factor leading to back pain and poor patient satisfaction. During stance phase, leg shortening caused femoral head sliding leading to decreased contact area and an increase in contact stress. Leg lengthening caused an increase in capsular ligaments tension leading to higher stress in the hip joint (Figure 2). Interestingly, when the acetabular cup was superiorized and the surgeon compensated for LLD, thus matching the pre-operative leg length by increasing the neck length of the femoral implant, the contact forces and stresses were marginally increased at heel strike (Figure 3). Conclusion and Discussion. Altering the leg length during surgery can lead to higher contact forces and contact stresses due to tightening the hip joint or increasing likelihood of hip joint separation. Leg shortening often lead to higher stress within the joint. Further assessment must be conducted to develop tools that surgeons can use to ensure post-operative leg length is similar to the pre-operative condition. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 82 - 82
1 Mar 2017
Meneghini M Ishmael M Deckard E Ziemba-Davis M Warth L
Full Access

INTRODUCTION. The purpose of TKA is to restore normal kinematics and functioning to diseased knees. The purpose of this study was to determine whether intraoperative kinematic data are correlated with minimum one-year outcomes following primary TKA. METHODS. We reviewed data on 185 consecutive primary TKAs in which sensor-embedded tibial trials were used to evaluate kinematic patterns following traditional ligament balancing. Procedures were performed by two board-certified arthroplasty surgeons. The same implant design and surgical approach was used for all knees. Contact locations on the medial and lateral condyles were recorded for each patient at 0°, 45° and 90° of flexion, and full flexion. Vector equations were created by contact locations on the medial and lateral sides and the vector intersections determined the center of rotation between each measurement position. Center of rotation was calculated as the average of vector intersections at 0 to 45°, 45 to 90°, and 90° to full flexion. If the average center of rotation was between 16 and 1000 mm of the contact location on the medial side it was considered a medial pivot knee. Knees were also classified as medial (16 to 200 mm on medial side), lateral (16 to 200 mm on lateral side), translating (> 200 mm medially or laterally), and other (< 16 mm on both medial and lateral sides). The new Knee Society Scoring System (KSSO objective score, KSSS satisfaction score, KSSF function score), the EQ-5D™ Health Status Index, and the University of California Los Angeles (UCLA) Activity Level Score were measured preoperatively and at minimum one-year follow-up (average 20.4 months). RESULTS. Thirty-three TKAs were excluded to eliminate potential bias due to sensor device malfunction, atypical hardware, unresurfaced patella, surgery at a non-study hospital, or early postoperative infection, revision due to aseptic loosening, ipsilateral hip disease, and subsequent neurologic disease or death unrelated to the index TKA, resulting in a final sample size of 152 knees. Twelve (7.9%) patients were lost to follow-up, and two were excluded due to outlier values for average center of rotation. Seventy-five percent of the final sample was female. Mean age and BMI were 63.6 years 33.9, respectively. Average center of rotation ranged from −1017 to 1562 mm with negative signifying the lateral side. Medial pivot knees comprised 40% (55) of the total sample. Sex, age, height, surgeon, implant side, and implant type were unrelated to pivot classification. Patient weight (100.2 vs. 90.9 kg; p = 0.012) and BMI (35.5 vs. 32.8; p = 0.044) were greater in medial pivot knees. Controlling for BMI, KSSO, KSSF, KSSS, EQ5D, UCLA, and pain scores at latest follow-up did not differ in medial and non-medial pivot knees (p ≥ 0.151). The amount of improvement in outcomes from preoperative baseline also did not differ in medial and non-medial pivot knees (p ≥ 0.161). Outcomes did not vary among knees with translating medial, lateral, and other pivots (p ≥ 0.065). DISCUSSION. Our results suggest that a medial pivot kinematic pattern may not be a substantial governor of clinical success


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 89 - 97
1 May 2024
Scholz J Perka C Hipfl C

Aims. There is little information in the literature about the use of dual-mobility (DM) bearings in preventing re-dislocation in revision total hip arthroplasty (THA). The aim of this study was to compare the use of DM bearings, standard bearings, and constrained liners in revision THA for recurrent dislocation, and to identify risk factors for re-dislocation. Methods. We reviewed 86 consecutive revision THAs performed for dislocation between August 2012 and July 2019. A total of 38 revisions (44.2%) involved a DM bearing, while 39 (45.3%) and nine (10.5%) involved a standard bearing and a constrained liner, respectively. Rates of re-dislocation, re-revision for dislocation, and overall re-revision were compared. Radiographs were assessed for the positioning of the acetabular component, the restoration of the centre of rotation, leg length, and offset. Risk factors for re-dislocation were determined by Cox regression analysis. The modified Harris Hip Scores (mHHSs) were recorded. The mean age of the patients at the time of revision was 70 years (43 to 88); 54 were female (62.8%). The mean follow-up was 5.0 years (2.0 to 8.75). Results. DM bearings were used significantly more frequently in elderly patients (p = 0.003) and in hips with abductor deficiency (p < 0.001). The re-dislocation rate was 13.2% for DM bearings compared with 17.9% for standard bearings, and 22.2% for constrained liners (p = 0.432). Re-revision-free survival for DM bearings was 84% (95% confidence interval (CI) 0.77 to 0.91) compared with 74% (95% CI 0.67 to 0.81) for standard articulations, and 67% (95% CI 0.51 to 0.82) for constrained liners (p = 0.361). Younger age (hazard ratio (HR) 0.92 (95% CI 0.85 to 0.99); p = 0.031), lower comorbidity (HR 0.44 (95% CI 0.20 to 0.95); p = 0.037), smaller heads (HR 0.80 (95% CI 0.64 to 0.99); p = 0.046), and retention of the acetabular component (HR 8.26 (95% CI 1.37 to 49.96); p = 0.022) were significantly associated with re-dislocation. All DM bearings which re-dislocated were in patients with abductor muscle deficiency (HR 48.34 (95% CI 0.03 to 7,737.98); p = 0.303). The radiological analysis did not reveal a significant relationship between restoration of the geometry of the hip and re-dislocation. The mean mHHSs significantly improved from 43 points (0 to 88) to 67 points (20 to 91; p < 0.001) at the final follow-up, with no differences between the types of bearing. Conclusion. We found that the use of DM bearings reduced the rates of re-dislocation and re-revision in revision THA for recurrent dislocation, but did not guarantee stability. Abductor deficiency is an important predictor of persistent instability. Cite this article: Bone Joint J 2024;106-B(5 Supple B):89–97


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 142 - 142
1 Jan 2016
Sabesan V Sharma V Schrotenboer A
Full Access

Introduction. Recent literature has shown that RSAs successfully improve pain and functionality, however variability in range of motion and high complication rates persist. Biomechanical studies suggest that tensioning of the deltoid, resulting from deltoid lengthening, improves range of motion by increasing the moment arm. This study aims to provide clinical significance for deltoid tensioning by comparing postoperative range of motion measurements with deltoid length for 93 patients. Methods. Deltoid length measurements were performed radiographically for 93 patients. Measurements were performed on both preoperative and postoperative x-rays in order to assess deltoid lengthening. The deltoid length was measured as the distance from the infeolateral tip of the acromion to the deltoid tuberosity on the humerus for both pre- and post- x-rays. For preoperative center of rotation measurements, the distance extended from the center of humeral head (estimated as radius of best fit circle) to deltoid length line. For postoperative measurements, the distance was from the center of glenosphere implant to deltoid length line. Forward flexion and external rotation was measured for all patients. Results. The average preoperative deltoid length was 154.25 mm while the average postoperative deltoid measurements was 178.93 mm. The average preoperative center of rotation as 21.33 mm and the average postoperative center of rotation measurement was 46.75 mm. There was low correlation between deltoid length and center of rotation with either forward flexion or external rotation or outcome scores. Discussion. Our results suggest that deltoid lengthening does not significantly influence optimizing clinical outcomes for RSAs. Further research is required to determine design parameters and implants positioning to improve RSAs


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 30 - 30
1 Dec 2022
Lohre R Lobo A Bois A Pollock J Lapner P Athwal G Goel D
Full Access

Glenoid baseplate orientation in reverse shoulder arthroplasty (RSA) influences clinical outcomes, complications, and failure rates. Novel technologies have been produced to decrease performance heterogeneity of low and high-volume surgeons. This study aimed to determine novice and experienced shoulder surgeon's ability to accurately characterise glenoid component orientation in an intra-operative scenario. Glenoid baseplates were implanted in eight fresh frozen cadavers by novice surgical trainees. Glenoid baseplate version, inclination, augment rotation, and superior-inferior centre of rotation (COR) offset were then measured using in-person visual assessments by novice and experienced shoulder surgeons immediately after implantation. Glenoid orientation parameters were then measured using 3D CT scans with digitally reconstructed radiographs (DRRs) by two independent observers. Bland-Altman plots were produced to determine the accuracy of glenoid orientation using standard intraoperative assessment compared to postoperative 3D CT scan results. Visual assessment of glenoid baseplate orientation showed “poor” to “fair” correlation to 3D CT DRR measurements for both novice and experienced surgeon groups for all measured parameters. There was a clinically relevant, large discrepancy between intra-operative visual assessments and 3D CT DRR measurements for all parameters. Errors in visual assessment of up to 19.2 degrees of inclination and 8mm supero-inferior COR offset occurred. Experienced surgeons had greater measurement error than novices for all measured parameters. Intra-operative measurement errors in glenoid placement may reach unacceptable clinical limits. Kinesthetic input during implantation likely improves orientation understanding and has implications for hands-on learning


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 123 - 123
1 Apr 2005
Argenson J Flecher X Parrate S Aubaniac J
Full Access

Purpose: Impacted piecemeal allografts for nonce-mented hemispheric cups raises a problem of primary stability in the case of extensive bone defects. The high centre of rotation of the oversized cup further increases bone loss, requiring an extralong neck. The purpose of this study was to describe the use of impacted piecemeal grafts associated with a pressfit supporting ring with reposition of the centre of rotation. Material and methods: The piecemeal grafts were impacted into the acetabulum to fill the defect. The hydroxyapatite coated ring was pressfit for primary stability then stabilised with axial screws in the upper paste. A distal hook on the obturator foramen repositioned the centre of rotation. The study group included 103 cases of acetabular reconstruction, including 34 for aseptic loosening and type 2 and 3 acetabular substance loss. Clinical and radiographic assessment was performed at 5 and 12 years. Results: Mean patient age was 58 years, mean weight was 64kg. The Harris score improved from 53 points preoperatively to 88 points at last follow-up. Radiographically, there were no cases of cup migration according to the Massin classification, and the centre of rotation (Pierchon) was anatomic in 66% horizontally and in 44% vertically. There were two lucent lines in zone 2 and mean polyethylene wear was 0.015 mm per year. Graft integration (Conn) was identical to the host in 84% with disappearance of the interface in 67%. There were three dislocations treated without changing the implant and two revisions for infection. Discussion: Several theoretical and clinical studies have shown that the high centre of rotation increases stress on the implants and decreased abductor force. The results obtained in this study with a maximum 12 year follow-up show that indications for this pressfit technique associating reposition of the centre of rotation, fixation for stability, and restoration of bone stock can be widened. Limitations are bone destructions with rupture of the pelvic girdle


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 43 - 43
1 Jun 2018
Paprosky W
Full Access

Introduction. While THA is associated with positive results and long-term improvement in patient quality of life, outcomes are nonetheless associated with adverse events and post-procedural deficits related to discrepancies in leg length (LLD), offset and cup placement. Post-THA errors in these parameters are associated with gait alteration, low back pain and patient dissatisfaction. Such discrepancies often necessitate revision and increasingly lead to medical malpractice litigation. Maintaining accuracy in post-surgical leg length, offset and cup placement during THA is difficult and subject to error. The sensitivity of these factors is highlighted in studies that have shown that a change of as little as 5 degrees of flexion or abduction can induce alterations in leg length of up to several millimeters. Similarly, positioning of implants can alter global and femoral offset, affecting abductor strength, range of motion and overall physical function. Compounding the biochemical issues associated with inaccurate leg length are the costs associated with these deficits. Traditional freehand techniques of managing intra-operative parameters rely on surgeon experience and tissue tensioning to manually place components accurately. These methods, however, are only able to assess leg length and are subject to inaccuracies associated with patient movement or orientation changes during surgery. Mechanical methods of minimizing post-surgical discrepancies have been developed, such as outrigger or caliper devices, although these methods also address leg length only and provide poor feedback regarding offset and center of rotation, therefore providing insufficient data to accurately achieve appropriate post-surgical leg length. Computer-assisted navigation methods provide more data regarding leg length, offset and center of rotation, but are limited by their cumbersome nature and the large capital costs associated with the systems. The Intellijoint HIP. ®. surgical smart tool (Intellijoint Surgical, Inc., Waterloo, ON) is an intra-operative guidance tool that provides surgeons with real time data on leg length, offset and center of rotation, thereby allowing for confident selection of the correct implant in order to ensure appropriate post-surgical biomechanics. The early clinical results from an initial cohort of patients indicate that Intellijoint HIP. ®. is safe and effective. No adverse events were reported in the initial cohort, and the smart tool was able to measure surgical parameters to within 1mm when compared to radiographic measurements. With training cases removed, 100% of cases had a post-procedure leg length discrepancy of less than 5mm. This paper describes the indications, procedural technique and early clinical results of the Intellijoint HIP. ®. smart tool, which offers a safe, accurate and easy-to-use option for hip surgeons to manage leg length, offset and cup position intra-operatively


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 37 - 37
1 Jan 2016
Banks S
Full Access

The history of knee mechanics studies and the evolution of knee arthroplasty design have been well reported through the last decade (e.g. [1],[2]). Through the early 2000's, there was near consensus on the dominant motions occurring in the healthy knee among much of the biomechanics and orthopaedic communities. However, the past decade has seen the application of improved measurement techniques to permit accurate measurement of natural knee motion during activities like walking and running. The results of these studies suggest healthy knee motion is more complex than previously thought, and therefore, design of suitable arthroplasty devices more difficult. The purpose of this paper is to briefly review the knee biomechanics literature before 2008, to present newer studies for walking and running, and to discuss the implications of these findings for the design of knee replacement implants that seek to replicate physiologic knee motions. Many surgeons point to Brantigan and Voshell [3], an anatomic study of over one hundred specimens focusing on the ligamentous and passive stabilizers of the knee, as being an important influence in their thinking about normal knee function. M.A.R. Freeman and colleagues in London claim particular influence from this work, which motivated their extensive series of MR-based knee studies reported in 2000 [4,5,6]. These papers, perhaps more than any others, are responsible for the common impression that knee kinematics are well and simply described as having a ‘medial pivot’ pattern, where the medial condyle remains stationary on the tibial plateau while the lateral condyle translates posteriorly with knee flexion. Indeed, subsequent studies in healthy and arthritic knees during squatting and kneeling [7,8,9] and healthy and ACL-deficient knees during deep knee bends [10,11] show patterns of motion quite similar to those reported by Freeman and coworkers. These studies make a convincing case for how the healthy knee moves during squatting, kneeling and lunging activities. However, these studies are essentially silent on knee motions during ambulatory activities like walking, running and stair-climbing; activities which most agree are critically important to a high-function lifestyle. In 2008 Koo and Andriacchi reported a motion laboratory study of walking in 46 young healthy individuals and found that the stance phase knee center of rotation was LATERAL in 100% of study participants [12]. One year later, Kozanek et al. published a bi-plane fluoroscopy study of healthy knees walking on a treadmill and corroborated the findings of Koo and Andriacchi, i.e. the center of rotation in healthy knees walking was lateral [13]. Isberg et al. published in 2011 a dynamic radiostereometric study of knee motions in healthy, ACL-deficient and ACL-reconstructed knees during a weight-bearing flexion-to-extension activity, and showed consistent anterior-to-posterior medial condylar translations with knee extension, accompanied by relatively little lateral condylar translation [14]. Hoshino and Tashman reported in 2012 another dynamic radiostereometric analysis of healthy knees during downhill running and concluded “While the location of the knee rotational axis may be dependent on the specific loading condition, during … walking and running … it is positioned primarily on the lateral side of the joint. ”[15] Finally, Claes et al. reported in late 2013 the detailed anatomy of the anterolateral ligament (ALL), another structure serving to stabilize the lateral knee compartment near extension, roughly in parallel with the anterior cruciate ligament (ACL) [16]. Studies since 2008 [9,12–16] show knee motions during walking, running and pivoting activities do not fit the “medial pivot” pattern of motion, but rather point to a “lateral pivot” pattern of knee motion consistent with the stabilizing roles of the ACL and ALL. Having a medial center of rotation in flexion and a lateral center of rotation in extension greatly complicates knee arthroplasty design if the goal is to reproduce kinematics approximating those observed in the natural knee. Consistent kinematics having a fixed center of rotation implies joint stabilizing structures or surfaces, not simply articular laxity allowing the knee to move as forces dictate. Thus, a total knee arthroplasty design seeking to reproduce physiologic motions may need to provide distinct means for controlling tibiofemoral motion in both extension and flexion. Recent studies of natural knee motions have made the implant designer's job more difficult!


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 38 - 38
23 Jun 2023
Karachalios T Varitimidis S Komnos G Koutalos A Malizos KN
Full Access

Local anatomical abnormalities vary in congenital hip disease patients. Authors often present early to mid-term total hip arthroplasty clinical outcomes using different techniques and implants randomly on patients with different types of the disease, making same conclusions difficult. We report long term outcomes (13 to 23 years) of the treatment of low and high dislocation cases (separately) with total hip arthroplasty using TM technology acetabular cups (Implex initially and then Zimmer) and short fluted conical (Zimmer) femoral stems. From 2000 to 2010, 418 congenital hip disease hip joints were treated in our department with total hip arthroplasty. According to Hartofilakidis et al's classification, 230 hips had dysplasia, 101 low dislocation, (group A) and 87 high dislocation (group B). Pre-operative and post-operative values, at regular intervals, of HHS, SF-12, WOMAC, OHS and HOOS were available for all patients. Patient, surgeon and implant related failures and complications were recorded for all patients. In all cases an attempt was made to restore hip center of rotation. In group A the average lengthening was 2.8 cm (range: 1 to 4.2) and in group B 5.7 cm (range: 4.2 to 11). In both groups, no hips were revised due to aseptic loosening of either the acetabular cup or the femoral stem. In group A, a cumulative success rate of 95.6% (95% confidence interval, 92.7% – 97.4%) and in group B a cumulative success rate of 94.8% (95% confidence interval, 92.6%–96.9%) was recorded, at 20 years, with revision for any reason as an end point. No s.s. differences were found between groups when mean values of HHS, SF-12, WOMAC and OKS were compared. Satisfactory long-term clinical outcomes can be achieved in treating different types of congenital hip disease when appropriate surgical techniques combined with “game changing” implants are used


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 6 - 6
1 Aug 2017
Sperling J
Full Access

Lateralization of the reverse arthroplasty may be desirable to more effectively tension the remaining rotator cuff, decrease scapular notching, improve the cosmetic appearance of the shoulder, and improve stability as well as the arc of motion prior to impingement. There are two primary options to lateralise a reverse shoulder arthroplasty: bone graft with a long post (BIO-RSA) vs. using metal. The two metal options generally include a thicker glenosphere or a thicker glenoid baseplate. Potential benefits of a BIO-RSA include lateralization of the glenoid center of rotation but without placing the center of rotation lateral to the prosthetic-bone interface. By maintaining the position of the center of rotation, the shear forces at the prosthesis-bone interface are lessened and are converted to compressive forces which will minimise glenoid failure. Edwards et al. performed a prospective study on a bony increased offset reverse arthroplasty. Among the 18 shoulders in the BIO-RSA group, the incidence of notching was 78% compared to controls 70%. The graft completely incorporated in 12 (67%), partially incorporated in 4 (22%), and failed to incorporate in 2 (11%). Frankle et al. reported on the minimum 5-year follow-up of reverse arthroplasty with a central compression screw and a lateralised glenoid component. The survivorship was 94% at 5 years. There were seven (9%) cases of scapular notching and no patient had glenoid baseplate loosening or baseplate failure. The authors noted that the patients maintained their improved function and radiographic results at a minimum of five years. In summary, lateralisation of the glenosphere is an attractive option to improve the outcome of reverse arthroplasty. Benefits of lateralisation with metal rather than bone graft include elimination of concern over bone graft healing or resorption. In addition, the procedure has the potential to be more precise with the exact offset amount known pre-operatively as well as improved efficiency of the procedure. Preparing the graft takes additional OR time and there is variable quality of the bone graft


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 42 - 42
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Lower back pain (LBP) is a worldwide clinical problem and a prominent area for research. Numerous in vitro biomechanical studies on spine specimens have been undertaken, attempting to understand spinal response to loading and possible factors contributing to LBP. However, despite employing similar testing protocols, there are challenges in replicating in vivo conditions and significant variations in published results. The aim of this study was to use the University of Bath (UoB) spine simulator to perform tests to highlight the major limitations associated with six degree of freedom (DOF) dynamic spine testing. A steel helical spring was used as a validation model and was potted in Wood's metal. Six porcine lumbar spinal motion segments were harvested and dissected to produce isolated spinal disc specimens. These were potted in Wood's metal, ensuring the midplane of the disc remained horizontal and then sprayed with 0.9% saline and wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was used for spinal specimens. Specimens were tested under the stiffness and flexibility protocols. Tests were performed using the UoB custom 6-axis spine simulator with coordinate axes. Tests comprised five cycles with data acquired at 100Hz. Stiffness and flexibility matrices were evaluated from the last three motion cycles using the linear least squares method. According to theory, inverted flexibility matrices should equal stiffness matrices. In the case of the spring, the matrices matched analytical solutions and inverted flexibility matrices were equivalent to stiffness matrices. Matrices from the spinal tests demonstrated some symmetry, with similarities between inverted flexibility- and stiffness matrices, though these were unequal overall. Matrix element values were significantly affected by displacements assumed to occur at disc centre. Spring tests proved that for linear, elastic specimens, the spine simulator functioned as expected. However, multiple factors limit the confidence in spine test results. Centre of rotation, displacement assumptions and rigid body transformations are known to impact the results from spinal testing, and these should be addressed going forward to improve the replication of in vivo conditions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 57 - 57
23 Jun 2023
Konishi T Sato T Motomura G Hamai S Kawahara S Hara D Utsunomiya T Nakashima Y
Full Access

Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH. A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle. Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA). Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 70 - 70
1 Feb 2020
Huang Y Zhou Y Yang D Tang H Shao H Guo S
Full Access

Aims. Only a small number of studies exist that report the results of EBM-produced porous coated trabecular titanium cups in primary total hip arthroplasty (THA). This study aims to investigate the patient satisfaction level, clinical function and radiographic outcomes of the patients who underwent THA using an EBM-produced porous coated titanium cup. Patients and Methods. A total of 32 patients who underwent primary THA with using an EBM-produced porous coated titanium cup from five hospitals between May and December, 2012 were retrospectively reviewed. Five patients were lost prior to the minimum 6-year follow-up. Clinical and radiographic outcomes were analyzed with an average follow-up of 81.48 (range: 77.00–87.00) months. Results. The median HHS and SF-36 scores improved significantly while the WOMAC Osteoarthritis Index decreased significantly at the latest follow-up (p<0.001). Eighteen (66.7%) patients rated their satisfaction level as very satisfied, 6 (22.2%) as satisfied, 2 (7.4%) as neutral and 1(3.7%) as dissatisfied. No intraoperative or postoperative complications were identified, including aseptic cup loosening, hip dislocation, periprosthetic joint infection, periprosthetic fracture, nerve palsy, hematoma. At the latest follow-up, all cups were considered to have achieved fixation via bone ingrowth with three or more of the five signs occurring in the most recent X-ray. However, three cups revealed radiolucent lines with a width of less than 1 mm. These radiolucent lines were distributed in the DeLee-Charnley zone 1 in 1 patient, zone 3 in another patient and the area between zone1 and zone 2 in an additional patient. The latest postoperative centers of rotation were restored nearly to the anatomic center of rotation both vertically and horizontally and the acetabular cups obtained satisfactory orientation postoperatively. Conclusions. The mid-term follow-up of patients who underwent primary THA using EBM-produced porous coated titanium cups demonstrated favorable patient satisfaction, clinical function and adequate biological fixation. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 243 - 243
1 Jul 2008
POUGET G
Full Access

Purpose of the study: The extramedullary anatomy of the femur must be reproduced during total hip arthroplasty in order to ensure correct tension on the gluteus muscles. This requires:. correct offset of the femur, measured as the distance between the center of the head and the anatomic axis of the shaft;. offset of the center of rotation, measured as the distance between the center of the head and the pubic symphesis. Addition of these two offsets gives the overall offset. The purpose of this work was to analyze postoperative offset after standard total hip arthroplasty as a function of the preoperative head-shaft angle. Material and methods: Prospective study of 150 files of patients who underwent first-intention total hip arthroplasty. A prosthesis with matched increasing head size was implanted. The head-shaft angle was 135°. Mean offset was 41.7 mm (range 33–47 mm) for the 0 head-neck. The preoperative neck-shaft angle was measured on the upright ap view (comparable rotation of the two hemipelvi). Pre- and postoperative femur and center of rotation offset were noted. Results: The preoperative neck-shaft angle varied from 118° to 1400. Mean preoperative femur offset was 40.2 mm (range 29–52 mm). Mean postoperative femur offset was 42.2 mm. This gave a 2 mm lateralization of the femur, which was apparently negligible, favorable, and therefore satisfactory. Mean offset was 90.5 mm preoperatively and 84.5 mm postoperatively, medializing the center of rotation 6°. Mean overall offset was thus displaced medially (6 mm minus 2 mm = 4 mm). This was considered acceptable. Among these 150 files, 24 were coxa vara hips with a neck-shaft angle 125°. For these 25 coxavara hips, the mean preoperative femur offset was 44.5 mm. The mean postoperative femur offset was 42.2 mm. This produced, inversely, a medial displacement of the postoperative femur offset of 2.3 mm. The center of rotation was displace medially 6 mm. Thus globally the medial displacement was 6 mm plus 2.3 mm = 8.3 mm. This appeared to be excessive. Discussion: The postoperative offset of the femur is prosthesis-dependent. The majority of implants currently marketed have a mean offset in the 40–45mm range. The offset of the center of rotation is operator-dependent: as the acetabular reaming is accentuated, the center of rotation is displaced medially. Acetabular reaming is necessary to reach the subchondral bone. The medial offset can be limited but at least some displacement is inevitable. Thus in the event of a coxavara hip, it is very difficult to limit excessive overall medial offset when using a standard prosthesis. If the goal is to mimic the anatomic femur offset, it would appear justified to use prostheses with a smaller neck-shaft angle for patients with coxavara. A 10° reduction, from 135° to 125° would increase the femur offset 5 mm and thus enable reproduction of the preoperative anatomy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 44 - 44
23 Jun 2023
Scholz J Perka C Hipfl C
Full Access

Dual-mobility (DM) bearings are effective to mitigate dislocation in revision total hip arthroplasty (THA). However, data on its use for treating dislocation is scarce. Aim of this study was to compare DM bearings, standard bearings and constrained liner (CL) in revision THA for recurrent dislocation and to identify risk factors for re-dislocation. We reviewed 100 consecutive revision THAs performed for dislocation from 2012 and 2019. 45 hips (45%) received a DM construct, while 44 hips (44%) and 11 hips (11%) had a standard bearing and CL, respectively. Rates of re-dislocation, re-revision for dislocation and overall re-revision were compared. Radiographs were assessed for cup positioning, restoration of centre of rotation, leg length and offset. Risk factors for re-dislocation were determined by cox regression analysis. Modified Harris hip scores (mHHS) were calculated. Mean follow-up was 53 months (1 to 103). DM constructs were used more frequently in elderly patients (p=0.011) and hips with abductor deficiency (p< 0.001). The re-dislocation rate was 11.1% for DM bearings compared with 15.9% for standard bearings and 18.2% for CL (p=0.732). Revision-free survival for DM constructs was 83% (95% CI 0.77 – 0.90) compared to 75% (95% CI 0.68 – 0.82) for standard articulations and 71% (95% CI 0.56 – 0.85) for CL (p=0.455). Younger age (HR 0.91; p=0.020), lower comorbidity (HR 0.42; p=0.031), smaller heads (HR 0.80; p=0.041) and cup retention (HR 8.23; p=0.022) were associated with re-dislocation. Radiological analysis did not reveal a relationship between restoration of hip geometry and re-dislocation. mHHS significantly improved from 43.8 points to 65.7 points (p<0.001) with no differences among bearing types. Our findings suggest that DM bearings do not sufficiently prevent dislocation in revision THA for recurrent dislocation. Reconstruction of the abductor complex may play a key role to reduce the burden in these high-risk patients


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 382 - 390
1 Feb 2021
Wang H Tang X Ji T Yan T Yang R Guo W

Aims. There is an increased risk of dislocation of the hip after the resection of a periacetabular tumour and endoprosthetic reconstruction of the defect in the hemipelvis. The aim of this study was to determine the rate and timing of dislocation and to identify its risk factors. Methods. To determine the dislocation rate, we conducted a retrospective single-institution study of 441 patients with a periacetabular tumour who had undergone a standard modular hemipelvic endoprosthetic reconstruction between 2003 and 2019. After excluding ineligible patients, 420 patients were enrolled. Patient-specific, resection-specific, and reconstruction-specific variables were studied using univariate and multivariate analyses. Results. The dislocation rate was 9.3% (n = 41). Dislocation was most likely to occur in the first three months after surgery. Four independent risk factors were found, one of which was older age at operation (p = 0.039). The odds ratios (ORs) of those aged ≥ 60 years and 30 to 60 years were 8.50 and 4.64, respectively, compared with those aged < 30 years. The other three risk factors were resection of gluteus maximus (p = 0.010, OR = 5.8), vertical shift of the centre of rotation (COR) of the hip by ≥ 20 mm (p = 0.008, OR = 3.60), and a type I+II+III pelvic resection (p = 0.014, OR = 3.04). Conclusion. Hemipelvic endoprosthetic reconstruction after resection of a periacetabular tumour has a dislocation rate of 9.3% (n = 41). Patients are most likely to dislocate in the first three months after surgery. The risk is increased for older patients (especially those aged > 60 years) and for those with gluteus maximus resection, vertical shift of the COR ≥ 20 mm, and a type I+II+III pelvic resection. Cite this article: Bone Joint J 2021;103-B(2):382–390


Robotic assisted surgery aims to reduce surgical errors in implant positioning and better restore native hip biomechanics compared to conventional techniques for total hip arthroplasty (THA). The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual THA versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, cup inclination, cup version, and leg-length correction. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. All operative procedures were undertaken by a single surgeon using the minimally-invasive posterior approach. Two independent blinded observers recoded all radiological outcomes of interest using plain radiographs. Patients in both treatment groups were well-matched for age, gender, body mass index, laterality of surgery, and ASA scores. Interclass correlation coefficient was 0.92 (95% CI: 0.84 – 0.95) for intra-observer agreement and 0.88 (95% CI: 0.82–0.94) for inter-observer agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p<0.001) and vertical (p<0.001) centres of rotation, and improved preservation of the patient's native combined offset (P<0.001) compared to conventional THA. Robotic THA improved accuracy in positioning of the acetabular cup within the combined safe zones of inclination and anteversion described by Lewinnek et al (p=0.02) and Callanan et al (p=0.01) compared to conventional THA (figures 1–2). There was no difference between the two treatment groups in achieving the planned leg-length correction (p=0.10). Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular cup positioning within the safe zones of inclination and anteversion compared to conventional manual THA. Robotic-arm assisted THA enables improved preservation of native hip biomechanics compared to conventional manual THA. For any figures or tables, please contact authors directly: . fsh@fareshaddad.net


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 44 - 44
1 May 2012
Whatling GM Wilson C Holt CA
Full Access

INTRODUCTION. Useful feedback from a Total Knee Replacement (TKR) can be obtained from post-surgery in-vivo assessments. Dynamic Fluoroscopy and 3D model registration using the method of Banks and Hodge (1996) [1] can be used to measure TKR kinematics to within 1° of rotation and 0.5mm of translation, determine tibio-femoral contact locations and centre of rotation. This procedure also provides an accurate way of quantifying natural knee kinematics and involves registering 3D implant or bone models to a series of 2D fluoroscopic images of a dynamic movement. AIM. The aim of this study was to implement a methodology employing the registration methods of Banks and Hodge (1996) [1] to assess the function of different TKR design types and gain a greater understanding of non-pathological (NP) knee biomechanics. METHODS. Knee function was assessed for five subjects with NP knees (4 males and 1 female, 34.8 ± 10.28 years, BMI 25.59 ± 3.35 Kg/m. 2. ) and five subjects 13.2 (± 1.8) months following a TKR (2 males, 3 females, 68 ± 9.86 years, BMI 30 ± 3 Kg/m. 2. ). The TKR types studied included 1 cruciate retaining, 2 cruciate substituting, 1 mobile-bearing (high flex) and 1 medial pivot). Ethical approval was obtained from the South East Wales Local Research Ethics Committee. Each subject's knee was recorded whilst they performed a step up/down task, using dynamic fluoroscopy (Philips). 3D CAD models of each TKR were obtained for the TKR subjects. 3D bone models of the knee, tibia and femur were created for the 5 NP subjects by segmenting MRI scans (3T GE scanner, General Electric Company) using ScanIP (Simpleware, Ltd.). Using the program KneeTrack (S A Banks, USA), each TKR component and bone model was projected onto a series of fluoroscopic images and their 3D pose iteratively adjusted to match the contours on each image. Joint Kinematics were determined from the 3D pose of each 3D model using Cardan/Euler angles [2]. The contact points and centre of rotation of each TKR were also computed. RESULTS. The mean range of motion (ROM) in the sagittal plane was 61° for the NP cohort and 64° for the TKR cohort. The mean frontal plane ROM was 4° for NP knees and 3° for TKR. A greater axial ROM was achieved by the mobile-bearing (7.5°) and medial pivot TKR (7.0°), compared to the cruciate retaining (4.4°) and substituting (3.6°). The Medial Pivot TKR rotated around a medial centre of rotation, whereas the centre of rotation was located laterally for the other TKR types. This has also been found in other studies of stair climbing activities [3]. CONCLUSIONS. This study demonstrates how this method can be used to quantify and compare the kinematics, contact locations and centre of rotation for a range of TKR designs and NP knees in-vivo. Initial analyses have identified functional differences associated with different TKR designs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 98 - 98
1 May 2019
Barrack R
Full Access

Two critical steps in achieving optimal results and minimizing complications (dislocation, lengthening, and intraoperative fracture) are careful preoperative planning and more recently, the option of intraoperative imaging in order to optimise accurate and reproducible total hip replacement. The important issues to ascertain are relative limb length, offset and center of rotation. It is important to start the case knowing the patient's perception of their limb length. Patient perception is equally important, if not more important, than the radiographic assessment. On the acetabular side, the teardrop should be identified and the amount of reaming necessary to place the inferior margin of the acetabular component adjacent to the tear drop should be noted. Superiorly the amount of exposed metal that is expected to be seen during surgery should be measured in millimeters. Once the key issues of limb length, offset, center of rotation, and acetabular component position relative to the native acetabulum have been confirmed along with the expected sizing of the acetabular and femoral components, it is critical that the operative plan is reproduced at the time of surgery and this can best be consistently performed with the use of intraoperative imaging. Advances in digital imaging now make efficient, cost-effective assessment of hip replacement possible. Embedded software allows accurate confirmation of the preoperative plan intraoperatively when correction of potential errors is easily possible. Such technology is now mature after years of clinical use and studies have confirmed its success in avoiding outliers and achieving optimal results. A pilot study at Washington University demonstrated that intraoperative imaging was able to eliminate outliers for acetabular inclination and anteversion. In addition, the ability to achieve accurate reproduction of femoral offset and limb length within 5mm was three times better with intraoperative imaging (P < 0.001)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 109 - 109
1 Apr 2019
Lundberg HJ Mell SP Fullam S Wimmer MA
Full Access

Background. Aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure in the long term, of which osteolysis from polyethylene wear debris remains a problem that can limit the lifetime of TKA past the second decade. To help speed up design innovations, our goal was to develop a computational framework that could efficiently predict the effect of many sources of variability on TKA wear—including design, surgical, and patient variability. Methods. We developed a computational framework for predicting TKA contact mechanics and wear. The framework accepts multiple forms of input data: patient-specific, population-specific, or standardized motions and forces. CAD models are used to create the FEA mesh. An analytical wear model, calibrated from materials testing (wheel-on-flat) experiments, is fully integrated into the FEA process. Isight execution engine runs a design of experiments (DOE) analysis with an outcome variable, such as volumetric wear, to guide statistical model output. We report two DOE applications to test the utility of the computational framework for performing large variable studies in an efficient manner: one to test the sensitivity of TKA wear to the femoral center of rotation, and the second to test the sensitivity of TKA wear to gait input perturbations. Results. Using this method, we demonstrated that choice of femoral center of rotation matters, and that although volumetric wear was most sensitive to variation in flexion/extension peaks, no one kinematic factor dominates TKA volumetric wear variability. Conclusion. The two DOE applications represent initial first attempts to study variability in component alignment and input waveforms across large solution spaces. The computational framework will be most useful if it can be used in a TKA design setting, where new innovations can be tested as soon as they are developed to see if they are worthy of further mechanical testing


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 203 - 203
1 May 2011
De Wilde L Poncet D Ekelund A
Full Access

Purpose: Despite good clinical results of the reverse total shoulder arthroplasty inferior scapular notching remains a concern. The aim of this study was to evaluate the effect of 6 different parameters on notching. Materials and Methods: An average shape A-P view 2-D computer model of scapula was created, using data from 200 scapulae, so that the position of the glenoid and humeral component could be changed, as well as design features such as depth of the polyethylene insert, size of glenosphere and centre of rotation. The model calculates the maximum adduction (notch angle). Results: A change in humeral neck shaft inclination from 155° to 145° resulted in a gain of 10° in notch angle. A change in cup depth from 8mm to 5mm resulted in a maximum gain of 12°. With no inferior prosthetic overhang a lateralisation of the centre of rotation from 0 to 5mm resulted in a maximum gain of 15° on notch angle. More lateralization resulted in increased gain in notch angle. With an inferior overhang of only 1 mm no effect of lateralizing the centre of rotation was calculated. Glenoid varus of 0 to 10°, without inferior overhang, results in a gain of 10° on notch angle. A change in glenosphere radius from 18 to 21mm resulted in no gain of notch angle without prosthetic overhang. A prosthetic overhang to the bone from 0 to 5mm results in a maximum gain on notch angle of 39°. Conclusion: To prevent an inferior scapular conflict in reverse total shoulder arthroplasty the change in neck-shaft angle or depth of the polyethylene insert had a modest gain in notch angle. The effect of lateralization of the centre of rotation and putting the glenosphere in more varus was completely eliminated by adding a small inferior overhang. The main effect of increasing the size of the glenosphere was if it created a prosthetic overhang. Of all 6 tested parameters the prosthetic overhang resulted in the biggest gain in notch angle and this should be considered when designing the reverse arthroplasty and defining optimal surgical technique


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 259 - 259
1 Jul 2011
Bicknell R Boileau P Roussanne Y Brassart N Chuinard C
Full Access

Purpose: We hypothesized that lateralization of the RSA, with a glenoid bone graft taken from the osteotomised humeral head, would prevent those problems without increasing torque on the glenoid component by keeping the center of rotation within the glenoid. The objectives of this study were to describe the results of the first 12 patients that underwent a bony increased-offset RSA (BIO RSA). Method: Thirty-six shoulders in 34 consecutive patients with cuff tear arthritis (mean age 72 years, range 52–86 years) received a BIO RSA, consisted of a RSA incorporating an autogenous humeral head bone graft placed beneath the glenoid baseplate. A baseplate with a lengthened central peg (+25 mm) was inserted in the glenoid vault, securing the bone graft beneath the baseplate and screws. All patients underwent clinical and radiographic (computed tomography) review at a minimum 1-year follow-up. Results: All patients were satisfied or very satisfied and all had no or slight pain. Mean active elevation increased from 72° to 142° (p< 0.05), external rotation from 10° to 18° (p< 0.05) and internal rotation from L4 to L3 (p> 0.05). Constant Score improved from 27 to 63 points (p< 0.05). The Subjective Shoulder Value (SSV) increased from 27% to 73% (p< 0.05). Radiographically, the graft healed to the native glenoid in all cases and no graft resorption under the baseplate was observed. Complications included one patient with scapular notching (stage 1) and one patient with previous radiotherapy had a deep infection. No postoperative instability, and no glenoid loosening were observed. Conclusion: The use of an autologous bone graft harvested from the humeral head can lateralize the center of rotation of a RSA while keeping the center of rotation at the glenoid bone-prosthesis interface. The clinical advantages of a BIO RSA are a decrease in scapular notching, enhanced stability and mobility, and improved shoulder contour while keeping the center of rotation at the glenoid bone-prosthesis interface. This bony lateralization allows maintenance of the principles of Grammont and seems to be more appropriate than prosthetic lateralization. These promising early results of this novel procedure warrant further investigation


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 102 - 102
1 May 2011
El-Zayat B Efe T Heidrich A Anetsmann R Timmesfeld N Fuchs-Winkelmann S Schofer M
Full Access

Aim: The assessment of shoulder mobility is essential for clinical follow-up of shoulder treatment. Only a few high sophisticated instruments for objective measurements of shoulder mobility are available. The interobserver dependency of conventional goniometer measurements is high. In the 1990s an isokinetic measuring system of BIODEX Inc. was introduced, which is a very complex but valid instrument. Since 2008 a new user-friendly system (DynaPort ShoulderTest-System) is available. Aim of this study is the validation of this measuring instrument with the BIODEX-System. Methods: The DynaPort ShoulderTest-System is a small, light-weighted three-dimensional gyroscope that is fixed on the distal upper patient arm, recording abduction, fiexion and rotation. For direct comparison we fixed the DynaPort on the lever arm of the BIODEX-system. The accuracy of measurement was determined at different positions, angles and distances from the center of rotation as well as different motion speeds in the radius between 0° – 180° in steps of 20°. All measurements were repeated ten times and observed with a digital water level. As satisfactory accuracy we defined a difference between both systems below 5°. The statistical analysis was performed with a linear regression model. Results: The evaluation showed very high accuracy of measurements. The maximum average deviation was 0,5°. Below 60° the DynaPort was underestimating comparing the BIODEX system, whereas in higher positions higher data was measured. At higher angles the differences between both got higher. The distance to the center of rotation as well as the position of the Dyna-Port on the lever arm and different motion speeds infiuenced the results. The highest significant matches were measured at highest distance from the center of rotation (1,8° vs. 3,1°, p < 0,05) and a highest motion speed (2,1° at 60°/s, vs. 3,1° at 30°/s, p < 0,05). Conclusion: In summary the results showed a high correlation and good reproducibility of measurements. All deviations were inside the tolerance interval of 5 °. These laboratory trials are promising for the validation of this system in shoulder patients. The challenge for both systems will be the changing of the center of rotation in the shoulder joint at elevations higher than 90°


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 10 - 10
1 Nov 2021
Tikhilov R Shubnyakov I
Full Access

Detection of clinical situations are the most difficult for primary THA and factors which determine the complexity. Results of 2368 primary THA performed by one surgeon in 1923 patients with various hip pathologies from 2004 to 2016 were analyzed. The time of the surgery, the bloodloss, the features of the surgical technique, the implants used, and the incidence of complications and revisions were assessed and X-ray analysis was performed. Difficult cases of primary hip arthroplasty include severe dysplasia (types B2, C1, and C2 according to the Hartofilakidis classification), post-traumatic segmental acetabular defects and pelvic discontinuity, protrusio acetabuli, iatrogenic bone ankylosis and consequences of proximal femur fractures with significant shortening of the limb. X-ray signs of difficulty included an interruption of the Shenton line of 2 cm or more (except for acute fractures of proximal femur), the femoral neck-shaft angle less than 100°, and the horizontal distance from Kohler line to center of rotation less than 20% of the diameter of the femoral head. An additional burdening factor is the previous surgical interventions on the hip joint. The ten-year survival rate for standard cases was 94.9%, and for complex cases − 92.3%. The odds ratio development of complications in complex cases compared to standard cases is OR = 8.402 (95% CI from 4.614 to 15.300). In standard cases mean HHS increased from 42.9 points before surgery to 95.3 after surgery. In complex cases mean HHS before surgery was 38.9 and after surgery improved to 81.6 points, p <0.001. The complexity of the operation cannot be determined on the basis of only the etiological factor, it is necessary to take into account the severity of anatomical changes


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 406 - 406
1 Apr 2004
Argenson J Kacem-Boudhar M Aubaniac J
Full Access

Introduction: Recent studies showed that the position of the center of rotation and the prosthetic neck may infl uence implant fixation in hip arthroplasty. The purpose of this study is to evaluate the use of modular necks and their limits to restore hip geometry after the arthroplasty. Methods: The study radiographically evaluates 117 cases of unilateral hip arthroplasty using a modular neck / head concept (Wright Medical). The analysis evaluated on a weight-bearing frontal pelvis view: center of rotation, horizontal abductor ratio, and vertical abductor index, comparatively to the controlateral hip using the student’t test. On the computerized templates of the association effectively used in each case was measured: neck length, lever arm and neck anteversion. Results: In craniopodal the center of rotation averaged 0.19 in women and 0.23 in men. In mediolateral it averaged 0.26 in women and 0.32 in men. The mean horizontal abductor ratio was 0.65 in women and 0.70 in men. The mean vertical abductor index was 6:..4° in women and 6.5° in men. The mean neck length was 55.2 mm, the mean lever arm 39.3 mm, and the 15° ante or retroverted neck was noted in 10 %. Discussion and conclusion: Restoration of the center of rotation was more accurate in mediolateral than in craniopodal, with a higher location as previously noted in the litterature. Abductor function was correctly restored excepted for the vertical index in women, probably due to the large variations of pelvis width. The limits of modular necks are large hip dysmorphy where neck length averages 60 mm, lever arm 45 mm and neck anteversion requires 30° of correction


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 279 - 279
1 Jul 2008
VALENTI P DE WIELDE L KATZ D SAUZIÈRES P
Full Access

Purpose of the study: The aim of this biomechanical study was to assess the performance of the deltoid muscle in the absence of a rotator cuff using different models for shoulder prosthesis. Material and methods: A computer model reproducing the three dimensions of the glenohumeral joint was use to analyze the force of the deltoid muscle during abduction movements in shoulders devoid of a rotator cuff. The three heads of the deltoid were analyzed in order to determine the most effective level of muscle tension. The lever arm of the deltoid was measured from 0–90° abduction. Using this 3D model, we simulated implantation of six different models of reversed prostheses in order to assess the biomechanical situation which would be the most favorable for the deltoid. Performance of the normal deltoid was compared with the performance of the deltoid after implantation of an anatomic prosthesis and after implantation of an reversed prosthesis. Several variables were studied: medial offset of the center of rotation, lateral offset of the humerus, lengthening of the deltoid muscle. Results: Optimal deltoid performance (especially from 60–90° abduction) was observed if the center of rotation was offset medially and the humerus was offset laterally and lowered. A 10% increase in the length of the muscle fibres increased muscle performance 18%. Exaggerated lateral offest of the humerus increased deltoid performance between 30 and 60° abduction but lost its beneficial effect at 90° abduction. From 15° abduction, a scapular notch appeared when the humerus was off set medially. This could be avoided if the humerus was offset laterally with a less medial center of rotation. Beyond 150° abduction, superior impingement appeared irrespective of the type of prosthesis. Discussion and conclusion: This biomechanical study proved the superiority of reversed prostheses compared with anatomic prostheses for massive rotator cuff tears. Medial offset of the center of rotation reduced shear forces on the glenoid. Lateral offset of the humerus increase via a pulley effect the lowering force of the deltoid. Lowering the humerus pulled on the muscle fibers of the deltoid and increased their performance. Dosing these three variables with an appropriate («ideal») design for the reversed prosthesis would optimize deltoid performance in patients with deficient rotator cuffs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 58 - 58
1 Jun 2018
Barrack R
Full Access

Two critical steps in achieving optimal results and minimizing complications (dislocation, lengthening, and intra-operative fracture) are careful pre-operative planning and more recently, the option of intra-operative imaging in order to optimise accurate and reproducible total hip replacement. The important issues to ascertain are relative limb length, offset and center of rotation. It is important to start the case knowing the patient's perception of their limb length. Patient perception is equally important, if not more important, than the radiographic assessment. On the acetabular side, the teardrop should be identified and the amount of reaming necessary to place the inferior margin of the acetabular component adjacent to the tear drop should be noted. Superiorly the amount of exposed metal that is expected to be seen during surgery should be measured in millimeters. Once the key issues of limb length, offset, center of rotation, and acetabular component position relative to the native acetabulum have been confirmed along with the expected sizing of the acetabular and femoral components, it is critical that the operative plan is reproduced at the time of surgery and this can best be consistently performed with the use of intra-operative imaging. Advances in digital imaging now make efficient, cost-effective assessment of hip replacement possible. Embedded software allows accurate confirmation of the pre-operative plan intra-operatively when correction of potential errors is easily possible. Such technology is now mature after years of clinical use and studies have confirmed its success in avoiding outliers and achieving optimal results. A pilot study at Washington University demonstrated that intra-operative imaging was able to eliminate outliers for acetabular inclination and anteversion. In addition, the ability to achieve accurate reproduction of femoral offset and limb length within 5mm was three times better with intra-operative imaging (P <0.001)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 214 - 214
1 Sep 2012
Walscharts S Corten K Bartels W Jonkers I Bellemans J Simon J Vander Sloten J
Full Access

The 3D interplay between femoral component placement on contact stresses and range of motion of hip resurfacing was investigated with a hip model. Pre- and post-operative contours of the bone geometry and the gluteus medius were obtained from grey-value CT-segmentations. The joint contact forces and stresses were simulated for variations in component placement during a normal gait. The effect of component placement on range of motion was determined with a collision model. The contact forces were not increased with optimal component placement due to the compensatory effect of the medialisation of the center of rotation. However, the total range of motion decreased by 33%. Accumulative displacements of the femoral and acetabular center of rotation could increase the contact stresses between 5–24%. Inclining and anteverting the socket further increased the contact stresses between 6–11%. Increased socket inclination and anteversion in combination with shortening of the neck were associated with extremely high contact stresses. The effect of femoral offset restoration on range of motion was significantly higher than the effect of socket positioning. In conclusion, displacement of the femoral center of rotation in the lateral direction is at least as important for failure of hip resurfacings as socket malpositioning


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 293 - 293
1 May 2010
Aljinovic A Bicanic G Delimar D
Full Access

Introduction: Operative treatment of secondary osteoarthritis due to congenital hip disease (CHD) in adults presents a challenging issue. Various classifications have been proposed for congenital hip disease in search for the best treatment option. Aim of this prospective study is to find measurements important in preoperative planning and their correlation with postoperative results. Materials and Methods: We have included 64 patients (70 hips) with CHD consecutively scheduled for operation. Preoperatively congenital hip disease was classified according to Crowe, Hartofilakidis and Eftekhar and center of rotation was determined using Ranawat’s method. Distance between ideal and actual center rotation was measured. Further, distance between medial acetabular wall and medial pelvic rim (medial bone bulk) in the line of ideal center of rotation was measured. Another measurement was distance between ideal acetabular roof point and medial pelvic rim. On the postoperative radiographs centre of the femoral head was recorded. Correlation between Crowe, Hartofilakidis and Eftekhar classifications with distance between ideal and postoperative center rotation and medial bone bulk were calculated using Pearson correlation. Correlation was also analyzed using information about distance between ideal acetabular roof point and medial pelvic rim. Results: Data analysis showed that there is the strongest connection between degree of CHD determined using Eftaker classification and distance between ideal and actual rotation center (r=0.417, p=0.011). Crowe and Hartofilakidis classifications also shows statistically significant connection, however not that strong (r= 0.384, p=0.021 for Crowe and r=0.373, p=0.025 for Hartofilakidis). Eftaker classification shows the strongest correlation with medial bone bulk r=0.425, a p=0.010. Similar is Crowe classification (r=0.341, p=0.042), while there is no statistically significant correlation with Hartofilakidis classification. Results also shows that when there is higher degree of congenital hip disease there is thinner bone bulk in line of ideal acetabular roof (for Crowe r= −0.360, p=0.031, for Hartofilakidis r= −0.354, p=0.34). Conclusion: Results show that severity of dysplasia according to Crowe, Hartofilakidis and Eftekhar correlates with postoperative position of rotation center. Eftekhar classification gives the best insight to how much medial bone bulk is available. For bone bulk on the acetabular roof predictions can be made using both Crowe and Hartofilakidis system. However, one classification still does not provide with all information we found important for correct endoprothesis placement in relation to center of rotation especially about acetabular depth, and bone mass on the medial acetabular wall and acetabular roof


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 113 - 113
1 Apr 2019
Gray H Guan S Young T Dowsey M Choong P Pandy M
Full Access

INTRODUCTION. The medial-stabilised (MS) knee implant, characterised by a spherical medial condyle on the femoral component and a medially congruent tibial bearing, was developed to improve knee kinematics and stability relative to performance obtained in posterior-stabilised (PS) and cruciate-retaining (CR) designs. We aimed to compare in vivo six-degree-of-freedom (6-DOF) kinematics during overground walking for these three knee designs. METHODS. Seventy-five patients (42 males, 33 females, age 68.4±6.6 years) listed for total knee arthroplasty (TKA) surgery were recruited to this study, which was approved by the relevant Human Research Ethics committees. Each patient was randomly- assigned a PS, CR or MS knee (Medacta International AB, Switzerland) resulting in three groups of 23, 26 and 26 patients, respectively. Patients visited the Biomotion Laboratory at the University of Melbourne 6±1.1 months after surgery, where they walked overground at their self-selected speed. A custom Mobile Biplane X-ray (MoBiX) imaging system tracked and imaged the implanted knee at 200 Hz. The MoBiX system measures 6-DOF tibiofemoral kinematics of TKA knees during overground gait with maximum RMS errors of 0.65° and 0.33 mm for rotations and translations, respectively. RESULTS AND DISCUSSION. Mean walking speeds for the three groups were not significantly different (PS, 0.86±0.14 m/s CR, 0.82±0.17 m/s and MS, 0.87±0.14 m/s, p>0.25). While most kinematic parameters were similar for the PS and CR groups, mean peak-to-peak anterior drawer was greater for PS (9.89 mm) than CR (7.75 mm, p=0.004), which in turn was greater than that for MS (4.43 mm, p<0.001). Mean tibial external rotation was greater for MS than PS (by 3.12°, p=0.033) and CR (by 3.34°, p=0.029). Anterior drawer and lateral shift were highly coupled to external rotation for MS but not so for PS and CR. The contact centres on the tibial bearing translated predominantly in the anterior-posterior direction for all three designs. Peak-to-peak anterior-posterior translation of the contact centres in the medial compartment was largest for PS (7.09 mm) followed by CR (5.45 mm, p=0.003) and MS (2.89 mm, p<0.001). The contact centre in the lateral compartment was located 2.5 mm more laterally for MS than PS and CR (p<0.001). The centre of rotation of the knee in the transverse plane was located in the medial compartment for MS and in the lateral compartment for both PS and CR. CONCLUSIONS. We quantitatively compared in vivo 6-DOF joint motion for PS, CR, and MS knees during locomotion. A higher degree of coupling between external rotation and anterior-posterior translation, greater constraint in the anterior-posterior direction, and a more medialised joint centre of rotation observed for the MS knees are explained by the highly congruent medial articulation characterising this design


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 290 - 290
1 Jul 2008
NEHME A HANSSEN A LEWALLEN D WEHBE J MAALOUF G PUGET J
Full Access

Purpose of the study: The majority of acetabular bone defects observed during revision hip surgery can be treated with a hemispheric implant, associated or not with a bone graft. In many patients however, loss of bone stock is so great that a more complex system must be used with a sustaining ring, multilobulated implants, or massive allografts. All have their technical difficulties or problems with fixation. The purpose of this work was to evaluate a new technique for acetabular reconstruction using modular implants fashioned with a new biomaterial, porous tantalum, which had specific properties favoring osteointegration. Material and methods: These modular implants were fashioned so as to enable reconstruction of the acetabular cavity in cases with complex loss of bone stock. The design allows simultaneous biological incorporation and mechanical support with a press-fit hemispheric cup. These implants were used for 16 hips (16 patients, 12 women and 4 men, mean age 63.6 years, age range 34–86 years). These patients were followed for 31.9 months on average (range 24–39 months). The acetabular defects were Paprosky 2A (n=1), 2B ‘n=3), 2C (n=1), 3A (n=5), 3B (n=6). On average, these patients had undergone 2.8 cup replacements (1–9) on the same hip. Results: The mean Harris hip score improved from 39.31 (range 33–52) preoperatively to 75.18 (range 52–92) at last follow-up. Preoperatively, the center of rotation of the prosthetic hip was situated a a mean horizontal distance of 18.6 mm (range −3 to 46 mm) and a mean vertical distance of 27.6 mm (range −16 to 52 mm) from the ideal center of rotation according to Ranawat. Postoperatively, the prosthetic center of rotation was situated at a mean horizontal distance of 10.5 mm (range 1–25 mm) and a mean vertical distance of 7.4 mm (range −15 to 25 mm) front the ideal center of rotation. None of the implants presented loosening or migration at last follow-up. Discussion: At short-term follow-up, this modular system for acetabular reconstruction has provided good results for acetabular reconstruction which can accept a hemispheric cup alone and which would have required use of other reconstruction methods such as structural allografts, sustaining rings or other. Conclusion: A longer follow-up will be needed to determine whether these good clinical and radiological results persist with time


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 311 - 314
1 Feb 2010
Cereatti A Margheritini F Donati M Cappozzo A

The human acetabulofemoral joint is commonly modelled as a pure ball-and-socket joint, but there has been no quantitative assessment of this assumption in the literature. Our aim was to test the limits and validity of this hypothesis. We performed experiments on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and the femur. Movements were recorded using stereophotogrammetry while an operator rotated the cadaver’s acetabulofemoral joint, exploiting the widest possible range of movement. The functional consistency of the acetabulofemoral joint as a pure spherical joint was assessed by comparing the magnitude of the translations of the hip joint centre as obtained on cadavers, with the centre of rotation of two metal segments linked through a perfectly spherical hinge. The results showed that the radii of the spheres containing 95% of the positions of the estimated centres of rotation were separated by less than 1 mm for both the acetabulofemoral joint and the mechanical spherical hinge. Therefore, the acetabulofemoral joint can be modelled as a spherical joint within the considered range of movement (flexion/extension 20° to 70°; abduction/adduction 0° to 45°; internal/external rotation 0° to 30°)


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 90 - 90
1 Mar 2009
Darmanis S Timperley J Gie G Hubble M Howell J
Full Access

Purpose: The authors would like to report a technical innovation in cemented hip arthroplasty. The new device, a “rim cutter” (patent pending) was designed in Exeter and aims at improving the surgical technique of insertion of cemented sockets. The principle aim of this innovation is to cut a rim around the periphery of the acetabulum to a set depth so that the flange of the socket seats into this rim and thus by sealing the space underneath the flange, there is a sustained rise in cement injection pressure behind the socket during implantation. This, improves cement macro and micro interlock, creates a congruent cement mantle with no radioluciencies, especially in the highly predictive DeLee-Charnley Zone I. Materials and methods: A retrospective clinical study was performed in order to assess the radiological result of the use of the rim cutter. Two groups of patients with 30 in each group (consecutive cases) were enrolled in the present study. In group A, the rim cutter device was used while in group B, the acetabulum was prepared without the use of the rim cutter. In all cases an Exeter contemporary cup and stem were used. All cases were evaluated with postoperative radiographs which were analysed to record the anatomic measurements with regard to:. i) centre of rotation of the socket (COR),. ii) height of the centre of rotation from the teardrop,. iii) lateralisation of the centre of rotation from the teardrop, and iv) the width of the cement mantle in the three acetabular zones. These values were compared with the equivalent measurements made for a normal contralateral hip. In addition to these measurements, any radiolucent line in any zone was recorded. The post-operative film was templated using Orthoview (TM, Southampton, Hampshire) software, which is a digital X ray templating system. Results: The group where the rim cutter was used showed significantly improved radiological parameters. In this group (group A) the socket was placed closer to the normal centre of rotation (COR) compared to the other group (group B) where the rim cutter was not used. This difference was statistically significant (p< 0.0001). Two cases in the non rim cutter group showed radioluciencies in Zone I. Similarly, with regard to the lateralisation of the COR, the implants in the rim cutter group were closer to the COR of the contralateral normal hip The cement mantle was found to be more concentric in the rim cutter group (in group A, more patients had the same width of cement mantle in all Zones) than the non rim cutter group. This difference between the two groups was statistically significant (p< 0.0001). Conclusions: The introduction of the new “rim cutter” represents a progression in the technique for the preparation of the acetabulum in cemented hip arthroplasty. It indicates a further step, following the introduction of flanged sockets


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 38 - 38
1 Apr 2019
Lazennec JY Rakover JP Rousseau MA
Full Access

INTRODUCTION. Lumbar total disc replacement (TDR) is an alternative treatment to avoid fusion related adverse events, specifically adjacent segment disease. New generation of elastomeric non-articulating devices have been developed to more effectively replicate the shock absorption and flexural stiffness of native disc. This study reports 5 years clinical and radiographic outcomes, range of motion and position of the center of rotation after a viscoelastic TDR. Material and methods. This prospective observational cohort study included 61 consecutive patients with monosegmental TDR. We selected patients with intermediate functional activity according to Baecke score. Hybrid constructs had been excluded. Only cases with complete clinical and radiological follow-up at 3, 6, 12, 24 and 60 months were included. Mean age at the time of surgery was 42.8 +7.7 years-old (27–60) and mean BMI was 24.2 kg/m² +3.4 (18–33). TDR level was L5-S1 in 39 cases and L4-L5 in 22 cases. The clinical evaluation was based on Visual Analog Scale (VAS) for pain, Oswestry Disability Index (ODI) score, Short Form-36 (SF36) including physical component summary (PCS) and mental component summary (MCS) and General Health Questionnaire GHQ28. The radiological outcomes were range of motion and position of the center of rotation at the index and the adjacent levels and the adjacent disc height changes. Results. There was a significant improvement in VAS (3.3±2.5 versus 6.6±1.7, p<0.001), in ODI (20±17.9 versus 51.2±14.6, p<0.001), GHQ28 (52.6±15.5 versus 64.2±15.6, p<0.001), SF 36 PCS (58.8±4.8 versus 32.4±3.4, p<0.001) and SF 36 MCS(60.7±6 versus 42.3±3.4, p<0.001). Additional surgeries were performed in 5 cases. 3 additional procedures were initially planified in the surgical program: one adjacent L3-L5 ligamentoplasty above a L5S1 TDR and two L5S1 TDR cases had additional laminectomies. Fusion at the index level was secondary performed in 2 L4L5 TDR cases but the secondary posterior fusion did not bring improvement. In the 56 remaining patients none experienced facet joint pain. One patient with sacroiliac pain needed local injections. Radiological outcomes were studied on 56 cases (exclusion of 5 cases with additional surgeries). The mean location centers of the index level and adjacent discs were comparable to those previously published in asymptomatic patients. According to the definition of Ziegler, all of our cases remained grade 0 for disc height (within 25% of normal). Discussion. The silent block design of LP-ESP provides an interesting specificity. It could be the key factor that makes the difference regarding facets problems and instability reported with other implants experimentally or clinically. Unfortunately no other comparative TDR series are available yet in the literature. Conclusion. This series reports significant improvement in mid-term follow up after TDR which is consistent with previously published studies but with a lower rate of revision surgery and no adjacent level disease pathologies. The radiographic assessment of the patients demonstrated the quality of functional reconstruction of the lumbar spine after LP ESP viscoelastic disc replacement


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 96 - 96
1 Apr 2019
Lazennec JY Rischke B Rakover JP Ricart O Rousseau MA
Full Access

Introduction. The viscoelastic cervical disk prosthesis CP-ESP is an innovative one-piece deformable but cohesive interbody spacer. It is an evolution of the LP-ESP lumbar disk implanted since 2006. The implant provides 6 full degrees of freedom including shock absorption. The design allows a limitation for rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. It thus differs substantially from current prostheses. This study reports the clinical results of a prospective observational study series of 89 patients who are representative of the current use of the ESP implant since 2012. The radiological results are focused on the evolution of the mean center of rotation (MCR) as an additional information to the range of motion (ROM) for the evaluation of the quality of spine movement. Materials and Methods. 89 patients (33 males, mean age 45 years [28–60], 107 implants) were included for an open, prospective and non-randomized study between October 2012 and December 2015. One level patients were at C3C4 (3), C4C5 (3), C5C6 (41) C6C7 (24) C7T1 (1). Two levels patients were C4C5/C5C6 (3), C5C6/C6C7 (12), C6C7/C7D1 (1) and 3 levels C4C5/C5C6/C6C7 (1). Results. Clinical data were obtained preoperatively and at 3, 6, 12 and 24 months (mean ± SD): . Neck VAS:. 5,85±2,24. 2,34±1,95. 1,42±1,54. 2,25±1,75. 2,1±1,1. Arm VAS:. 6,5±1,95. 2,22±1,95. 1,5±2,0. 3±2,78. 1±2,5. NDI (%):. 55,8±15,2. 29,5±17. 18,9±15. 31±13. 21±11. SF 36 PCS (%):. 31±22,5. 50±14,9. 65±8,4. 44±12,8. 54±12. SF 36 MCS (%):. 32±13,9. 51±10,9. 69±8,5. 54±6,7. 59±8. We did not observe local ossifications. One case of side level degeneration was observed after 12 months in a C5C6 mono-segmental disk replacement (retrospectively this patient was a good case for a double initial implantation). To date the patient has not been re-operated. Two cases were revised (one C5C6 implant for bone ingrowth failure at 6 months and one C4C5 case for painful hypermobility in a globally stiff spine). Range of motion was obtained after 6 months and maintained at 24 months. Radiological study of the location of the mean center of rotation at the prosthesis level and adjacent disks demonstrated the adaptation ability of the implant. Conclusion. The concept of the ESP prosthesis is different from that of the “first generation” articulated devices currently used in the cervical spine. This study reports encouraging clinical results about pain, function and kinematic behavior. An interesting point is the evolution of the Mean Centers of Rotation in the. post-operative course. This adaptation ability is one of the main features as we need to consider the mean and long term evolution of the global cervical posture and mobility after a cervical disc replacement. Additional studies and longer patient follow-up are needed to assess long-term reliability of this innovative implant


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 88 - 88
1 Aug 2017
Barrack R
Full Access

Two critical steps in achieving optimal results and minimizing complications (dislocation, lengthening, and intra-operative fracture) are careful pre-operative planning and more recently, the option of intra-operative imaging in order to optimise accurate and reproducible total hip replacement. The important issues to ascertain are relative limb length, offset and center of rotation. It is important to start the case knowing the patient's perception of their limb length. Patient perception is equally important, if not more important, than the radiographic assessment. On the acetabular side, the teardrop should be identified and the amount of reaming necessary to place the inferior margin of the acetabular component adjacent to the tear drop should be noted. Superiorly the amount of exposed metal that is expected to be seen during surgery should be measured in millimeters. Once the key issues of limb length, offset, center of rotation, and acetabular component position relative to the native acetabulum have been confirmed along with the expected sizing of the acetabular and femoral components, it is critical that the operative plan is reproduced at the time of surgery and this can best be consistently performed with the use of intra-operative imaging. Advances in digital imaging now make efficient, cost-effective assessment of hip replacement possible. Embedded software allows accurate confirmation of the pre-operative plan intra-operatively when correction of potential errors is easily possible. Such technology is now mature after years of clinical use and studies have confirmed its success in avoiding outliers and achieving optimal results


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 227 - 227
1 Mar 2004
Victor J Hoste D
Full Access

Aims: The aim of the study was to determine the accuracy of the kinematical determination of the centre of rotation of the hip and to compare the outcome of the Computer assisted surgery (CAS) group versus a control group of patients with conventionally instrumented TKA, in a prospective randomized way. Methods: A prospective, randomized and controlled trial was undertaken with an image based CAS system (ION®), using specific knee software for the GENESIS II®total knee system. Randomization was performed on a consecutive group of 50 primary TKA’s, without exclusion criteria. All computed kinematical centres of rotation of the hip were compared to the anatomic fluoroscopic images. The difference between the kinematical centre of rotation and the anatomic centre of the femoral head was measured in the frontal plane. Coronal alignment was measured on full leg standing films. Validation of the full leg standing films was carried out in comparing the pre-operative measured angle and the computed deformity angle at the beginning of the surgery. Outcome of the CAS group was compared to the conventional group on the following items: tourniquet time, operative time, blood loss, patellar alignment, tibial slope, coronal alignment, range of motion and complications. Results: ACCURACY: The correlation index between pre-op full legs and CAS measured values was excellent: r. 2. =0.997. Difference between kinematical centre of rotation and anatomic centre of the hip: mean deviation between the two points was 1.2 mm (0–4mm), stdv 1.2 mm. This corresponds with a mean angular deviation of 0.17° (0–0.57°). OUTCOME: Tourniquet time: conventional 56 min., CAS 72 min. p=0.002. Operative time: conventional 70 min., CAS 93 min. p< 0.001. Blood loss: conventional 3.3 g/dl, CAS 4 g/dl. Patellar alignment: no tilt > 5°, no subluxation > 3 mm, both groups. Tibial slope: conventional 3.5°, CAS 3°. Post-operative mechanical alignment was between 0 and 2° of deformity for 16 conventional knees, and between 3–4° for 5 conventional knees. In the CAS group, all 21 knees scored between 0° and 2° of mechanical alignment. ROM at 6 weeks: flexion conventional 106°, CAS 105°. Fixed flexion contracture: conventional 2.9, CAS 2.1. Complications: delayed wound healing: conventional 2, CAS 1. Conclusions: Computer assisted kinematical determination of the centre of the hip can be highly accurate. Post-operative coronal alignment in CAS group is excellent, however not significantly better than conventional instrumentation


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 121 - 122
1 Mar 2010
Flores-Hernandez C Hoenecke H D’Lima D
Full Access

Reverse total shoulder arthroplasty (R-TSA) converts the glenohumeral joint into a ball-and-socket articulation by implanting a metal glenosphere on the glenoid and a concave polyethylene articulation in the humerus. This design increases the stability of the shoulder and is indicated for the treatment of end-stage shoulder arthropathy with significant rotator cuff deficiency. To minimise the risk of loosening, the glenosphere is often medialised (to keep the center of rotation within glenoid bone). Since bone grafting under the glenosphere is recommended as an alternate method to medialisation, we studied the effect of glenosphere placement on the biomechanical efficiency of the deltoid. A musculoskeletal model of the shoulder was constructed using BodySIM (LifeModeler, Inc, San Clemente, CA). The model simulated active dynamic glenohumeral and scapulothoracic abduction in a shoulder implanted with an R-TSA. Muscle forces and gleno-humeral contact forces were computed during shoulder abduction. The following conditions were simulated:. R-TSA with the center of rotation unchanged;. medialisation of center of rotation by 16 mm;. medialisation reduced to 10 mm with a 6-mm bone graft; and. inferior placement of R-TSA by 4 mm to preserve soft-tissue tension and prevent scapular notching. We validated our model by comparing peak glenohumeral contact forces (85% body weight) with previously reported in vivo measurements (Bergmann, J Biomech 2007). Inferior placement of the glenosphere component increased the mechanical advantage of deltoid muscle at 90° abduction by 25%. Medialisation of the glenosphere had little effect on deltoid forces. Reducing the medialisation (to 10 mm, by simulating the effect of a bone graft under the glenosphere) also did not change the mechanical advantage relative to full medialisation (16 mm). One disadvantage of R-TSA is that a center of shoulder rotation outside (lateral) to the glenoid increases the tendency for glenosphere loosening. Unfortunately, medialisation of the glenosphere reduces the tension on the deltoid, increases the incidence of prosthetic impingement resulting in scapular notching, and produces a shoulder contour that is cosmetically undesirable. To counter these disadvantages, reduced medialisation is proposed by bone grafting under the glenosphere and placing the glenosphere inferiorly. Our model indicates that the major mechanical advantage of the R-TSA is provided by the inferior placement of the glenosphere, which increases the moment arm of the deltoid muscle. On the other hand, the extent of glenosphere medialisation had an insignificant effect. These results support the use of reduced medialisation and bone grafting in the presence of other advantages, such as reduced notching and maintenance of infraspinatus tension and improved shoulder contour


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 299 - 299
1 Sep 2012
Clauss M Frunz S Pannhorst S Arteschrang A Ilchmann T
Full Access

Introduction. Primary stability of the Burch-Schneider ring (BSR) in case of acetabular revision is discussed controversial. In a retrospective two centre cohort study we analyzed the influence of the mode of screw fixation and the restoration of the center of rotation on migration, loosening and other radiographic parameters. Material/Methods. Patients with a minimal radiographical follow-up of 2 years and suitable for EBRA analysis were included. In group 1 (46 patients) screws were placed through the cranial spherical part of the ring and covered by cement and cup, in group 2 (40 patients) screws were placed through the cranial flange. Preoperative bone defects were classified, the postoperative centre of rotation was determined. Changes of screws were recorded, migration exceeding >1mm was seen as significant. Results. Demographic data and size of bone defect were comparable in both groups. No cups in group 1 and in group 2 were re-revised. In group 1 the centre of rotation was medialized mean 5.5 (SD 8.2) mm, in group 2 it was lateralised mean 11.0 (SD 10.3) mm (p<.001). Screw changes were observed in 5 (10.9%) patients in group 1 and 14 (35%) patients in group 2 (p=.009). Migration at 2 years was observed for 17 (37%) patients in group 1, mean migration was 1.0 (SD 1.0) mm. In group 2 21 (52.5%) patients showed migration at 2 years (p=.193), mean migration was 1.6 (SD 1.7) mm (p=.031). Conclusion. Medialization of the implant and screw fixation with compression of the ring against the acetabular roof reduces migration and screw changes. The improved stability might be due to better osteointegration of the BSR and angular stability of the screws which are additionally fixed with cement


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 82 - 82
1 Mar 2010
García-Rey E Pardos AC García-Cimbrelo E
Full Access

Introduction and Objectives: We compared the clinical and radiographic results of patients with JRA and primary arthritis using a non-cemented THR with an alumina-alumina THA. Materials and Methods: We studied 29 THR (Cerafit cup and Multicone stem) implanted in 19 patients with JRA in group 1 and 135 with primary arthritis in group 2. Mean follow-up was 59.0 months. It was seen that 13 hips in group 1 had moderate-severe acetabular protrusion and allograft was used in 12 hips. The center of rotation was determined pre and postoperatively in group 1 according to Ranawat. Results: In group 1 age (p< 0.001), weight (p< 0.001), and level of activity (p< 0.001) were less. Type A acetabulum (p=0.014) and a cylindrical femur (p< 0.01), according to Dorr, were more frequent in group 1. There was no noise or alumina breakage. There were two intraoperative femur fractures in group 1. There was a revision of 1 cup in group 1 and infection of 1 stem in group 2. In most of the group 1 cases anatomical position was recovered (p< 0.001). The preoperative center of rotation of the hip with acetabular protrusion was 23.2 mm and in the postoperative X-ray 5.6 mm. Discussion and Conclusions: In spite of the differences, THR with alumina-alumina allows similar results to be obtained in the medium term in patients with JRA. The use of an allograft in those patients with severe acetabular protrusion makes it possible to reconstruct the center of rotation of the hip


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 90 - 90
1 Dec 2013
Brockett C Abdelgaied A Hardaker C Fisher J Jennings L
Full Access

Introduction. Wear debris induced osteolysis and loosening continue to be causes of clinical failure in total knee replacement (TKR). Laboratory simulation aims to predict the wear of TKR bearings under specific loading and motion conditions. However, the conditions applied may have significant influence on the study outcomes (1). The aim of this study was to examine the influence of femoral setup and kinematic inputs on the wear of a conventional polyethylene fixed bearing TKR through experimental and computational models. Methods. Six right Sigma CR fixed bearing TKRs (DePuy Synthes, Leeds, UK) with curved polyethylene inserts (GVF, GUR1020 UHMWPE) were tested in Prosim knee simulator (Simulator Solutions, UK). The femoral bearing was set up with the centre of rotation (CoR) on either on the distal radius of the implant (Distal CoR), as indicated by the device design, or according to the ISO specification (ISO CoR; ISO14243-3). The tests were conducted under ‘High Kinematics’ (2). It was necessary to reverse the direction of the anterior-posterior displacement for the tests conducted with the ISO centre of rotation to maintain the contact region within the insert surface (Reverse High Kinematics). Tests were conducted for three million cycles, lubricated with 25% bovine serum, with wear assessed gravimetrically. The computational wear model for the TKR was based on the contact area and an independent experimentally determined non-dimensional wear coefficient, previously validated against the experimental data (3). Results. Good agreement was found between our computational and experimental models (Figure 1). The effect of femoral setup (and adjusted input kinematics) was shown to be significant (ANOVA, p < 0.05), with lower wear under the ISO CoR conditions. The reduction in wear was approximately 49% compared with the Distal CoR. A comparison of the final wear scar area showed the scars to be smaller and located more anteriorly under the ISO CoR/Reverse High Kinematic conditions, compared with the distal CoR study (Figure 2). Discussion. The femoral setup was shown to have a significant impact on the computational and experimental wear rates, with the ISO CoR condition having approximately half the wear of the Distal CoR. It appears that through changing the centre of rotation (and subsequently the anterior-posterior direction) the relative motion and contact mechanics at the articulating surface are altered (1). This study highlights the significant influence test setup conditions may have on the wear of a. It is proposed that there is a need to examine TKR bearings under a broad range of conditions, rather than one study condition to fully assess wear performance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 36 - 36
1 Dec 2016
Barrack R
Full Access

Two critical steps in achieving optimal results and minimizing complications (dislocation, lengthening, and intraoperative fracture) are careful preoperative planning and more recently, the option of intraoperative imaging in order to optimise accurate and reproducible total hip replacement. The important issues to ascertain are relative limb length, offset and center of rotation. It is important to start the case knowing the patient's perception of their limb length. Patient perception is equally important, if not more important, than the radiographic assessment. On the acetabular side, the teardrop should be identified and the amount of reaming necessary to place the inferior margin of the acetabular component adjacent to the tear drop should be noted. Superiorly the amount of exposed metal that is expected to be seen during surgery should be measured in millimeters. Once the key issues of limb length, offset, center of rotation, and acetabular component position relative to the native acetabulum have been confirmed along with the expected sizing of the acetabular and femoral components, it is critical that the operative plan is reproduced at the time of surgery and this can best be consistently performed with the use of intraoperative imaging. Advances in digital imaging now make efficient, cost-effective assessment of hip replacement possible. Embedded software allows accurate confirmation of the preoperative plan intraoperatively when correction of potential errors is easily possible. Such technology is now mature after years of clinical use and studies have confirmed its success in avoiding outliers and achieving optimal results


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 310 - 310
1 Mar 2004
Rami H George M Shepperd J Parikh M
Full Access

Aims: To establish the frequency of achieving the desired prosthesis position in an uncemented total hip replacement and the effect of the position on outcome. Methods: We reviewed the earliest and most recent available post-operative pelvic x-rays of 96 patients who had undergone a total hip replacement between March 1992 and December 1995. A press þt hydroxyapatite coated cup and stem were used in all cases (CSF & JRI respectively). We assessed the following parameters: Centre of rotation, off set, cup angle, leg length and insert wear. We then established the clinical outcome at 5–9 years of 88 patients using the MDP scoring systems and correlated this with the radiological study to establish the effect of prosthesis placement on the clinical outcome. Results: There was an acceptable centre of rotation in 53.6% of the patients, 44% of the patients had a cup angle of 40–49 degrees, 73% had an adequate off set and 71.7% had equal leg lengths. There was no correlation between the MDP and the centre of rotation, cup angle, off set or leg length. There was also no correlation between these parameters and wear of the liner. Conclusion: It is evident that the desired position of the prosthesis is not achieved in a signiþcant number of patients. This does not seem to correlate with the clinical outcome and wear. Extreme deviation from the anatomical position is likely to be detrimental


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 275 - 275
1 Dec 2013
Costantini O Choi D Gulotta L Kontaxis A
Full Access

Lateralizing the center of rotation in reverse shoulder arthroplasty has been the subject of renewed interest due to complications associated with medialized center of rotation implants. Benefits of lateralization include: increased joint stability, decreased incidence of scapular notching, increased range of motion, and cosmetic appeal. However, lateralization may be associated with increased risk of glenoid loosening, which may result from the increased shear forces and the bending stresses that manifest at the bone-implant interface. To address glenoid loosening in reverse implants with lateralized joint centers, recent studies have focused on testing and improving implant fixation. However, these studies use loads derived from literature specific to subjects with normal anatomy. The aim of this study is to characterize how joint center lateralization affects the loading in reverse shoulder arthroplasty. Using an established computational shoulder model that describes the geometry of a commercial reverse prosthesis (DELTA® III, DePuy), motion in abduction, scapular plane elevation, and forward flexion was simulated. The simulations were run for five progressively lateralized centers of rotation: −5, 0, +5, +10, and +15 mm (Figure 1). The model was modified to simulate a full thickness rotator cuff tear, where all cuff musculature except Teres Minor were excluded, to reflect the clinical indication for reverse shoulder arthroplasty on cuff tear arthropathy patients. To analyze the joint contact forces, the resultant glenohumeral force was decomposed into compression, anterior-posterior shear, and superior-inferior shear on the glenoid. Joint center lateralization was found to affect the glenohumeral joint contact forces and glenoid loads increased by up to 18% when the center was lateralized from −5 mm to +15 mm. Compressive forces were found to be more sensitive to lateralization in abduction, while changes in shear forces were more affected in forward flexion and scapular plane abduction. On average, the superior shear component showed the largest increases due to lateralization (up to a 21% increase), while the anterior-posterior shear component showed larger changes than those of compression, except in the most lateralized center position (Figure 2). The higher joint loads in the lateralized joint centers reflect a shortening of the Deltoid muscle moment arms (Figure 3), since the muscle needs to exert more force to provide the desired motions. The additional shear forces generated by the lateralization may increase the risk of the ‘rocking-horse’ effect. Together with the lateralized joint center, this creates an additional bending stress at the bone-implant interface that puts the implant at further risk of loosening (Figure 1). Current studies on implant fixation tend to use loads in compression and superior shear that exceed the forces seen in this study but have not investigated anterior-posterior shear loads. Our data support that loading in anterior-posterior direction can be significant. Using inappropriate loads to design fixation may result in excessive loss of bone stock and/or unforeseen implant loosening. The implication is that future studies may be performed using this more relevant data set to navigate the tradeoff between fixation and bone conservation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 39 - 39
1 May 2014
Schmalzried T
Full Access

The elements of my routine pre-operative planning include skin and scar assessment, the limb length (physical exam and radiographic assessments), the socket type, the stem type, and radiographic templating. Blood management is rarely an issue for primary total hips today and I generally do not recommend pre-operative autologous donation. I currently use a low molecular weight heparin for venous thromboembolic prophylaxis for most all patients. All of my patients have pre-operative medical clearance from a hospital intensivist. A press-fit modular cementless socket is my “workhorse”, although I occasionally use supplemental fixation with spikes (low bone density) or screws (shallow or otherwise deficient hemisphere). Cemented fixation is reserved for hips with radiation necrosis. I use a dual-offset tapered cementless stem in most cases but will use a modular stem in dysplastic, post-traumatic, or severely osteoporotic femurs. I template every case. My goals are to determine component sizes - “the part inside the bone” and improve the biomechanics of the hip – “the part outside the bone”. Sizing is relatively straightforward. For the socket, I use the teardrop and the superior bony edge as landmarks for size and position. I use a Johnson's lateral view radiograph to assess socket version and anterior osteophytes. With a tapered stem, proximal fit on the AP radiograph is the goal and the stem does not need to be canal filling. For the neck resection, I reference off the lesser trochanter. Medialisation of the hip center of rotation (COR) decreases the moment arm for body weight; increasing the femoral off-set lengthens the lever arm for the abductor muscles. These changes in hip biomechanics have a double benefit: a reduction in required abductor forces and lower joint reaction forces. There is accumulating clinical evidence that such favorable alterations in biomechanics can improve clinical outcomes and reduce wear. Higher femoral offset has been associated with greater hip abduction motion and abductor muscle strength. In two independent studies, higher femoral offset has been associated with a significant reduction in polyethylene wear. The traditional arthroplasty goal has been to re-create the offset of the operated hip. In an analysis of 41 patients with one arthritic hip and one clinically and radiographically normal hip (Rolfe et al., 2006 ORS), we found that the horizontal femoral offset of the arthritic hip was, on average, 6mm less than that of the normal, contralateral hip. Considering this, and with medialisation of the COR, is it reasonable to make the femoral offset a few millimeters greater than that pre-op. With modular trial components, final offset and limb-length adjustments are made intra-operatively by assessing soft tissue tension, joint stability and range of motion. Applying these principles in a consecutive series of 40 hips, the hip center of rotation was medialised by 5.6mm and the horizontal femoral offset was increased by an average of 9.5mm, being larger than the normal, contralateral hip by an average of 5.2mm. This combination increased the net biomechanical advantage (NBA) of the diseased hip to an average of 12.5% more than the normal, contralateral hip. The increase in femoral offset is compensated for by medialising the center of rotation. The average lateralisation of the proximal femur of 3.9mm did not cause trochanteric bursitis or other pain. When the offset is right, soft tissue tension can be maintained without over-lengthening. In this series, 2.9mm average lengthening resulted in the reconstructed limb being an average of 1.1mm shorter than the normal side


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 8 - 8
1 Nov 2016
Griffiths M Langohr G Athwal G Johnson J
Full Access

There are a variety of sizes currently available for reverse total shoulder arthroplasty (RTSA) implant systems. Common sizing options include a smaller 36 to 38 mm or a larger 40 to 42 mm glenosphere, and are typically selected based on surgeon preference or patient size. Previous studies have only evaluated the abduction and adduction range of motion within a single plane of elevation, providing a limited view of the joint's possible range of motion. The purpose of this study was to use computer modeling to evaluate the abduction and adduction range of motion across multiple planes of elevation for a range of glenosphere sizes. Computed tomography images of four cadaveric specimens (age: 54 ± 24 years) were used to obtain the osseous anatomy to be utilised in the model. Solid-body motion studies of the RTSA models were constructed with varying glenosphere diameters of 33, 36, 39, 42, and 45 mm in Solidworks (Dassault Systems, US). The implant components were scaled, while maintaining a consistent centre of rotation. Simulations encompassing the full range of abduction and adduction were conducted for the planes of elevation between −15˚ and 135˚ at 15˚ intervals, with the motion of the humerus being constrained in neutral internal-external rotation throughout all planes. Angles of elevation were obtained utilising the humeral long axis and the RTSA centre of rotation. Statistical analysis was performed using repeated measures ANOVA. Glenosphere diameter was found to significantly affect the adduction range of motion (p=0.043), in which the largest size provided approximately 17˚ more adduction range of motion than the smallest. However, abduction range of motion was not found to be significantly affected through the alteration of glenosphere size (p=0.449). The plane of elevation was not found to significantly affect abduction or abduction (p=0.585 & p=0.225, respectively). Increasing glenosphere diameter resulted in an increased adduction range of motion when averaged across the tested planes of elevation; however the observed influence on abduction was not significant. These are similar to the trends observed in the previous single plane of elevation studies. These findings illustrate the importance of implant sizing related to range of motion. Further studies are required to determine the influence of glenosphere size on internal and external range of motion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 150 - 150
1 Mar 2017
Shon W Dwivedi C Kim T Kim H
Full Access

Although total hip arthroplasty is highly successful for treatment of osteoarthrosis of hip joint, it is skill demanding surgery to perform and even more challenging in case of revision with bone defects. There are many options available for reconstruction of acetabular bony defects. Here, we evaluate the outcome of acetabular bony defect reconstructed with trabecular metal augments in short term. We performed, 22 revision total hip arthroplasties and 6 primary total hip arthroplasties (total 28 in 28 patients) using trabecular metal augments to reconstruct acetabular defect between 2011 to 2015. Out of these 28 patients, 18 were males and 10 were females. Mean age of these patients was 61.2 years (range: 46 years to 79 years). Pre-operative templating was done for all cases and need for trabecular metal augments was anticipated in all cases. All cases were classified according to Paprosky classification for acetabular bone defects. Out of 28 patients, 3 had type 2B, 1 had type 2C, 18 had type 3A and 6 had type 3B acetabular defects. Post operatively, all patients were followed at regular interval for their clinical and radiological outcome. An average follow up was 20.1 months (range: 6 months to 42.5 months). We assessed clinical outcome in the form of Herris hip score (HHS) and radiological outcomes in form of osteolysis in acetabular zones and osseointegration, according to the criteria of Moore. The average Harris hip score (HHS) was improved from 58.0 preoperatively to 87.2 postoperatively. The average degree of cup abduction at the final follow up was 44.29. The centre of rotation of the hip joint was corrected from average 38.90mm (range: 22.15mm to 66.35mm) above the inter-teardrop line preoperatively to average 23.85mm (range: 11.82mm to 37.69mm) above the inter-teardrop line postoperatively. Out of 28 patients, 18 patients had three or more signs of osseointegration, according to the criteria of Moore, at the time of final follow up. Rest of patients, had one or two signs of osseointegration (5 patients had one sign and 5 patients had two signs). We had no patient with migration or loosening of acetabular components. No patient has osteolysis of acetabulum in any zone. Trabecular metal augments provide good initial stability to acetabular cup as well as helpful to bring down the centre of rotation of the hip joint within limit of 35mm above the inter-teardrop line. They also facilitate osseointegration. Our study showed that the results of the trabecular metal augments in reconstruction of acetabular bony defects were successful even in short term. However, long term study is required for better evaluation


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1182 - 1186
1 Sep 2018
Werner BS Chaoui J Walch G

Aims. Scapular notching is a frequently observed radiographic phenomenon in reverse shoulder arthroplasty (RSA), signifying impingement of components. The purposes of this study were to evaluate the effect of glenoid component size and glenosphere type on impingement-free range of movement (ROM) for extension and internal and external rotation in a virtual RSA model, and to determine the optimal configuration to reduce the incidence of friction-type scapular notching. Materials and Methods. Preoperative CT scans obtained in 21 patients (three male, 18 female) with primary osteoarthritis were analyzed using modelling software. Two concurrent factors were tested for impingement-free ROM and translation of the centre of rotation: glenosphere diameter (36 mm vs 39 mm) and type (centred, 2 mm inferior eccentric offset, 10° inferior tilt). Results. Glenosphere size was most predictive of increased extension and external rotation, whereas lateralization of the centre of rotation was the most predictive factor for internal rotation. A larger diameter of glenosphere combined with a 10° tilted configuration demonstrated superior values for extension and external rotation, whereas the eccentric component improved internal rotation by a mean 8.9° (standard deviation 2.7°) compared with a standard concentric glenosphere. Conclusion. Glenosphere configuration can be modified to increase range of movement in RSA. Friction-type scapular notching was most effectively reduced by use of a large-diameter glenosphere with 10° inferior tilt. Cite this article: Bone Joint J 2018;100-B:1182–6


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 63 - 63
1 Jan 2017
Prakash R Malik S Hussain S Budair B Ranjitkar S Prakash D
Full Access

During revision THR, the surgery is often difficult and compromised due to lack of patient's bone especially in the pelvis. Any extra bone in the acetabulum is expected to be of advantage to the patient and the surgeon. The aim of this study was to see if preservation of medial acetabular osteophyte in uncemented total hip replacement had any adverse effect on the prosthesis survival or patient satisfaction. Conventional acetabular preparation involves reaming down to the true floor. This not only medialises the centre of rotation of the hip but also reduces the acetabular offset. In contrast the main surgeon preserved the acetabular offset by preserving some osteophytic bone between the true floor of the acetabulum and the acetabular cup. This is achieved by reaming the acetabular cavity conservatively while achieving secure primary fixation of the prosthesis. We report the outcome of a single surgeon series of such cases. The endpoint was assessed as the need for revision of the acetabular cup. A total of 106 consecutive patients were identified who underwent uncemented THR from 2005 to 2010. The medial osteophyte was measured on immediate post-operative x-rays, from the “teardrop” to the nearest point of the acetabular cup, by 3 surgeons (one consultant and 2 registrars). The patients were contacted for a telephone interview and their clinical notes, including x-rays, were reviewed. Outcome was available for 79 patients. 74 patients were available for follow-up and 5 patients died unrelated to THR. Average follow-up was for 8.3 years (range 5.5–10.8). Average age was 62 years. The average medial osteophyte was 1.98 mm (range 0–14mm). One patient had late infection and one had dislocation. There was not a single failure of the acetabular component. The patient satisfaction was high at 8.8 out of 10. Preservation of medial osteophyte in the acetabulum whilst doing uncemented THR has the advantage of retaining the patient's own bone stock which can be of great advantage to the surgeon as well as the patient should revision THR be required in future. Our study has shown that this can be achieved without compromising the survival of the prosthesis or the patient satisfaction. This technique may increase the range of motion of the hip by reducing the risk of bony or soft tissue impingement, and also reduce the risk of dislocation. Furthermore, not recreating the native centre of rotation of the hip does not seem to have any adverse effect for the patients, who are very happy with the outcome. We recommend that whilst doing uncemented THR, the acetabulum should not be reamed to the true floor as has been the conventional teaching, but attempt should be made to preserve some medial osteophyte where possible, at the same ensuring that good primary fixation of the cup is achieved. This is to give the patient and surgeon the advantage of extra available bone should revision surgery be required in the future


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 61 - 61
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims. There are many variables that can affect the occurrence and severity of edge loading in hip replacement. A translational mismatch between the centres of rotation of the head and cup may lead to dynamic separation, causing edge loading and increased wear. Combining a steep inclination angle with such translational mismatch in the medial-lateral axis caused a larger magnitude of separation and increased severity of edge loading. Previous studies have shown variation in the hip Swing Phase Load (SPL) during gait between different patients. The aim of this study was to apply a translational mismatch and determine the effect of varying the SPL on the occurrence and severity of edge loading under different cup inclination angles in a hip joint simulator. Methods. The Leeds II hip joint simulator with a standard gait cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX. ®. delta) were used in this study. The study was in two stages; [1] a biomechanical study where the magnitude of dynamic separation, the duration of edge loading and the magnitude of force under edge loading (severity) were assessed under variations in component positioning and SPLs. [2] A wear study to assess edge loading with selected input conditions. For the biomechanical study, a combination of four mismatches, three cup inclination angles, and eight SPLs (Table 1) were investigated. For the wear study, three SPL conditions were selected with one cup angle and one mismatch (Table 1). Three million cycles were completed under each condition. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed (significance taken at p<0.05). Table 1: Study matrix. Results. For any given translational mismatch or cup inclination angle, increasing the SPL from 50N to 450N resulted in a decrease in the magnitude of dynamic separation (Figures 1 and 2). In some scenarios when the mismatch between the centres of rotation was low and the SPL was high, no separation was observed. Under 150N SPL, the severity of edge loading was similar to that determined for the 50N SPL conditions although the magnitude of dynamic separation was lower. Higher wear rates were found for the 70N and 150N compared to 300N SPL (Figure 3). No significant difference was found between wear rate under the SPLs of 70N and 150N (p=0.05), but significant differences were found between the wear rates under 150N and 300N SPL and between 70N and 300N SPL (p<0.01 and p<0.01 respectively). Conclusion. The SPL contributed to the resistance of separation between the head and the cup, hence a lower dynamic separation was measured under higher SPL. The wear study demonstrated that edge loading was present even under a higher SPL. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 96 - 96
1 May 2016
Oh K Ko Y
Full Access

Purpose. The positon of short stem is affected by the native anatomy of femoral neck and also by fixation mechanism dependent on design. As a consequence, it has been speculated that restoration of hip geometry might be limited in total hip arthroplasty (THA) using short stem. Therefore, the present study assessed the predictability of restoration of hip geometry using two different CCD-angled short stem engaging the lateral cortex. Materials and Methods. The 60 patients included 15 females and 45 males. The average age was 48.0 years with average BMI 24.2. Biomechanical parameters of hip geometry were analysed on postoperative calibrated radiographs in 30 consecutive primary unilateral THAs using short stem (Metha®, B. Braun Aesculap, Tuttlingen, Germany) with 120° CCD angle (group I) and 30 match controlled cases with 135° CCD angle (group II) and compared to those of the contralateral hip without deformity. The matching process was done before collecting the radiographic measurements by two blinded observer and was for sex, age ± 5 years, and BMI ± 7 units in that order. Results. Head length was short in 40%, 67%, medium in 37%, 23% and large in 23%, 10% of the patients in each group respectively with no significant difference in between group (p=0.11). The discrepancies of horizontal hip center of rotation (△HHCR) and the vertical hip center of rotation (△VHCR) compared to the contralateral side was similar in both groups (p=0.95, p= 0.11, respectively), which enabled to make a direct comparison of the femoral reconstruction. Compared to the contralateral side, discrepancies of limb length (△LLD) showed a borderline significant difference between two groups (avr.+0.7mm, +2.5mm respectively, p=0.04) with higher values for group of 135° CCD angle (more than 5mm of LLD in 27%). However, in group of 120° CCD angle, the discrepancies of horizontal femoral offset (△HFO) and abductor lever arm (△AbLA) (avr. +5.9 mm, +4.9mm respectively) revealed significantly increased compared with balanced value of group 135° CCD angle (+0.9mm, p <0.0001, +1.3mm, p=0.02, respectively) and about half of patients in group of 120° CCD angle revealed outside the 5mm difference target in either horizontal femoral offset (53% of patient) and abductor lever arm (50% of patient). Conclusion. With decreasing CCD-angle of short stem, restoration of limb length appears more predictable but, horizontal femoral offset and abductor lever arm increased with outside of a beneficial range. This tendency should be taken into consideration when choice the design of this kind of neck-preserving short stem as well as exact implantation technique


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 12 - 12
1 Nov 2015
Cohen B
Full Access

The primary goals of successful rTSA (Reverse Total Shoulder Arthroplasty) are pain relief, improved shoulder motion and function with the restoration of patient independence. These goals can be achieved by optimal prosthesis design and surgical technique. Historically there have been two predominant reverse shoulder design philosophies: the traditional valgus 155-degree neck-shaft angle with a medialised center of rotation introduced by Dr. Grammont, and the more recent varus 135-degree neck-shaft angle with a lateralised center of rotation, developed by Dr. Frankle. The latter design has reported lower incidences of scapular notching, coupled with improved adduction and external rotation. Over time, an understanding of the factors which resulted in clinical complications and those that contributed to the clinical success of both these design philosophies has been analyzed and widely publicised. With the currently available reverse prostheses the surgeon is required to be committed to one design philosophy or the other. This commitment to one singular design may hinder surgeons from the ability to individualise each case regardless of patient anatomy, rotator cuff condition, arthritic state and post-operative expectation. Recently, a system has been launched which offers both design philosophies in one system, providing unsurpassed intra-operative flexibility. This allows the surgeon to adapt to each individual case and choose either design philosophy based on patient condition and anatomy, thus optimizing patient outcome. The treatment of proximal humeral fractures has historically included Hemi Arthroplasty (HA) or Total Shoulder Arthroplasty (TSA). However, rTSA has recently become the surgery of choice for many fracture treatments based on more reproducible results. Certain implant characteristics are gaining favor in the treatment of proximal humerus fractures namely:. Press fit humeral stems - which avoid the risks of cement in-between the tuberosities which has been reported to compromise healing. Proximal ‘box-shape’ geometry - which enables rotational stability especially in cases with proximal bone loss to promote reconstruction leading to improved healing. 135-degree neck-shaft angle - allowing a higher and more anatomic tuberosity position for more stable fixation maintains anatomical integrity of the tuberosities which has been reported as a critical factor for retaining rotator cuff function


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 71 - 71
1 May 2016
Carroll K Barlow B Esposito C Lipman J Padgett D Mayman D Jerabek S
Full Access

Introduction. The longevity of total hip arthroplasty (THA) is dependent on acetabular component position. We measured the reliability and accuracy of a CT-based navigation system to achieve the intended acetabular component position and orientation using three dimensional imaging. The purpose of the current study was to determine if the CT-guided robotic navigation system could accurately achieve the desired acetabular component position (center of rotation (COR)) and orientation (inclination and anteversion). The postoperative orientation and location of the components was determined in 20 patients undergoing THA using CT images, the gold standard for acetabular component orientation. Methods. Twenty primary unilateral THA patients were enrolled in this IRB-approved, prospective cohort study to assess the accuracy of the robotic navigation system. Pre- and post-operative CT exams were obtained and aligned 3D segmented models were used to measure the difference in center of rotation and orientation (anteversion and inclination). Patients with pre-existing implants, posttraumatic arthritis, contralateral hip arthroplasty, septic arthritis, or previous hip fracture were excluded. All patients underwent unilateral THA using robotic arm CT-guided navigation (RIO Makoplasty; MAKO Surgical Corp). Results. Mean age was 59.25 years (±8.65 years), 55% of patients were female (11/20). Root mean square (RMS) errors between the intended intraoperative and actual postoperative COR position was measured in the medial/lateral (M/L), superior/inferior (S/I), and anterior/posterior (A/P) directions to quantify the accuracy of the CT-based robotic navigation system. The error in COR was variable (Fig. 4). The M/L distance error was 1.29 mm (SD: 1.18 mm; range: −2.61 – 1.13 mm). The S/I distance error was 1.81 mm (SD: 1.56 mm; range: −2.19 – 3.0 mm). The A/P distance error was 1.50 mm (SD: 1.50 mm; range: −3.53 – 2.23 mm). The mean difference between the intraoperative intended anteversion and postoperative actual anteversion was 2.2° ±1.6° with an RMS error of 2.73°. The mean difference in intraoperative intended inclination and postoperative actual inclination was 3.3° ± 1.7° with an RMS error of 3.71°. The robotic navigation system was more reliable in achieving the intended anteversion than intended inclination. The ICC for anteversion was 0.92 (95% CI 0.91–0.97), compared to ICC 0.74 (95% CI 0.49–0.89) for inclination. Conclusion. Our results suggest that CT-based navigation for THA is accurate for achieving intended cup center of rotation and both reliable and accurate in reproducing the intended cup orientation. Future research will focus on the use of a CT-based robotic navigation system to assist surgeons in the execution of a kinematic-based plan to eliminate impingement to reduce THA instability while maximizing range of motion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 115 - 115
1 May 2016
Walker D Kinney A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function, there is little objective information relating geometric changes imposed by the reverse shoulder and arm function, particularly the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over a typical range of humeral offset locations in shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center and humeral offset in three representative RTSA subjects that spanned the anatomical range from our previous study cohort. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant configuration. A 12 degree of freedom, subject-specific model was used to represent the shoulders of three patients with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used subject-specific in vivo abduction kinematics and systematically varied humeral offset locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The humeral offset was varied from its surgical position ±4 mm in the anterior/posterior direction, ±12mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. The anterior deltoid moment arm varied up to 20 mm with humeral offset and center of rotation variations, primarily in the medial/lateral and superior/inferior directions. Similarly, the lateral deltoid moment arm demonstrated variations up to 20 mm, primarily with humeral offset changes in the medial/lateral and anterior/posterior directions. The posterior deltoid moment arm varied up to 15mm, primarily in early abduction, and was most sensitive to changes of the humeral offset in the superior/inferior direction. The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for existing RTSA subjects. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to humeral offset changes early in the abduction arc. Moment arm changes of 15–20 mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moment arms through surgical placement of the joint center of rotation and humeral stem. Computational models of the shoulder may help surgeons optimize subject-specific placement of RTSA implants to provide the best possible muscle function, and assist implant designers to configure devices for the best overall performance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 92 - 92
1 May 2016
Lancaster-Jones O Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims. In order to improve the longevity and design of an implant, a wide range of pre-clinical testing conditions should be considered including variations in surgical delivery, and patients' anatomy and biomechanics. The aim of this research study was to determine the effect of the acetabular cup inclination angle with different levels of joint centre mismatch on the magnitude of dynamic microseparation, occurrence and severity of edge loading and the resultant wear rates in a hip joint simulator. Methods. The six-station Leeds Mark II Anatomical Physiological Hip Joint Simulator and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta) were used in this study. A standard gait cycle, with a twin-peak loading (2.5kN peak load and approximately 70N swing phase load), extension/flexion 15°/+30° and internal/external ±10° rotations, was applied. Translational mismatch in the medial-lateral axis between the centres of rotation of the head and the cup were considered. In this study, mismatches of 2, 3 and 4 (mm) were applied. Two acetabular cup inclination angles were investigated; equivalent to 45° and 65° in-vivo. These resulted in a total of six conditions [Figure 1] with n=6 for each condition. Three million cycles were completed under each condition. The lubricant used was 25% (v/v) new-born calf serum supplemented with 0.03% (w/v) sodium azide to retard bacterial growth. The wear of the ceramic bearings were determined using a microbalance (XP205, Mettler Toledo, UK) and a coordinate measuring machine (Legex 322, Mitutoyo, UK). The stripe wear was analysed using RedLux software. The dynamic microseparation displacement was measured using a linear variable differential transformer. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed with significance taken at p<0.05. Results Increasing the medial-lateral joint centre mismatch from 2 to 3 to 4mm resulted in an increased dynamic microseparation [Figure 2]. A similar trend was observed for the wear. A higher level of medial-lateral mismatch increased the wear rate under both 45° and 65° cup inclination angle conditions [Figure 3]. The mean wear rates obtained under 65° were significantly higher compared to those obtained under the 45° cup inclination angle conditions for a given medial-lateral mismatch in the joint centre (p=0.02 for 2mm mismatch, p=0.02 for 3 mm mismatch, and p<0.01 for 4mm mismatch). Conclusions. The condition with the acetabular cups positioned at an inclination of 45° exhibited greater resistance to dynamic microseparation for any given medial-lateral mismatch in the centres of rotation. Higher wear rates correlated with higher levels of dynamic microseparation. These results highlight how different conditions can alter the severity of edge loading, and highlight the necessity of understanding how the surgical positioning can affect the occurrence of edge loading and wear. Future studies will look into the other factors which can influence the microseparation conditions such as joint laxity, swing phase load and version angles


Full Access

To determine the results critically of cementless third generation prosthesis (proximal fit, porous coated, and tapered distal stem), a prospective study was performed only in Charnley class A patients under 50 years of age who underwent primary total hip arthroplasty. 50 patients (50 hips) were included in study (37 were male and 13 were female). Average age of patients was 45.4 years (26–50 years). IPS(Immediate Postoperative Stability) stems (DePuy, Leeds, UK) were implanted in all hips. Cementless Duraloc cups (DePuy, warsaw, IN.) were used in all hips. 22 mm zirconia femoral head was used in all hips. All surgeries were performed by one surgeon (YHK). The redominant Dx. was osteonecrosis (30 hips or 60%), O.A. 2° to childhood T.B. or pyogenic arthritis (8 hips or 16%) and others (12 hips or 24%). The average F.U. was 6.3 years (5–7 years). Thigh pain was evaluated using a visual analog scale (10 points). Clinical (Harris hip score) and x-ray follow-up was performed at 6 weeks, 3 months, 6 months, 1 year and then annually. Linear and volumetric wear were measured by software program. Abductor moment arm, femoral offset, neck and limb length, center of rotation of hips, cup angle and anteversion were measured and the results were compared between normal and operated hips. All hips had satisfactory fit in A-P and lateral planes. There was no aseptic loosening or subsidence of components. Incidence of thigh pain was 14% (7 of 50 hips). All thigh pain disappeared at 3 years postoperatively. Preoperative Harris hip score was 52.3 (7–64) points and 92.9 (80–100) points at the final F.U. The values of abductor moment arm, femoral offset, neck and limb length, center of rotation of hips, cup angle and anteversion of operated hips were comparable to normal unoperated hips. The average linear wear and annual wear rate were 1.25 and 0.21 mm, respectively. The average volumetric wear was 473.48 mm3. There was statistically significant relationship between the liner wear, age (under 40), male patient, and the cup angle. Yet there was no statistical relationship between the wear and Dx., wt., hip score, R-O-M, anteversion, abductor moment arm, femoral offset, neck and limb length and center of rotation of hip. Osteolysis was identified in zones 1A and 7A in 4 hips (8%). No hip had distal osteolysis. Close fit cementless stem in coronal and saggital planes without having distal stem fixation were proved to have an excellent mechanical fixation and provided favorable mechanical loading. Close fit in the proximal canal with a circumferential porous coating reduced the incidence of osteolysis. Factors contributing to good results in this young patient group are improved design of the prosthesis, improved surgical technique, strong trabecular bone and the use of smaller femoral head and thick polys. Although there was no aseptic loosening of the hip, high incidence of linear and volumetric wear of polyethylene liner in these young patients remains to be a challenging problem


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1600 - 1608
1 Dec 2018
Bouaicha S Ernstbrunner L Jud L Meyer DC Snedeker JG Bachmann E

Aims. In patients with a rotator cuff tear, tear pattern and tendon involvement are known risk factors for the development of pseudoparalysis of the shoulder. It remains unclear, however, why similar tears often have very different functional consequences. The present study hypothesizes that individual shoulder anatomy, specifically the moment arms (MAs) of the rotator cuff (RC) and the deltoid muscle, as well as their relative recruitment during shoulder abduction, plays a central role in pseudoparalysis. Materials and Methods. Biomechanical and clinical analyses of the pseudoparalytic shoulder were conducted based on the ratio of the RC/deltoid MAs, which were used to define a novel anatomical descriptor called the Shoulder Abduction Moment (SAM) index. The SAM index is the ratio of the radii of two concentric spheres based on the centre of rotation of the joint. One sphere captures the humeral head (numerator) and the other the deltoid origin of the acromion (denominator). A computational rigid body simulation was used to establish the functional link between the SAM index and a potential predisposition for pseudoparalysis. A retrospective radiological validation study based on these measures was also undertaken using two cohorts with and without pseudoparalysis and massive RC tears. Results. Decreased RC activity and improved glenohumeral stability was predicted by simulations of SAM indices with larger diameters of the humeral head, being consequently beneficial for joint stability. Clinical investigation of the SAM index showed significant risk of pseudoparalysis in patients with massive tears and a SAM < 0.77 (odds ratio (OR) 11). Conclusion. The SAM index, which represents individual biomechanical characteristics of shoulder morphology, plays a determinant role in the presence or absence of pseudoparalysis in shoulders with massive RC tears


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 106 - 106
1 Jan 2016
Walker D Kinney A Struk A Fregly B Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function there is little objective information relating geometric changes imposed by the reverse shoulder and the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over varied joint centers for shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center in one representative RTSA subject. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant placement. A 12 degree of freedom, subject-specific model was used to represent the shoulder of a patient with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used these abduction kinematics and systematically varied joint center locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from its surgical position ±4 mm in the anterior/posterior direction, 0–24 mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. The anterior deltoid moment arm varied up to 16mm with center of rotations variations, primarily in the medial/lateral and superior/inferior directions (Figure 2, Table 1(Figure 1)). Similarly, the lateral deltoid moment arm demonstrated variations up to 13 mm, primarily with joint center changes in the anterior/posterior and superior/inferior directions. The posterior deltoid moment arm varied up to 10mm, primarily in early abduction, and was most sensitive to changes of the joint center in demonstrated a sensitivity of 6 mm corresponding to variations in the superior/inferior directions (Figure 2). The goal of this study was to assess the sensitivity of the deltoid muscle moment arms as a function of joint configuration for an existing RTSA subject. High variations were found for all three deltoid components. Variation over the entire abduction arc was greatest in the anterior and lateral deltoid, while the posterior deltoid moment arm was mostly sensitive to joint center changes early in the abduction arc. Moment arm changes of 10–16mm represent a significant amount of the total deltoid moment arm. This means there is an opportunity to dramatically change the deltoid moments arms through surgical placement of the joint center of rotation. Computational models of the shoulder may help surgeons optimize subject-specific placement of RTSA implants to provide the best possible muscle function, and assist implant designers to configure devices for the best overall performance


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 43 - 43
1 Jul 2020
Berkmortel C Johnson JA Langohr GD King GJ DeDecker S
Full Access

Hemiarthroplasty is a common procedure that is an attractive alternative to total arthroplasty because it conserves natural tissue, allows for quicker recovery, and has a lower cost. One significant issue with hemiarthroplasties is that they lead to accelerated wear of the opposing native cartilage, likely due to the high stiffness of the implant. The purpose of this study was to investigate the range of currently available biomaterials for hemiarthroplasty applications. We employed a finite-element (FE) model of a radial head implant against the native capitellum as our joint model. The FE model was developed in ABAQUS v6.14 (Dassault Systèmes Simulia Corp., Providence, RI, USA). A solid axisymmetric concave implant with seven different materials and the native radial head were evaluated, six modelled as elastic materials with different Young's moduli (E) and Poisson's Ratios (ν), and one modelled as a Mooney-Rivlin hyperelastic material. The materials investigated were CoCr (E=230 GPa, ν = 0.3), PEEK (E=3.7 GPa, ν = 0.36), HDPE (E=2.7 GPa, ν = 0.42), UHMWPE (E=0.69 GPa, ν = 0.49), Bionate 75D (E=0.288 GPa, ν = 0.39), Bionate 55D (E=0.039 GPa, ν = 0.45), and Bionate 80A (modelled as a Mooney-Rivlin hyperelastic material). A load of 100 N was applied to the radius through the center of rotation representing a typical load through the radius. The variable of interest was articular contact stress on the capitellum. The CoCr implant had a maximum contact stress over 114% higher than the native radial head. By changing the material to lower the stiffness of the implant, the maximum contact stress was 24%, 70%, 105%, 111%, 113%, and 113% higher than the native radial head for Bionate 80A, Bionate 55D, Bionate 75D, UHMWPE, HDPE, and PEEK respectively. This work shows that lowering implant stiffness can reduce the contact stress on cartilage in hemiarthroplasty implants. By changing the material below a Young's modulus of ∼100 MPa elevated stresses on the capitellum can be markedly reduced and hence potentially reduce or prevent degenerative changes of the native articulating cartilage. Low stiffness implant materials are not a novel concept, but to date there have been few that investigate materials (such as Bionate) as a potential load bearing material for implant applications. Further work is required to assess the efficacy of these materials for articular bearing applications


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims. It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients. Patients and Methods. A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity. . Results. Three failures were observed in two hips, both of which had undergone a previous resection of a tumour affecting the acetabulum. Other complications included a late arterial injury, a sciatic nerve palsy, a dislocation treated with a femoral revision, a deep infection treated with irrigation and debridement and a fracture of the greater trochanter treated conservatively. The mean Oxford Hip Score significantly increased from 13.9 (2 to 23) to 28.7 (13 to 38) (p < 0.00001). The mean vertical distance between the centre of rotation of the hip and its normal location decreased from 30 mm to 10 mm. Conclusions. Acceptable early survivorship can be achieved using this novel technique, but it may be unsuitable for use in patients who have previously undergone the resection of a tumour involving the acetabulum. Cite this article: Bone Joint J 2017;99-B:607–13


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 506 - 506
1 Nov 2011
Tracol P Asenscio G Essig J Nourissat C
Full Access

Purpose of the study: Implanting a femoral stem with a modular neck can modify the range and the position in space of hip rotation arcs. The purpose of this work was to evaluate changes in three versions of a modular neck and to define the determining criteria for the choice of the neck to implant. Material and method: This series included 52 primary modular THA (ABGII) with ceramic bearings implanted with the HipNav 1.3 navigation system. The range of hip rotation were measured referring to the femoral saggital plane and the anterior pelvic plane. After insertion of the cup and the final ABGII stem and after choosing the length of the modular neck and the frontal inclination, the three different versions (retroversion −7, neutral 0 and anteverion +7) were tested. The range of hip rotation was measured by dynamic testing done under navigation. At the same time, the surgeon evaluated the stability and the absence of posterior impingement. Results: In extension, mean range of rotation was 71° (102–123). It was modified by neck version. The position of the centre of rotation in relation to the reference rotation (rotation 0) depended on the version of the modular neck. The balance of the rotational arcs was better with a retroversed (−7) neck (mean centre of rotation -9) with a neutral neck (centre -13) or an ante-versed (+7) neck (centre-20). The determining factors were the version of the femoral stem and the combined (cup+stem) version. After checking the stability, the surgeon chose an anteversed neck in three cases (5.7%), a neutral neck in 25 (48%) and a retroversed neck in 24 (46.3%). The choice of the modular neck maintained the ligament balance in 71% of the hips. Discussion: This demonstrates that the use of a prosthesis with a modular neck enables modulation of the rotational balance of the hip. This work demonstrates that work on balancing the rotational arcs of the hip in extension is a reliable operative criterion for choosing the version of the modular neck without using a navigation system


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 19 - 19
1 Sep 2012
Conditt M Padgett DE Thompson M Branch SH Jones J Dunbar N Banks S
Full Access

INTRODUCTION. Total hip arthroplasty (THA) is regarded as one of the most successful surgeries in medicine. However, recent studies have revealed that ideal acetabular cup implantation is achieved less frequently than previously thought, as little as 50% of the time. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion, or accelerated wear. This study reports accuracy of a tactile robotic arm system to ream the acetabulum and impact an acetabulur cup compared to manual instrumentation. METHODS. 12 fresh frozen cadaveric acetabulae were pre-operatively CT scanned and 3D templating was used to plan the center of rotation, and anteversion and inclination of the cup. Each specimen received THA, six prepared manually and six prepared with robotic arm guidance. Tactile, visual, and auditory feedback was provided through robotic guidance as well as navigated guided reaming and cup impaction. The robotic guidance constrained orientation of instruments thus constraining anteversion, inclination, and center of rotation for reaming, trialing, and final cup impaction. Post-operative CT scans were taken of each specimen to determine final cup placement for comparison to the pre-operative plans. RESULTS. In all cases, robotic arm guidance resulted in ±4° of anteversion and ±5° of inclination each relative to the pre-operative plan. Absolute RMS errors were 2.16 ± 1.35° for anteversion and 1.91 ± 1.55° for inclination. Cup placement with robotic guidance was significantly more accurate and precise than placement with manual instruments. With manual instrumentation the errors were, on average, 4.0 times higher in anteversion and 5.9 times higher in inclination compared to robotic instrumentation. CONCLUSION. This tactile robotic system substantially improved the accuracy of acetabular reaming and placement of the final cup compared to traditional manual techniques. With greater knowledge of ideal acetabular cup position, highly accurate techniques may allow surgeons to decrease the risk of dislocation, promote durability and improve the ability to restore appropriate leg length and offset. Tactile robotics has proven to be safe and effective in both knee and hip surgery and provides the potential to redefine the “instrument set” used for orthopedic procedures


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 780 - 785
1 Jun 2015
Baauw M van Hellemondt GG van Hooff ML Spruit M

We evaluated the accuracy with which a custom-made acetabular component could be positioned at revision arthroplasty of the hip in patients with a Paprosky type 3 acetabular defect. A total of 16 patients with a Paprosky type 3 defect underwent revision surgery using a custom-made trabecular titanium implant. There were four men and 12 women with a median age of 67 years (48 to 79). The planned inclination (INCL), anteversion (AV), rotation and centre of rotation (COR) of the implant were compared with the post-operative position using CT scans. A total of seven implants were malpositioned in one or more parameters: one with respect to INCL, three with respect to AV, four with respect to rotation and five with respect to the COR. To the best of our knowledge, this is the first study in which CT data acquired for the pre-operative planning of a custom-made revision acetabular implant have been compared with CT data on the post-operative position. The results are encouraging. Cite this article: Bone Joint J 2015; 97-B:780–5


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 85 - 85
1 Feb 2020
Dennis D Pierrepont J Madurawe C Lee G Shimmin A
Full Access

Introduction. It is well accepted that larger heads provide more stability in total hip arthroplasty. This is due to an increase in jump height providing increased resistance to subluxation. However, other implant parameters also contribute to the bearing's stability. Specifically, the liner's rim design and the centre of rotation relative to the liner's face. Both these features contribute to define the Cup Articular Arc Angle (CAAA). The CAAA describes the degree of dysplasia of the acetabular liner, and plays an important role in defining the jump height. The aim of this study was to determine the difference in jump height between bearing materials with a commonly used acetabular implant system. Methods. From 3D models of the Trinity acetabular implant system (Corin, UK), the CAAA was measured in CAD software (SolidWorks, Dassault Systems, France) for the ceramic, poly and modular dual mobility (DM) liners, for cup sizes 46mm to 64mm. The most commonly used bearing size was used in the analysis of each cup size. For the ceramic and poly liners, a 36mm bearing was used for cups 50mm and above. For the 46mm and 48mm cups, a 32mm bearing was used. The DM liners were modelled with the largest head size possible. Using a published equation, the jump height was calculated for each of the three bearing materials and each cup size. Cup inclination and anteversion were kept constant. Results. CAAA varied substantially between cup sizes and bearing materials. The mean CAAA for the ceramic, poly and DM bearings were 166°, 175° and 186°, respectively. Consequently, over the entire size range, the ceramic liners had the lowest mean jump height of 12.9mm. In comparison to the ceramic liner, there was a mean 10% increase in jump height when transitioning to a poly (14.2mm), and a further 30% increase when transitioning from a poly to the dual mobility bearing (18.5mm) [Fig.1]. However, the difference in jump heights between bearings was variable, and dependent on cup size. Discussion. It is well understood that increasing head size increases stability in THA. However, other implant design parameters contribute to stability. With this particular implant system, the poly bearing had a greater jump height than the ceramic for cup sizes 50mm and above. The DM bearing improved jump height over the ceramic and poly by a mean of 41% and 30%, respectively. In conclusion, different liners have different design features that affect jump height. Consequently, not all bearings of identical head size are the same. We encourage a dialogue with your implant provider to understand the differences in CAAA between cup sizes and bearing materials. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 275 - 276
1 Mar 2004
dñImporzano M Pierannunzii L de Bellis U Fadigati P Milandri L
Full Access

Aims: This study evaluates the clinical results of acetabular revision with Lima SPH Anatomic cup in 63 cases, performed at our Institute since 1999. Methods: We have evaluated 63 acetabular revision with SPH Anatomic cup in retrospective way. All the cases were produced by aseptic loosening and bone loss was in stage I or II according to GIR classiþcation (simple acetabular enlargement or one wall defect). The evaluation occurred after 1 to 3.5 years. Results: Preoperative mean Harris Hip Score was 54 and at time of evaluation it was 91. No sign of loosening was found. The mean cranial elevation of centre of rotation was preoperatively 13 mm and postoperatively 9 mm. Conclusions: The good results obtained with this kind of cup can be explained through its peculiarities: the emispheric design with the cranial ßange permits a press-þt þxation in presence of sufþcient bone stock and an exact-þt þxation with screws when the wall defect is important. In our opinion the 18û automatic antiversion of the implant is helpful in cases in which there is a great posterior wall defect and a traditional cup could determinate a wrong, retroverted orientation of the acetabulum. As we can see, a cranial elevation of the centre of rotation is well tolerated because less than 1 cm, and many Authors agree with us upon this consideration. In conclusion SPH Anatomic cup is a good solution for acetabular revision with minimal to moderate bone loss


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 68 - 68
1 Sep 2012
Hirakawa K Tsuji K Tsukamoto R
Full Access

Purpose. Crowe IV complete dislocated hips were thought to be difficult for primary THA. Correction for leg length discrepancy associated with nerve palsy or tough to reduction during surgery. Purpose of this study was to evaluate 3.5cm total leg length correction for any type of Crowe IV patients setting in anatomical positioning of acetabular cup with femoral shortening osteotomy. Materials & Methods. 24 hips were evaluated averaged 28 months after primary THA. Correction length of center of rotation, amount of femoral shortening, Harris hip score, and abductor muscle power recovery with MicroFet 2 caluculator. Bilateral cases were preformed with 6 months interval. Length of femur and tibia compared to contralateral normal side were evaluated from plain radiograms. Results. Average LLD before surgery was 7.3 (5 to 8.5) cm, but recovered within 3.5 cm (0.8 to 2.9) after surgery. One cm longer of femur in 9 patients, one cm longer of tibia in 12 patients, and 1cm longer both of femur and tibia in 5 patients compared to contralateral side before surgery. Average OR time was 92 minutes. All patients were women averaged age was 60 (34 to 75). Harris hip score improved from 45 to 92 before and latest follow-up. All patients did not need t-cane 2 years after surgery. Center of rotation was averaged 6.8 (5.2 to 8.1) cm reducted to anatomical position. Femoral shortening averaged 3.3 (1.7 to 4.5) cm, so total correction was 3.5cm (3.1–4.2). No nerve palsy and had good muscle recovery without T-cane. Patients with normal contra lateral side had averaged 2 cm (1.5∼3) heel up orthosis after surgery, but had no complaint about heel up situation in activity of daily living. Discussion & Conclusion. Amount of correction with leg length discrepancy during THA had controvertial issues especially in cases of completed dislocated hip joint. Several authors demonstrated that muscle-evoked potentials elicited by brain electric stimulation monitoring, but problems was occurred during epidural or spinal anesthesia. Averaged 3.5cm Total correction of leg length was very safe and satisfactory results for all Crowe IV patients


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1615 - 1622
1 Dec 2015
Müller M Abdel MP Wassilew GI Duda G Perka C

The accurate reconstruction of hip anatomy and biomechanics is thought to be important in achieveing good clinical outcomes following total hip arthroplasty (THA). To this end some newer hip designs have introduced further modularity into the design of the femoral component such that neck­shaft angle and anteversion, which can be adjusted intra-operatively. The clinical effect of this increased modularity is unknown. We have investigated the changes in these anatomical parameters following conventional THA with a prosthesis of predetermined neck–shaft angle and assessed the effect of changes in the hip anatomy on clinical outcomes. . In total, 44 patients (mean age 65.3 years (standard deviation (. sd. ) 7); 17 male/27 female; mean body mass index 26.9 (kg/m²) (. sd. 3.1)) underwent a pre- and post-operative three-dimensional CT scanning of the hip. The pre- and post-operative neck–shaft angle, offset, hip centre of rotation, femoral anteversion, and stem alignment were measured. Additionally, a functional assessment and pain score were evaluated before surgery and at one year post-operatively and related to the post-operative anatomical changes. The mean pre-operative neck–shaft angle was significantly increased by 2.8° from 128° (. sd.  6.2; 119° to 147°) to 131° (. sd. 2.1; 127° to 136°) (p = 0.009). The mean pre-operative anteversion was 24.9° (. sd. 8; 7.9 to 39.1) and reduced to 7.4° (. sd. 7.3; -11.6° to 25.9°) post-operatively (p < 0.001). The post-operative changes had no influence on function and pain. Using a standard uncemented femoral component, high pre- and post-operative variability of femoral anteversion and neck–shaft angles was found with a significant decrease of the post-operative anteversion and slight increase of the neck–shaft angles, but without any impact on clinical outcome. Cite this article: Bone Joint J 2015;97-B:1615–22


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 48 - 48
1 Jul 2020
Ng G Daou HE Bankes M y Baena FR Jeffers J
Full Access

Surgical management of cam-type femoroacetabular impingement (FAI) aims to preserve the native hip, restore joint function, and delay the onset of osteoarthritis. However, it is unclear how surgery affects joint mechanics and hip joint stability. The aim was to examine the contributions of each surgical stage (i.e., intact cam hip, capsulotomy, cam resection, capsular repair) towards hip joint centre of rotation and microinstability. Twelve fresh, frozen cadaveric hips (n = 12 males, age = 44 ± 9 years, BMI = 23 ± 3 kg/m2) were skeletonized to the capsule and included in this study. All hips indicated cam morphology on CT data (axial α = 63 ± 6°, radial α = 74 ± 4°) and were mounted onto a six-DOF industrial robot (TX90, Stäubli). The robot positioned each hip in four sagittal angles: 1) Extension, 2) Neutral 0°, 3) Flexion 30°, and 4) Flexion 90°, and performed internal and external hip rotations until a 5-Nm torque was reached in each direction, while recording the hip joint centre's neutral path of translation. After the (i) intact hip was tested, each hip underwent a series of surgical stages and was retested after each stage: (ii) T-capsulotomy (incised lateral iliofemoral capsular ligament), (iii) cam resection (removed morphology), and (iv) capsular repair (sutured portal incisions). Eccentricity of the hip joint centre was quantified by the microinstability index (MI = difference in rotational foci / femoral head radius). Repeated measures ANOVA and post-hoc paired t-tests compared the within-subject differences in hip joint centre and microinstability index, between the testing stages (CI = 95%, SPSS v.24, IBM). At the Extension and Neutral positions, the hip joint centre rotated concentrically after each surgical stage. At Flexion 30°, the hip joint centre shifted inferolaterally during external rotation after capsulotomy (p = 0.009), while at Flexion 90°, the hip joint centre further shifted inferolaterally during external rotation (p = 0.005) and slightly medially during internal rotation after cam resection, compared to the intact stages. Consequently, microinstability increased after the capsulotomy at Flexion 30° (MI = +0.05, p = 0.003) and substantially after cam resection at Flexion 90° (MI = +0.07, p = 0.007). Capsular repair was able to slightly restrain the rotational centre and decrease microinstability at the Flexion 30° and 90° positions (MI = −0.03 and −0.04, respectively). Hip microinstability occurred at higher amplitudes of flexion, with the cam resection providing more intracapsular volume and further lateralizing the hip joint during external rotation. Removing the cam deformity and impingement with the chondrolabral junction also medialized the hip during internal rotation, which can restore more favourable joint loading mechanics and stability. These findings support the pathomechanics of cam FAI and suggest that iatrogenic microinstability may be due to excessive motions, prior to post-operative restoration of static (capsular) and dynamic (muscle) stability. In efforts to limit microinstability, proper nonsurgical management and rehabilitation are essential, while activities that involve larger amplitudes of hip flexion and external rotation should be avoided immediately after surgery