Abstract
Two critical steps in achieving optimal results and minimizing complications (dislocation, lengthening, and intra-operative fracture) are careful pre-operative planning and more recently, the option of intra-operative imaging in order to optimise accurate and reproducible total hip replacement. The important issues to ascertain are relative limb length, offset and center of rotation. It is important to start the case knowing the patient's perception of their limb length. Patient perception is equally important, if not more important, than the radiographic assessment. On the acetabular side, the teardrop should be identified and the amount of reaming necessary to place the inferior margin of the acetabular component adjacent to the tear drop should be noted. Superiorly the amount of exposed metal that is expected to be seen during surgery should be measured in millimeters. Once the key issues of limb length, offset, center of rotation, and acetabular component position relative to the native acetabulum have been confirmed along with the expected sizing of the acetabular and femoral components, it is critical that the operative plan is reproduced at the time of surgery and this can best be consistently performed with the use of intra-operative imaging. Advances in digital imaging now make efficient, cost-effective assessment of hip replacement possible. Embedded software allows accurate confirmation of the pre-operative plan intra-operatively when correction of potential errors is easily possible. Such technology is now mature after years of clinical use and studies have confirmed its success in avoiding outliers and achieving optimal results.
A pilot study at Washington University demonstrated that intra-operative imaging was able to eliminate outliers for acetabular inclination and anteversion. In addition, the ability to achieve accurate reproduction of femoral offset and limb length within 5mm was three times better with intra-operative imaging (P <0.001).