header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Performance of Cervical TDRs for Both Center of Balance and Center of Rotation in a Cadaveric Model

The International Society for Technology in Arthroplasty (ISTA)



Abstract

Purpopse

Few Cervical Total Disc Replacement (TDR) devices are engineered to address both the Center of Balance (COB) and the Center of Rotation (COR) of the cervical motion segments. The COB is the axis in the intervertebral disc through which the axial compressive load is transmitted. TDRs placed posterior of this point tend to fall into kyphosis while devices placed anterior of this point tend to fall into lordosis. Thus from a “balancing” point of view the ideal placement would be at the COB. However, the COR position has been shown to be posterior and inferior to the disc space. It has also been shown that constrained devices tend to lose motion when there is a mismatch between device and anatomic centers. Mobile core devices may be placed at the COB since their unconstrained rotations and translations allow for the device COR to follow the anatomic COR, but they rely heavily on the facet joints and other anatomic features to resist the paradoxiacal motion.

The TriLobe cervical TDR (Figure 2) was engineered for both the COB and COR. The purpose of this study was to compare the 3D kinematic and biomechanical performance of the TriLobe to a ball and trough(BT) cervical TDR in an augmented pure moment cadaveric study to find the ideal AP implant placement.

Materials and methods

Specimen were CT imaged for three-dimensional reconstruction. Visual, CT, and DEXA screening was utilized to verify that specimens are free from any defects. Specimens were prepared by resecting all nonligamentous soft tissue leaving the facet joint capsules and spinal ligaments intact. C2 and T1 were potted to facilitate mounting in the testing apparatus (7-axis Spine Tester, Univ. of Utah, Salt Lake City, UT). OptoTRAK motion tracking flags were attached to each vertebra including C2/C3 and T1 to track the 3D motion of each vertebra.

  1. Specimens C2–T1.

  2. Treatment Level C5–C6.

  3. Insertion of fixture pins under fluoro.

  4. Load Control Testing to 2.5Nm in FE, LB, AR at 0.5Hz.

  5. 15 Pre-cycles in load control in FE / LB / AR (2.5Nm).

  6. Test implants in load control in FE / LB / AR to 2.5Nm for 4 cycles with data recorded for all cycles.

Results

[Results Table - Figure 1]

Discussion

This study showed that the TriLobe had better control of motion compared to the ball and trough both in ROM and varibility for FE, LB, and AR. The TriLobe had better control of limiting kyphosis over the ball and trough by 41% of the flexion motion. The neutral zone slope, an measure for device stability, showed that the TriLobe was 51% more stable than the BT. AP placement of devices showed there was a general trend of decreasing stability from anterior to posterior placement; however, statistical significance was not established.


∗Email: jktaylor@pol.net