Advertisement for orthosearch.org.uk
Results 1 - 100 of 1192
Results per page:
Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims. Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. Methods. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures. Results. Mean follow-up was 39.5 months (36 to 71), with a significant improvement in post-revision function compared to preoperative function. Graft site remodelling was rated radiologically as moderate in 31 hips (63%) and strong in 12 hips (24%). There were no cases of complete graft site dissolution. No acetabular loosening was identified. None of the patients developed clinically significant heterotopic ossification. There were twelve reoperations: six patients developed post-revision infections, three experienced dislocations, two sustained periprosthetic femur fractures, and one subject had femoral component aseptic loosening. Conclusion. Our series reports bone defect restoration with the sole use of a biphasic injectable BGS in the periacetabular region. We did not observe significant graft dissolution. We emphasize that successful graft site remodelling requires meticulous recipient site preparation. Cite this article: Bone Jt Open 2022;3(12):991–997


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 456 - 461
1 Mar 2021
Sasaki G Watanabe Y Yasui Y Nishizawa M Saka N Kawano H Miyamoto W

Aims. To clarify the effectiveness of the induced membrane technique (IMT) using beta-tricalcium phosphate (β-TCP) for reconstruction of segmental bone defects by evaluating clinical and radiological outcomes, and the effect of defect size and operated site on surgical outcomes. Methods. A review of the medical records was conducted of consecutive 35 lower limbs (30 males and five females; median age 46 years (interquartile range (IQR) 40 to 61)) treated with IMT using β-TCP between 2014 and 2018. Lower Extremity Functional Score (LEFS) was examined preoperatively and at final follow-up to clarify patient-centered outcomes. Bone healing was assessed radiologically, and time from the second stage to bone healing was also evaluated. Patients were divided into ≥ 50 mm and < 50 mm defect groups and into femoral reconstruction, tibial reconstruction, and ankle arthrodesis groups. Results. There were ten and 25 defects in the femur and tibia, respectively. Median LEFS improved significantly from 8 (IQR 1.5 to 19.3) preoperatively to 63.5 (IQR 57 to 73.3) at final follow-up (p < 0.001). Bone healing was achieved in all limbs, and median time from the second stage to bone healing was six months (IQR 5 to 10). Median time to bone healing, preoperative LEFS, or postoperative LEFS did not differ significantly between the defect size groups or among the treatment groups. Conclusion. IMT using β-TCP provided satisfactory clinical and radiological outcomes for segmental bone defects in the lower limbs; surgical outcomes were not influenced by bone defect size or operated part. Cite this article: Bone Joint J 2021;103-B(3):456–461


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1723 - 1734
1 Dec 2020
Fung B Hoit G Schemitsch E Godbout C Nauth A

Aims. The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT. Methods. A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures. Results. A total of 48 studies were included, with 1,386 cases treated with the IMT. Patients had a mean age of 40.7 years (4 to 88), and the mean defect size was 5.9 cm (0.5 to 26). In total, 82.3% of cases achieved union after the index second stage procedure. The mean time to union was 6.6 months (1.4 to 58.7) after the second stage. Our multivariate analysis of 450 individual patients showed that the odds of developing a nonunion were significantly increased in those with preoperative infection. Patients with tibial defects, and those with larger defects, were at significantly higher odds of developing a postoperative infection. Our analysis also demonstrated a trend towards the inclusion of antibiotics in the cement spacer having a protective effect against the need for additional procedures. Conclusion. The IMT is an effective management strategy for complex segmental bone defects. Standardized reporting of individual patient data or larger prospective trials is required to determine the optimal implementation of this technique. This is the most comprehensive review of the IMT, and the first to compile individual patient data and use regression models to determine predictors of outcomes. Cite this article: Bone Joint J 2020;102-B(12):1723–1734


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1258 - 1263
1 Sep 2014
Schuh R Panotopoulos J Puchner SE Willegger M M. Hobusch G Windhager R Funovics PT

Resection of a primary sarcoma of the diaphysis of a long bone creates a large defect. The biological options for reconstruction include the use of a vascularised and non-vascularised fibular autograft. The purpose of the present study was to compare these methods of reconstruction. Between 1985 and 2007, 53 patients (26 male and 27 female) underwent biological reconstruction of a diaphyseal defect after resection of a primary sarcoma. Their mean age was 20.7 years (3.6 to 62.4). Of these, 26 (49 %) had a vascularised and 27 (51 %) a non-vascularised fibular autograft. Either method could have been used for any patient in the study. The mean follow-up was 52 months (12 to 259). Oncological, surgical and functional outcome were evaluated. Kaplan–Meier analysis was performed for graft survival with major complication as the end point. At final follow-up, eight patients had died of disease. Primary union was achieved in 40 patients (75%); 22 (42%) with a vascularised fibular autograft and 18 (34%) a non-vascularised (p = 0.167). A total of 32 patients (60%) required revision surgery. Kaplan–Meier analysis revealed a mean survival without complication of 36 months (0.06 to 107.3, . sd. 9) for the vascularised group and 88 months (0.33 to 163.9, . sd. 16) for the non-vascularised group (p = 0.035). . Both groups seem to be reliable biological methods of reconstructing a diaphyseal bone defect. Vascularised autografts require more revisions mainly due to problems with wound healing in distal sites of tumour, such as the foot. Cite this article: Bone Joint J 2014;96-B:1258–63


Bone & Joint Research
Vol. 12, Issue 9 | Pages 546 - 558
12 Sep 2023
Shen J Wei Z Wang S Wang X Lin W Liu L Wang G

Aims. This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes. Methods. A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data. Results. After the screening, 44 studies were included with 1,079 patients and 1,083 segments of infected bone defects treated with the induced membrane technique. The mean defect size was 6.8 cm (0.5 to 30). After the index second stage procedure, 85% (797/942) of segments achieved union, and 92% (999/1,083) of segments achieved final healing. The multivariate analysis with data from 296 patients suggested that older age was associated with higher nonunion risk. Patients with external fixation in the second stage had a significantly higher risk of developing nonunion, increasing the need for additional procedures. The autografts harvested from the femur reamer-irrigator-aspirator increased nonunion, infection recurrence, and additional procedure rates. Conclusion. The induced membrane technique is an effective technique for treating infected bone defects. Internal fixation during the second stage might effectively promote bone healing and reduce additional procedures without increasing infection recurrence. Future studies should standardize individual patient data prospectively to facilitate research on the affected patient outcomes. Cite this article: Bone Joint Res 2023;12(9):546–558


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 613 - 622
1 Jun 2024
Shen J Wei Z Wu H Wang X Wang S Wang G Luo F Xie Z

Aims. The aim of the present study was to assess the outcomes of the induced membrane technique (IMT) for the management of infected segmental bone defects, and to analyze predictive factors associated with unfavourable outcomes. Methods. Between May 2012 and December 2020, 203 patients with infected segmental bone defects treated with the IMT were enrolled. The digital medical records of these patients were retrospectively analyzed. Factors associated with unfavourable outcomes were identified through logistic regression analysis. Results. Among the 203 enrolled patients, infection recurred in 27 patients (13.3%) after bone grafting. The union rate was 75.9% (154 patients) after second-stage surgery without additional procedures, and final union was achieved in 173 patients (85.2%) after second-stage surgery with or without additional procedures. The mean healing time was 9.3 months (3 to 37). Multivariate logistic regression analysis of 203 patients showed that the number (≥ two) of debridements (first stage) was an independent risk factor for infection recurrence and nonunion. Larger defect sizes were associated with higher odds of nonunion. After excluding 27 patients with infection recurrence, multivariate analysis of the remaining 176 patients suggested that intramedullary nail plus plate internal fixation, smoking, and an allograft-to-autograft ratio exceeding 1:3 adversely affected healing time. Conclusion. The IMT is an effective method to achieve infection eradication and union in the management of infected segmental bone defects. Our study identified several risk factors associated with unfavourable outcomes. Some of these factors are modifiable, and the risk of adverse outcomes can be reduced by adopting targeted interventions or strategies. Surgeons can fully inform patients with non-modifiable risk factors preoperatively, and may even use other methods for bone defect reconstruction. Cite this article: Bone Joint J 2024;106-B(6):613–622


Bone & Joint Research
Vol. 12, Issue 8 | Pages 467 - 475
2 Aug 2023
Wu H Sun D Wang S Jia C Shen J Wang X Hou C Xie Z Luo F

Aims. This study was designed to characterize the recurrence incidence and risk factors of antibiotic-loaded cement spacer (ALCS) for definitive bone defect treatment in limb osteomyelitis. Methods. We included adult patients with limb osteomyelitis who received debridement and ALCS insertion into the bone defect as definitive management between 2013 and 2020 in our clinical centre. The follow-up time was at least two years. Data on patients’ demographics, clinical characteristics, and infection recurrence were retrospectively collected and analyzed. Results. In total, 314 patients with a mean age of 52.1 years (SD 12.1) were enrolled. After a mean of 50 months’ (24 to 96) follow-up, 53 (16.9%) patients had infection recurrence including 32 tibiae, ten femora, ten calcanea, and one humerus. Of all patients with recurrence, 30 (9.6%) occurred within one year and 39 (12.4%) within two years. Among them, 41 patients needed reoperation, five received antibiotics treatment only, and seven ultimately required amputations. Following multivariable analysis, we found that patients infected with Gram-negative bacilli were more likely to have a recurrence (odds ratio (OR) 2.38, 95% confidence interval (CI) 1.20 to 6.94; p = 0.046) compared to Staphylococcus aureus; segmental bone defects (OR 5.25, 95% CI 1.80 to 15.26; p = 0.002) and smoking (OR 3.00, 95% CI 1.39 to 6.50; p = 0.005) were also independent risk factors for recurrence after treatment. Conclusion. Permanent ALCS might be an alternative strategy for definitive bone defect management in selected osteomyelitis cases. However, the overall high recurrence found suggests that it should be cautiously treated. Additionally, segmental defects, Gram-negative infections, and smoking were associated with an increased risk of infection recurrence. Cite this article: Bone Joint Res 2023;12(8):467–475


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 82 - 88
1 May 2024
Villa JM Rajschmir K Hosseinzadeh S Manrique-Succar J Grieco P Higuera-Rueda CA Riesgo AM

Aims. Large bone defects resulting from osteolysis, fractures, osteomyelitis, or metastases pose significant challenges in acetabular reconstruction for total hip arthroplasty. This study aimed to evaluate the survival and radiological outcomes of an acetabular reconstruction technique in patients at high risk of reconstruction failure (i.e. periprosthetic joint infection (PJI), poor bone stock, immunosuppressed patients), referred to as Hip Reconstruction In Situ with Screws and Cement (HiRISC). This involves a polyethylene liner embedded in cement-filled bone defects reinforced with screws and/or plates for enhanced fixation. Methods. A retrospective chart review of 59 consecutive acetabular reconstructions was performed by four surgeons in a single institution from 18 October 2018 to 5 January 2023. Cases were classified based on the Paprosky classification, excluding type 1 cases (n = 26) and including types 2 or 3 for analysis (n = 33). Radiological loosening was evaluated by an orthopaedic surgeon who was not the operating surgeon, by comparing the immediate postoperative radiographs with the ones at latest follow-up. Mean follow-up was 557 days (SD 441; 31 to 1,707). Results. Out of the 33 cases analyzed, six (18.2%) constructs required revision, with four revisions due to uncontrolled infection, one for dislocation, and one for aseptic loosening. Among the 27 non-revised constructs, only one showed wider radiolucencies compared to immediate postoperative radiographs, indicating potential loosening. Patients who underwent revision (n = 6) were significantly younger and had a higher BMI compared to those with non-revised constructs (p = 0.016 and p = 0.026, respectively). Sex, race, ethnicity, American Society of Anesthesiologists grade, infection status (patients with postoperative PJI diagnosis (septic) vs patients without such diagnosis (aseptic)), and mean follow-up did not significantly differ between revised and non-revised groups. Conclusion. The HiRISC technique may serve as a feasible short-term (about one to two years) alternative in patients with large acetabular defects, particularly in cases of PJI. Longer follow-up is necessary to establish the long-term survival of this technique. Cite this article: Bone Joint J 2024;106-B(5 Supple B):82–88


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 35 - 35
7 Nov 2023
Tsang J Epstein G Ferreira N
Full Access

The Cierny and Mader classification assists with decision-making in the management of osteomyelitis by strafying the host status and the pathoanatomy of disease. However the anatomical type IV represents a heterogenous group with regards to treatment requirements and outcomes. We propose that modification of the Cierny and Mader anatomical classification with an additional type V classifier (diffuse corticomedullary involvement with an associated critical bone defect) will allow more accurate stratification of patients and tailoring of treatment strategies. A retrospective review of 83 patients undergoing treatment for Cierny and Mader anatomical type IV osteomyelitis of the appendicular skeleton at a single centre was performed. Risk factors for the presence of a critical bone defect were female patients (OR 3.1 (95% CI 1.08– 8.92)) and requirement for soft tissue reconstruction (OR 3.35 (95% CI 1.35–8.31)); osteomyelitis of the femur was negatively associated with the presence of a critical bone defect (OR 0.13 (95% CI 0.03–0.66)). There was no statistical significant risk of adverse outcomes (failure to eradicate infection or achieve bone union) associated with the presence of a critical-sized bone defect. The median time to bone union was ten months (95% CI 7.9–12.1 months). There was a statistically significant difference in the median time to bone union between cases with a critical bone defect (12.0 months (95% 10.2–13.7 months)) and those without (6.0 months (95% CI 4.8–7.1 months)). This study provided evidence to support the introduction of a new subgroup of the Cierny and Mader anatomical classification (Type V). Using a standardised approach to management, comparable early outcomes can be achieved in patients with Cierny and Mader anatomical type V osteomyelitis. However, to achieve a successful outcome, there is a requirement for additional bone and soft tissue reconstruction procedures with an associated increase in treatment time


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 2 - 2
23 Apr 2024
Tsang SJ Epstein G Ferreira N
Full Access

Introduction. The Cierny and Mader classification assists with decision-making by stratifying host status and the pathoanatomy of the disease. However, the anatomical type IV represents a heterogenous group with regards to treatment requirements and outcomes. We propose that modification of the Cierny and Mader anatomical classification with an additional type V classifier (diffuse corticomedullary involvement with an associated critical bone defect) will allow more accurate stratification of patients and tailoring of treatment strategies. Materials & Methods. A retrospective review of 83 patients undergoing treatment for Cierny and Mader anatomical type IV osteomyelitis of the appendicular skeleton at a single centre was performed. Results. Risk factors for the presence of a critical bone defect were female patients (OR 3.1 (95% CI 1.08–8.92)) and requirement for soft tissue reconstruction (OR 3.35 (95% CI 1.35–8.31)); osteomyelitis of the femur was negatively associated with the presence of a critical bone defect (OR 0.13 (95% CI 0.03–0.66)). There was no statistically significant risk of adverse outcomes (failure to eradicate infection or achieve bone union) associated with the presence of a critical-sized bone defect. The median time to bone union was ten months (95% CI 7.9–12.1 months). There was a statistically significant difference in the median time to bone union between cases with a critical bone defect (12.0 months (95% 10.2–13.7 months)) and those without (6.0 months (95% CI 4.8–7.1 months)). Conclusions. This study provided evidence to support the introduction of a new subgroup of the Cierny and Mader anatomical classification (Type V). Using a standardised approach to management, comparable early outcomes can be achieved in patients with Cierny and Mader anatomical type V osteomyelitis. However, to achieve a successful outcome, there is a requirement for additional bone and soft tissue reconstruction procedures with an associated increase in treatment time


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 78 - 78
1 Oct 2022
Cacciola G Bruschetta A Meo FD Cavaliere P
Full Access

Aim. The primary endpoint of this study is to characterize the progression of bone defects at the femoral and tibial side in patients who sustained PJI of the knee that underwent two-stage revision with spacer implantation. In addition, we want to analyze the differences between functional moulded and hand-made spacers. Methods. A retrospective analysis of patients that underwent two-stage revision due to PJI of the knee between January 2014 and December 2021 at our institution. Diagnosis of infection was based on the criteria of the Muscoloskeletal Infection Society. The bone defect evaluation was performed intraoperatively based on the AORI classification. The basal evaluation was performed at the time the resection arthroplasty and spacer implantation surgery. The final evaluation was performed at the second-stage surgery, at the time of spacer removal and revision implant positioning. The differences between groups were characterized by using T-test student for continuous variables, and by using chi-square for categorical variables. A p-value < 0.05 was defined as significant. Results. Complete data of 37 two-stage TKAs revision were included in the study. An articulating moulded functional spacer was used in 14 (35.9%) cases, while a hand-made spacer was used in 23 (58.9%) cases. The average length of interval period (excluding the time for patients that retained the spacer) was 146.6 days. A bone defects progression based on the AORI classification was documented in 24 cases at the femoral side (61.6%), a bone defect progression was documented in 17 cases at the tibial side (43.6%), and a bone defect at both sides was documented in 13 cases (33.3%). A statistically significant greater bone defect progression at the tibial side was observed when hand-made spacers were used. A complication during the interval period was reported in five cases (12.8%) and postoperative complication was reported in 9 cases (23.1%). Conclusions. When comparing patients in which a functional articulating spacer was used, with patients in which static spacer was used, we reported a statistically significant reduced bone defect progression during the interval period at the femoral side only when moulded spacers were used. We observed a higher incidence of bone defect progression also at the tibial and both sides when hand-made spacers were used. This is the first study that documented the bone defect progression during two-stage revision of the knee, the results observed in this study are very encouraging


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 38 - 38
1 Jun 2023
Hrycaiczuk A Biddlestone J Rooney B Mahendra A Fairbairn N Jamal B
Full Access

Introduction. A significant burden of disease exists with respect to critical sized bone defects; outcomes are unpredictable and often poor. There is no absolute agreement on what constitutes a “critically-sized” bone defect however it is widely considered as one that would not heal spontaneously despite surgical stabilisation, thus requiring re-operation. The aetiology of such defects is varied. High-energy trauma with soft tissue loss and periosteal stripping, bone infection and tumour resection all require extensive debridement and the critical-sized defects generated require careful consideration and strategic management. Current management practice of these defects lacks consensus. Existing literature tells us that tibial defects 25mm or great have a poor natural history; however, there is no universally agreed management strategy and there remains a significant evidence gap. Drawing its origins from musculoskeletal oncology, the Capanna technique describes a hybrid mode of reconstruction. Mass allograft is combined with a vascularised fibula autograft, allowing the patient to benefit from the favourable characteristics of two popular reconstruction techniques. Allograft confers initial mechanical stability with autograft contributing osteogenic, inductive and conductive capacity to encourage union. Secondarily its inherent vascularity affords the construct the ability to withstand deleterious effects of stressors such as infection that may threaten union. The strengths of this hybrid construct we believe can be used within the context of critical-sized bone defects within tibial trauma to the same success as seen within tumour reconstruction. Methodology. Utilising the Capanna technique in trauma requires modification to the original procedure. In tumour surgery pre-operative cross-sectional imaging is a pre-requisite. This allows surgeons to assess margins, plan resections and order allograft to match the defect. In trauma this is not possible. We therefore propose a two-stage approach to address critical-sized tibial defects in open fractures. After initial debridement, external fixation and soft tissue management via a combined orthoplastics approach, CT imaging is performed to assess the defect geometry, with a polymethylmethacrylate (PMMA) spacer placed at index procedure to maintain soft tissue tension, alignment and deliver local antibiotics. Once comfortable that no further debridement is required and the risk of infection is appropriate then 3D printing technology can be used to mill custom jigs. Appropriate tibial allograft is ordered based on CT measurements. A pedicled fibula graft is raised through a lateral approach. The peroneal vessels are mobilised to the tibioperoneal trunk and passed medially into the bone void. The cadaveric bone is prepared using the custom jig on the back table and posterolateral troughs made to allow insertion of the fibula, permitting some hypertrophic expansion. A separate medial incision allows attachment of the custom jig to host tibia allowing for reciprocal cuts to match the allograft. The fibula is implanted into the allograft, ensuring nil tension on the pedicle and, after docking the graft, the hybrid construct is secured with multi-planar locking plates to provide rotational stability. The medial window allows plate placement safely away from the vascular pedicle. Results. We present a 50-year-old healthy male with a Gustilo & Anderson 3B proximal tibial fracture, open posteromedially with associated shear fragment, treated using the Capanna technique. Presenting following a fall climbing additional injuries included a closed ipsilateral calcaneal and medial malleolar fracture, both treated operatively. Our patient underwent reconstruction of his tibia with the above staged technique. Two debridements were carried out due to a 48-hour delay in presentation due to remote geographical location of recovery. Debridements were carried out in accordance with BOAST guidelines; a spanning knee external fixator applied and a small area of skin loss on the proximal medial calf reconstructed with a split thickness skin graft. A revision cement spacer was inserted into the metaphyseal defect measuring 84mm. At definitive surgery the external fixator was removed and graft fixation was extended to include the intra-articular fragments. No intra-operative complications were encountered during surgeries. The patient returned to theatre on day 13 with a medial sided haematoma. 20ml of haemoserous fluid was evacuated, a DAIR procedure performed and antibiotic-loaded bioceramics applied locally. Samples grew Staphylococcus aureus and antibiotic treatment was rationalised to Co-Trimoxazole 960mg BD and Rifampicin 450mg BD. The patient has completed a six-week course of Rifampicin and continues on suppressive Co-Trimoxazole monotherapy until planned metalwork removal. There is no evidence of ongoing active infection and radiological evidence of early union. The patient is independently walking four miles to the gym daily and we believe, thus far, despite accepted complications, we have demonstrated a relative early success. Conclusions. A variety of techniques exist for the management of critical-sized bone defects within the tibia. All of these come with a variety of drawbacks and limitations. Whilst acceptance of a limb length discrepancy is one option, intercalary defects of greater than 5 to 7cm typically require reconstruction. In patients in whom fine wire fixators and distraction osteogenesis are deemed inappropriate, or are unwilling to tolerate the frequent re-operations and potential donor site morbidity of the Masqualet technique, the Capanna technique offers a novel solution. Through using tibial allograft to address the size mismatch between vascularised fibula and tibia, the possible complication of fatigue fracture of an isolated fibula autograft is potentially avoidable in patients who have high functional demands. The Capanna technique has demonstrated satisfactory results within tumour reconstruction. Papers report that by combining the structural strength of allograft with the osteoconductive and osteoinductive properties of a vascularised autograft that limb salvage rates of greater than 80% and union rates of greater than 90% are achievable. If these results can indeed be replicated in the management of critical-sized bone defects in tibial trauma we potentially have a treatment strategy that can excel over the more widely practiced current techniques


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 56 - 56
2 Jan 2024
Kaneko Y Minehara H Sonobe T Kameda T Sekiguchi M Matsushita T Konno S
Full Access

The Masquelet technique is a variable method for treating critical-sized bone defects, but there is a need to develop a technique for promoting bone regeneration. In recent studies of bone fracture healing promotion, macrophage-mesenchymal stem cell (MSC) cross-talk has drawn attention. This study aimed to investigate macrophage expression in the induced membrane (IM) of the Masquelet technique using a mouse critical-sized bone defect model. The study involved a 3-mm bone defect created in the femur of mice and fixed with a mouse locking plate. The Masquelet (M) group, in which a spacer was inserted, and the Control (C) group, in which the defect was left intact, were established. Additionally, a spacer was inserted under the fascia of the back (B group) to form a membrane due to the foreign body reaction. Tissues were collected at 1, 2, and 4 weeks after surgery (n=5 in each group), and immunostaining (CD68, CD163: M1, M2 macrophage markers) and RT-qPCR were performed to investigate macrophage localization and expression in the tissues. The study found that CD68-positive cells were present in the IM of the M group at all weeks, and RT-qPCR showed the highest CD68 expression at 1 week. In addition, there was similar localization and expression of CD163. The C group showed lower expression of CD68 and CD163 than the M group at all weeks. The B group exhibited CD68-positive cells in the fibrous capsule and CD163-positive cells in the connective tissue outside the capsule, with lower expression of both markers compared to the M group at all weeks. Macrophage expression in IM in M group had different characteristics compared to C group and B group. These results suggest that the IM differs from the fibrous capsules due to the foreign body reaction, and the macrophage-MSC cross-talk may be involved in Masquelet technique


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 24 - 24
1 Apr 2019
Hettich G Schierjott RA Schilling C Maas A Ramm H Bindernagel M Lamecker H Grupp TM
Full Access

Introduction. Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters. Methods. An SSM was built on the basis of segmented 66 CT dataset of the pelvis showing no orthopedic pathology. By adjusting the SSM's so called modes of shape variation it is possible to synthetize new 3D pelvis shapes. By fitting the SSM to intact normal parts of an anatomical structure, missing or pathological regions can be extrapolated plausibly. The validity of the SSM was tested by a Leave-one-out study, whereby one pelvis at a time was removed from the 66 pelvises and was reconstructed using a SSM of the remaining 65 pelvises. The reconstruction accuracy was assessed by comparing each original pelvis with its reconstruction based on the root-mean-square (RMS) surface error and five clinical parameters (center of rotation, acetabulum diameter, inclination, anteversion, and volume). The influence of six different numbers of shape variation modes (reflecting the degrees of freedom of the SSM) and four different mask sizes (reflecting different clinical scenarios) was analyzed. Results. The Leave-one-out study showed that the reconstruction errors decreased when the number of shape variation modes included in the SSM increased from 0 to 20, but remained almost constant for higher numbers of shape variation modes. For the SSM with 20 shape variation modes, the RMS of the reconstruction error increased with increasing mask size, whereas the other parameters only increased from Mask_0 to Mask_1, but remained almost constant for Mask_1, Mask_2 and Mask_3. Median reconstruction errors for Mask_1, Mask_2, and Mask_3 were approximately 3 mm in Center of Rotation (CoR) position, 2 mm in Diameter, 3° in inclination and anteversion, as well as 5 ml in volume. Discussion. This is the first study analyzing and showing the feasibility of a quantitative analysis of acetabular bone defects using a SSM-based reconstruction method in the clinical scenario of a defect or implant in both acetabuli and incomplete CT-scans. Validation results showed acceptable reconstruction accuracy, also for clinical scenarios in which less healthy bone remains. Further studies could apply this method on a larger number of defect pelvises to obtain quantitative measures of acetabular bone defects


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 117 - 117
1 Nov 2018
Tazawa R Minehara H Matsuura T Kawamura T Uchida K Inoue G Shoji S Sakaguchi N Takaso M
Full Access

Segmental bone transport (SBT) with an external fixator has become a standard method for treatment of large bone defect. However, a long time-application of devices can be very troublesome and complications such as nonunion is sometimes seen at docking site. Although there have been several studies on SBT with large animal models, they were unsuitable for conducting drug application to improve SBT. The purpose of this study was to establish a bone transport model in mice. Six-month-old C57BL/6J mice were divided randomly into bone transport group (group BT) and an immobile control group (group EF). In each group, a 2-mm bone defect was created in the right femur. Group BT was reconstructed by SBT with external fixator (MouseExFix segment transport, RISystem, Switzerland) and group EF was fixed simply with unilateral external fixator (MouseExFix simple). In group BT, a bone segment was transported by 0.2 mm per day. Radiological and histological studies were conducted at 3 and 8 weeks after the surgery. In group BT, radiological data showed regenerative new bone consolidation at 8 weeks after the surgery, whereas high rate of nonunion was observed at the docking site. Histological data showed intramembranous and endochondral ossification. Group EF showed no bone union. In this study, experimental group showed good regenerative new bone formation and was similar ossification pattern to previous large animal models. Thus, the utilization of this bone defect mice model allows to design future studies with standardized mechanical conditions for analyzing mechanisms of bone regeneration induced by SBT


Bone & Joint Research
Vol. 8, Issue 3 | Pages 107 - 117
1 Mar 2019
Lim ZXH Rai B Tan TC Ramruttun AK Hui JH Nurcombe V Teoh SH Cool SM

Objectives. Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done. Methods. We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses. Results. Comparable results were obtained with autologous BMA clot and ABG, except for the quantification of new bone by micro-CT. Significantly more bone was found in the ABG-treated ulnar defects than in those treated with autologous BMA clot. This is possibly due to the remnants of necrotic autograft fragments that persisted within the healing defects at week 12 post-surgery. Conclusion. As similar treatment outcomes were achieved by the two strategies, the preferred treatment would be one that is associated with a lower risk of complications. Hence, these results demonstrate that coagulated BMA can be considered as an alternative autogenous therapy for long bone healing. Cite this article: Z. X. H. Lim, B. Rai, T. C. Tan, A. K. Ramruttun, J. H. Hui, V. Nurcombe, S. H. Teoh, S. M. Cool. Autologous bone marrow clot as an alternative to autograft for bone defect healing. Bone Joint Res 2019;8:107–117. DOI: 10.1302/2046-3758.83.BJR-2018-0096.R1


Bone & Joint Research
Vol. 5, Issue 3 | Pages 101 - 105
1 Mar 2016
Wang X Luo F Huang K Xie Z

Objectives. Induced membrane technique is a relatively new technique in the reconstruction of large bone defects. It involves the implantation of polymethylmethacrylate (PMMA) cement in the bone defects to induce the formation of membranes after radical debridement and reconstruction of bone defects using an autologous cancellous bone graft in a span of four to eight weeks. The purpose of this study was to explore the clinical outcomes of the induced membrane technique for the treatment of post-traumatic osteomyelitis in 32 patients. Methods. A total of 32 cases of post-traumatic osteomyelitis were admitted to our department between August 2011 and October 2012. This retrospective study included 22 men and ten women, with a mean age of 40 years (19 to 70). Within this group there were 20 tibias and 12 femurs with a mean defect of 5 cm (1.5 to 12.5). Antibiotic-loaded PMMA cement was inserted into the defects after radical debridement. After approximately eight weeks, the defects were implanted with bone graft. Results. The patients were followed for 27.5 months (24 to 32). Radiographic bone union occurred at six months for 26 cases (81%) and clinical healing occurred in 29 cases (90%) at ten months. A total of six cases had a second debridement before bone grafting because of recurrence of infection and one patient required a third debridement. No cases of osteomyelitis had recurred at the time of the last follow-up visit. Conclusion. The induced membrane technique for the treatment of post-traumatic osteomyelitis is a simple, reliable method, with good early results. However, there are many challenges in determining the scope of the debridement, type of limb fixation and source of bone graft to be used. Cite this article: Dr Z. Xie. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res 2016;5:101–105. DOI: 10.1302/2046-3758.53.2000487


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 32 - 32
1 Dec 2020
Kaymakoglu M Dede EC Korkusuz P Ozdemir E Erden ME Turhan E
Full Access

Adrenomedullin is a peptide hormone that has attracted attention with its proliferative and anti-apoptotic effects on osteoblasts in recent years. We investigated the effect of adrenomedullin on healing of the segmental bone defect in a rat model. 36 Wistar rats were randomly divided in six groups based on follow-up periods and administered dose of adrenomedullin hormone. In each group, a 2 mm bone defect was created at the diaphysis of radius, bilaterally. NaCl solution was administered to sham groups three times a week for 4 and 8 weeks, intraperitoneally. Adrenomedullin was administered to study groups three times a week; 15 µg-4 weeks, 15 µg-8 weeks, 30 µg-4 weeks and 30 µg-8 weeks, respectively. After euthanasia, the segmental defects were evaluated by histomorphometric (new bone area (NBA)) and micro-tomographic (bone volume (BV), bone surface (BS), bone mineral density (BMD)) analysis. Although 4 and 8 weeks 15 μg administered study groups had higher NBA values than the other study and control groups, histomorphometric analysis did not reveal any statistical difference between the control and study groups in terms of new bone area (p > 0.05). In micro-tomographic analysis, BV was higher in 15 μg – 4 weeks group than 30 μg – 4 weeks group (296.9 vs 208.5, p = 0.003) and BS was lower in 30 μg – 4 weeks than 4 week - control group (695.5 vs 1334.7, p = 0.005) but in overall, no significant difference was found between the control and study groups (p > 0.05). Despite these minor differences in histomorphometric and micro-tomographic criteria indicating new bone formation, BMD values of 15 µg-4 and −8 weeks study groups showed significant increase comparing with the control group (p = 0.04, p = 0.001, respectively). Adrenomedullin seemed to have a positive effect on BMD at a certain dose (15 µg) but it alone is not considered sufficient for healing of the defect with new bone formation. Further studies are needed to assess its effects on bone tissue trauma. This study was funded by Hacettepe University Scientific Research Projects Coordination Unit


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 92 - 92
1 Feb 2020
Chun K Kwon H Kim K Chun C
Full Access

Purpose. The aim of this study was to compare the clinical outcomes of the revision TKA in which trabecular metal cones and femoral head allografts were used for large bone defect. Method. Total 53 patients who have undergone revision TKA from July 2013 to March 2017 were enrolled in this study. Among them, 24 patients used trabecular metal cones, and 29 patients used femoral head allografts for large bone defect. There were 3 males and 21 females in the metal cone group, while there were 4 males and 25 females in the allograft group. The mean age was 70.2 years (range, 51–80) in the femoral head allograft group, while it was 79.1 years (range, 73–85) in the metal cone group. Bone defect is classified according to the AORI classification and clinical outcomes were evaluated with Visual Analogue Scale (VAS), Hospital Special Surgery-score (HSS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS), and ROM. Operation time was also evaluated. We used radiographs to check complications such as migration or loosening. We took follow-up x-rays and 3D CT of the patients, to assess the mean bone union period. Shapiro-Wilk test was done to check normality and Student T-test and Mann Whitney U-test were done for comparison between two groups. Result. The mean follow-up period was 3 .75 years (Range; 2.1 ∼ 5.75). The pre-op scores did not show significant difference. The mean VAS in the allograft and trabecular metal cone groups was 2.1 ± 0.87 and 1.8 ± 0.53, respectively (p = 0.16). The mean HSS score were 76.3 ± 5.51 and 79.2 ± 4.12 respectively (p = 0.13) and the mean WOMAC scores were 15.1 ± 3.25 and 14.8 ± 3.31 respectively (p = 0.06), and the mean KOOS scores were 27.8 ± 4.77 and 25.5 ± 4.84, respectively (p = 0.07). The mean ROM ranges were 100.6 ± 17.54 and 101.3 ± 19.22, respectively (p = 0.09). But the mean operation time of the allograft and trabecular metal cone groups was 137 minutes (Range; 111–198) and 102minutes (Range; 93 −133) (p=0.02) respectively, which showed statistical significance. In follow-up x-rays, no migration or loosening of the implants, osteolysis and other complications were found in both groups. In follow-up 3D CT, osteointegration was seen at the trabecular metal cone site, host bone being interpreted to the host bone. The allograft group showed fibrous and stable union in follow-up 3D CT. Conclusion. According to this study, in case of revision TKA with large bone defect, using whether allograft or trabecular metal cones did not affect the clinical outcomes. However, operation time was significantly shorter in trabecular metal cone group, therefore, in patients with poor general condition along with severe underlying diseases, usage of trabecular metal cone would be a better choice to shorten operation time and ease postoperative care. Keywords. Revision TKA, metal cone, allograft, bone defect. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 7, Issue 3 | Pages 232 - 243
1 Mar 2018
Winkler T Sass FA Duda GN Schmidt-Bleek K

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 50 - 50
1 Aug 2020
Woloszyk A Tuong K Tetsworth K Glatt V
Full Access

Treatment of segmental bone defects remains a major clinical problem, and innovative strategies are often necessary to successfully reconstruct large volumes of bone. When fractures occur, the resulting hematoma serves as a reservoir for growth factors and a space for cell infiltration, both crucial to the initiation of bone healing. Our previous studies have demonstrated very clear ultrastructural differences between fracture hematomas formed in normally healing fractures and those formed in segmental bone defects. However, there is little information available regarding potential differences in the underlying gene expression between hematomas formed in normal fractures, which usually heal by themselves, and segmental bone defects, which do not. Therefore, the aim of this study was to identify differences in gene expression within hematomas collected from 0.5 mm (normal fracture) and 5 mm (segmental bone defect) fracture sites during the earliest stages of bone healing. Osteotomies of 0.5 and 5 mm in the femur of Fisher 344 rats were stabilized with external fixators (RISystem AG). After 3 days the rats were sacrificed, and the fracture hematomas were collected for RNA-sequencing. Ingenuity pathway analysis (IPA) was used to identify upstream regulators and biological functions that were significantly enriched with differentially expressed genes from the RNA-sequencing analysis. Animal procedures were conducted following the IACUC protocol of the UT Health Science Center San Antonio. Key upstream regulators of bone formation were less active (e.g. TGFB1, FGF2, SMAD3) or even inhibited (e.g. WNT3A, RUNX2, BMP2) in non-healing defects when compared to normally healing fractures. Many upstream regulators that were uniquely enriched in healing defects were molecules recently discovered to have osteogenic effects during fracture healing (e.g. GLI1, EZH2). Upstream regulators uniquely enriched in non-healing defects were mainly involved in an abnormal modulation of hematopoiesis, revealing evidence of impaired maturation of functional macrophages and cytokines (e.g. IL3, CEBPE), both essential for successful bone healing. In addition, the enrichment pattern suggested a dysregulation of megakaryopoiesis (e.g. MRTFA, MRTFB, GATA2), which directly affects platelet production, and therefore fracture hematoma formation. Remarkably, the organization of the ECM was the most significantly enriched biological function in the normally healing fractures, and implies that the defect size directly affected the structural properties within the fracture hematoma. Conversely, genes encoding important ECM components (e.g. BGN, various collagens, IBSP, TNC), cell adhesion molecules, MMPs (MMP2), and TIMPs were all significantly downregulated in non-healing defects. Our most recent findings reveal new important key molecules that regulate defect size-dependent fracture healing. Combined with our previous results, which identified structural differences in fracture hematomas from both types of defects, current findings indicate that differential expression of genes is dictated by the structural properties of the hematomas formed during early fracture healing. Consequently, creating a bioscaffold that mimics the structure of normal fracture hematomas could be the first step towards developing new orthoregenerative treatment strategies that potentiate healing of large bone defects and non-healing fractures


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 91 - 91
1 Feb 2020
Chun K Kwon H Kim K Chun C
Full Access

Purpose. The aim of this study was to assess the clinical and radiological result of the usage of chip bone graft in non-contained type bone defect in primary or revision total knee arthroplasty patients. Subjects and Methods. We investigated 32 patients who had underwent primary or revision total knee arthroplasty from March, 2014 to February, 2017 in our hospital, who had non-contained type of defect. The mean age was 73.1 years. 5 of them were males, while 27 of them were females. 7 of them were primary total knee arthroplasty patients, while 25 of them were revision patients. 8 of them had chip bone graft used both in the femur and tibia. 9 of them had chip bone graft used only in the tibia. The other 15 had chip bone graft used only in the femur. Wire-mesh was used in the 9 patients who had chip bone graft used only in the medial side of the tibia. We used KOOS (Knee injury and osteoarthritis outcome score), HSS (Hospital for Special Surgery knee service rating system) and WOMAC scores to assess the clinical result, before the surgery and at the last follow-up. In addition, we had follow-up x-rays and 3D CT done for the patients to check the mean bone union period. In addition, overall radiologic imaging studies were used for complications such as loosening, osteolysis and lesions with radiolucency. Result. The Mean follow-up period was 2.7 years (range; 2.1 to 5). The Mean preoperative KOOS was 102.8 (range; 47 to 132), while it became 31.8 postoperatively (range; 20 to 45). The mean HSS was 13.1 (range; 6 to 35), while it became 35.9 postoperatively (range; 24 to 64). The mean WOMAC was 82.9 (range; 62 to 92), while it became 22.5 postoperatively (range; 13 to 30). According to follow-up x-ray and CT, the mean bone union period was 10.6 months (range: 10 to 13). In follow-up 3D CT of all cases, we could check cortical healing and new bone formation, seen as medium to high-attenuating conglomerate. The graft-host junction showed trabecular ingrowth, while the medullary canal showed fibrous ingrowth. Radiologically, there was no complication such as loosening, osteolysis, migration and radiolucent lines around the stems or cement mantles. In addition, there was no complication such as infection. Conclusion. Chip bone graft is not a commonly used method for bone defect in total knee arthroplasty. According to the result of the usage of chip bone graft in primary or revision total knee arthroplasty with non-contained type of bone defect, it showed favorable result for the subject patients. Therefore, we can consider it as one of the effective methods to manage non-contained bone defect in knee arthroplasty. Keywords. Revision TKA, chip bone graft, wire-mesh, non-contained bone defect. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 56 - 56
1 Apr 2018
Hettwer W
Full Access

Successful reconstruction of bone defects requires an adequate filling material that supports regeneration and formation of new bone within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot fulfill all requirements of the highly complex biological processes involved in physiological bone healing. Due their unphysiologically asynchronous biodegradation properties, their specific foreign material-mediated side effects and complications and their relatively modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts of human origin. However, defect- and pathology specific combination of synthetic bone graft substitutes exhibiting appropriate carrier properties with therapeutic agents and/or conventional bone graft materials allows creation of biologically enhanced composite constructs that can surpass the biological and therapeutic limits even of autologous bone grafts. This presentation introduces a bone defect reconstruction concept based on biological enhancement of optimal therapeutic agent-carrier composites and provides a rationale for an individual, requirement-specific adaptation of a truly patient-specific reconstruction of bone defects. It represents the pinnacle of the bone defect reconstruction pyramid, founded on the basic principles and prerequisites of complete elimination of the underlying pathology, preservation, augmentation or restoration of mechanical stability of the treated bone segment and creation of a biodegradable scaffold with adequate mechanical integrity. It summarises the current body of relevant experimental and clinical research, presents clinical case examples illustrating the various aspects of the proposed concept as well as early clinical results. The author hopes that the theoretical and conceptual framework provided, will help guide future research as well as clinical decision making with respect to this particular field


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 4 - 4
1 Dec 2020
Tashmetov E Tuleubaev B Saginova D Koshanova A Rustambek I
Full Access

Introduction. Cancellous and cortical bone used as a delivery vehicle for antibiotics. Recent studies with cancellous bone as an antibiotic carrier in vitro and in vivo showed high initial peak concentrations of antibiotics in the surrounding medium. However, high concentrations of antibiotics can substantially reduce osteoblast replication and even cause cell death. Objectives. To determine whether impregnation with gentamycine impair the incorporation of bone allografts, as compared to allografts without antibiotic. Materials and method. Seventy two healthy rabbits (24 rabbits in each group) were used for this study. Bone defects (3-mm diameter, 10-mm depth) were created in the femur. Human femoral head prepared according to the Marburg bone bank system was used as bone allograft. In the experimental groups, in 1 group - the defects were filled with bone allografts, in 2 group – Perforated Gentamycin-impregnated bone allografts. The control group did not receive any filling. The animals were killed after 14, 30 and 60 days. Evaluations consisted of X-ray plain radiography, histology at 14-, 30- and 60-days post-surgery. Results. Active osteoblast activity and active formation of new bones were detected around the defect area in all groups, but the amount of new bone formation was greater in the experimental groups than the control group. We found no statistically significant differences in the rate of bone formation between 1 and 2 groups at 14, 30 and 60 days in any of the parameters studied. X-ray results showed no significant difference in bony callus formation around allografts in 1 and 2 groups. In contrast, no significant callus formation was observed in the control group. Conclusion. The use of gentamycin-impregnated bone allografts may be of value in procedures performed at the site of osteomyelitis which require a second stage reconstruction with impacted bone grafting techniques


Bone & Joint 360
Vol. 13, Issue 2 | Pages 8 - 12
1 Apr 2024
Craxford S


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 63 - 63
1 Jan 2016
Ishii M Takagi M Kawaji H Tamaki Y Sasaki K
Full Access

Acetabular reconstruction of extensive bone defect is troublesome in revision total hip arthroplasty (rTHA). Kerboull or Kerboull type reinforcement acetabular device with allobone grafting has been applied since 1996. Clinical results of the procedure were evaluated. Patients. One hundred and ninety-two consecutive revision total hip arthroplasties were performed with allograft bone supported by the Kerboull or Kerboull type reinforcement acetabular device from 1996 to 2009. There were 23 men and 169 women. Kerboull plates were applied to 18 patients, and Kerboull type plates to 174. The mean follow up of the whole series was 8 years (4–18years). Surgical Technique. The superior bone defect was reconstructed principally by a large bulky allo block with plate system. Medial bone defect was reconstructed by adequate bone chips and/or sliced bone plates. After temporally fixation of bulky bone block with two 2.0mm K-wires, it was remodeled by reaming to fit the gap between host bone and plate, followed by fixation to the iliac bone by screws. Finally, residual space of the defect between host bone and the fixed plated was filled up with morselized cancellous bones, bone chips, and/or wedged bony fragments with impaction. This method was sufficiently applicable to AAOS Typeâ�, II, and III bone defects. In case of AAOS Typeâ�£, the procedure was also available after repairing discontinuation between distal and proximal bones by reconstrusion plate or allografting with tibial bone plates or sliced femoral head. Results. Nine patients (4.7%) required revision surgery (infection 5, breakage 3, and malalignment 1). The plate breakage was observed in 8 joints (4.2%). Three patients had no symptoms after the breakage. Three required revision, but the other cases were carefully observed without additional surgical intervention. Ten-year survival rate by Kaplan-Meier method was 96.6% when the endpoint was set revision by asceptic loosning. Conclusions. This study indicated that acetabular allograft reconstructions reinforced by Kerboull or Kerboull type acetabular device were able to recover bone stock with anatomic reconstruction of femoral head center, thus providing satisfactory clinical results in middle term period


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 11 - 11
1 Dec 2015
Grytsai M Linenko O Kolov G Tsokalo V Hordii A Sabadosh V Pecherskiy A
Full Access

This article is based on the analysis of surgical treatment peculiarities of 641 patients with post-osteomyelitis long bones defects. The average age of patients at the time of hospital admission was 32,4 ± 0,7 and ranged from 4 to 70 years. Most of them were people of active working age (476 (74.3%)) and male (523 (81.1%)). In this observation group 566 (88.3%) patients had the osteomyelitis process of the traumatic origin, including post-surgical (n = 155) and post-gunshot injuries (n = 13). Chronic hematogenous osteomyelitis was diagnosed in 75 (11.7%) patients. Most patients had lower extremity bones problems, including 444 tibia defects and 142 femoral bone defects. Much fewer patients had the osteomyelitis process of the upper extremity (humerus, radius, ulnar bone – 18, 19 and 18 respectively). Purulent necrotic process was accompanied by nonunion bone fragments in 160 (24%) patients, delayed union in 95 (14.6%) patients, false joint in 178 (27.6%) patients, segmental bone defect in 75 (11 5%) patients and bones union with edge defects and cavities in 143 (22.3%) patients. 340 (53%) patients were operated using the method of free bone grafting, and 301 (47%) patients were operated using the distraction method. The need to use the bilocal for external fixation on upper extremities occurs quite seldom (twice in our observations). Even when there is an upper extremity bone defect of several centimeters the preference should be given not to bilocal external fixation. When treating the lower extremities taking the above mentioned into consideration, segmental defects predominated, that is why the bilocal distraction-compression method of surgical treatment prevailed (98.6%). Thus, the main method of upper extremities long bones defects replacement is free bone grafting with segment fixation by the external fixation device, for lower extremities the is not-free main Ilizarov method, which allows to get positive results in 84.6% of patients with femoral bone problems and in 96.4% of tibia problems, mainly due to one-step treatment, directed simultaneously to inflammatory process elimination and maximum possible anatomical and functional restoration of the affected extremity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 78 - 78
1 Jan 2016
Cho W
Full Access

Introduction. The bone defect reconstruction is the first step of successful primary or revision TKA in case of large bone defect. If the defect is not reconstructed adequately, we can neither preserve knee joint function nor guarantee long survival of the implant. Allogeneic bone graft is known to be the treatment of choice in large defect. However the surgical technique is demanding and incorporation failure is constant issue of the allogeneic bone graft. We propose new bone defect reconstruction technique using multiple screws and cement. Material and method. From April 2012 to April 2014, 12 patients with large defect which could not be reconstructed with metal augment were involved in this study. The bone defect type was 10 cases of 2A and 2 cases of 2B according to AORI (Anderson Orthopedic Research Institute) classification. The defect was reconstructed with multiple screws and cementing technique by single surgeon (WS Cho). Average follow-up period was 15 months. (24 ∼ 1 month). Result. We analyzed 6 patients whose follow-up periods were more than 12 months. Average ROM was 107' and clinical scores were 86 by HSS, 93 by KS and 11 by WOMAC respectively. No complications such as infection and loosening were developed. Mean surgical time was 1 hour and 57 minutes. Conclusion. In short term follow-up, cementing technique using multiple screws can be a solution for large bone defect reconstruction


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 11 | Pages 1457 - 1464
1 Nov 2011
Garcia-Cimbrelo E Garcia-Rey E Cruz-Pardos A

We report the results of 79 patients (81 hips) who underwent impaction grafting at revision hip replacement using the Exeter femoral stem. Their mean age was 64 years (31 to 83). According to the Endoklinik classification, 20 hips had a type 2 bone defect, 40 had type 3, and 21 had type 4. The mean follow-up for unrevised stems was 10.4 years (5 to 17). . There were 12 re-operations due to intra- and post-operative fractures, infection (one hip) and aseptic loosening (one hip). All re-operations affected type 3 (6 hips) and 4 (6 hips) bone defects. The survival rate for re-operation for any cause was 100% for type 2, 81.2% (95% confidence interval (CI) 67.1 to 95.3) for type 3, and 70.8% (95% CI 51.1 to 90.5) for type 4 defects at 14 years. The survival rate with further revision for aseptic loosening as the end point was 98.6% (95% CI 95.8 to 100). The final clinical score was higher for patients with type 2 bone defects than type 4 regarding pain, function and range of movement. Limp was most frequent in the type 4 group (p < 0.001). The mean subsidence of the stem was 2.3 mm (. sd. 3.7) for hips with a type 2 defect, 4.3 mm (. sd. 7.2) for type 3 and 9.6 mm (. sd.  10.8) for type 4 (p = 0.022). The impacted bone grafting technique has good clinical results in femoral revision. However, major bone defects affect clinical outcome and also result in more operative complications


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017;6:208–215. DOI: 10.1302/2046-3758.64.BJR-2016-0236.R1


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 71 - 71
1 Apr 2018
Tai IC Wang YH Ho ML
Full Access

In therapeutic bone repairs, autologous bone grafts, conventional or vascularized allografts, and biocompatible artificial bone substitutes all have their shortcomings. Tissue engineering may be an alternative for cranial bone repair. Titanium (Ti) and its alloys are widely used in many clinical devices because of perfect biocompatibility, highly corrosion resistance and ideal physical properties. An important progress in treating bone defects has been the introduction of bone morphogenetic proteins (BMPs), specifically BMP-2. The proteins induce osteogenic cell differentiation in vitro, as well as bone defect healing in vivo. In this study, we fabricated the titanium plate with dioxide creating by microarc oxidation (MAO) and then electronic deposition of Ca.P that can carrier recombinant human bone morphogenetic protein-2 (rhBMP-2) to enhance osteogenesis in vitro and bone formation in vivo. The rhBMP-2 was controlled released from MAO-Ca.P-rhBMP2 implant was maintain within 35days longer than Ti without MAO modification group and without CaP electronic deposition group. In addition, the in vitro results revealed that the bioactivity of rhBMP-2 released from MAO-Ca.P-rhBMP2 implant with an ideal therapeutic dose was well maintained. In vivo, the critical-sized defect (20-mm diameter) of New Zealand White rabbits was used to experiment. We concluded that sustained controlled-release of rhBMP-2 above a therapeutic dose could induce osseointegration between the implant and surrounding bone the rate of bone formation into the implant and produce neovascularization. Our study combined the concept of osteoconductive and osteoinductive to do the bone tissue regeneration


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 400 - 400
1 Apr 2004
Sato T Nakagawa A Umeda AH Terashima H
Full Access

Introduction: Filling bone defects with Polymethylmetaacrylate (PMMA) has been a easy, safe and reliable technique for past four decade. Newly developed Calcium Phosphate Paste (CPP) is a mixture of alpfa Tri Calcium Phsphate (TCP), Tetra Calcium Phosphate, Calcium Hydrogen Phosphate and Hydroxyapatite. This paste hardens in 10 minutes and its stffness increases to 80Mpa in seven days. It generates no heat, no gas and requires no organic solvents. In process of hardening, the TCP structure changes to Hydroxyapatite. Materials and methods: We have used CPP in two TKA cases associate with bone defect, and 14 fracture cases. In a MRSA infected revision TKA case, reconstruction was performed with PMMA-VCM articulated spacers, and they was fixed to bone with CPP-VCM. MRSA infection has been well controlled and weight bearing could be done in 10 days after surgery. In another TKA case, large bone necrosis in femoral condyle was filled with CPP and Cementless inplant were placed on it. Seven days later, this patient could walk with a cane. Results: CPP filled in bones were not absorbed for a year, and exess CPP in soft tissue were absorbed in several weeks. In 16 cases no side effects were observed during as long as one year. Conclusion: Handling CPP is much easier than Hydroxyapatite brick or granule. CPP can be useful for total joint arthroplasty, especially in large bone defect or infected cases. It can replace a part of PMMA as a bone cement for implants in the near future


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1673 - 1680
1 Dec 2013
Papakostidis C Bhandari M Giannoudis PV

We carried out a systematic review of the literature to evaluate the evidence regarding the clinical results of the Ilizarov method in the treatment of long bone defects of the lower limbs. Only 37 reports (three non-randomised comparative studies, one prospective study and 33 case-series) met our inclusion criteria. Although several studies were unsatisfactory in terms of statistical heterogeneity, our analysis appears to show that the Ilizarov method of distraction osteogenesis significantly reduced the risk of deep infection in infected osseous lesions (risk ratio 0.14 (95% confidence interval (CI) 0.10 to 0.20), p < 0.001). However, there was a rate of re-fracture of 5% (95% CI 3 to 7), with a rate of neurovascular complications of 2.2% (95% CI 0.3 to 4) and an amputation rate of 2.9% (95% CI 1.4 to 4.4).The data was generally not statistically heterogeneous. Where tibial defects were > 8 cm, the risk of re-fracture increased (odds ratio 3.7 (95% CI 1.1 to 12.5), p = 0.036). . The technique is demanding for patients, illustrated by the voluntary amputation rate of 1.6% (95% CI 0 to 3.1), which underlines the need for careful patient selection. Cite this article: Bone Joint J 2013;95-B:1673–80


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 565 - 570
1 Apr 2010
Blum ALL Bongiovanni JC Morgan SJ Flierl MA dos Reis FB

We undertook a retrospective study of 50 consecutive patients (41 male, 9 female) with an infected nonunion and bone defect of the femoral shaft who had been treated by radical debridement and distraction osteogenesis. Their mean age was 29.9 years (9 to 58) and they had a mean of 3.8 (2 to 19) previous operations. They were followed for a mean of 5.9 years (2.0 to 19.0). The mean duration of the distraction osteogenesis was 24.5 months (2 to 39). Pin-track infection was observed in all patients. The range of knee movement was reduced and there was a mean residual leg-length discrepancy of 1.9 cm (0 to 8) after treatment. One patient required hip disarticulation to manage intractable sepsis. In all, 13 patients had persistant pain. Bony union was achieved in 49 patients at a mean of 20.7 months (12 to 35). Although distraction osteogenesis is commonly used for the treatment of infected femoral nonunion with bone defects, it is associated with a high rate of complications


In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the biomechanical test and finite element analysis (FEA) of a comparable clinically established reference implant. The method comprises different steps, such as identification of the main potential failure mechanism, reproduction of the biomechanical test of the reference implant via FEA, identification of the maximum value of the corresponding FEA quantity of interest at the required load level, definition of this value as the acceptance criterion for the FEA of the custom-made implant, reproduction of the biomechanical test with the custom-made implant via FEA, decision making for realization or re-design based on the acceptance criterion is fulfilled or not. Exemplary cases of custom-made knee & hip implants were evaluated with this new methodology. The FEA acceptance criterion derived from the reference implants was fulfilled in both custom-made implants and subsequent biomechanical tests verified the FEA results. The suggested method allows a quantitative evaluation of the biomechanical properties of custom-made knee & hip implant without performing physical bench testing. This represents an important contribution to achieve a sustainable patient treatment in complex revision total knee & hip arthroplasty with custom-made 3D printed implants in a safe and timely manner


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 113 - 113
1 Mar 2010
Maruyama M Kitagawa K Ono S Tensho K
Full Access

A seventy-one-years old, female, has been treated by hemodialysis from 1977 due to renal failure. In April 19, 1985, she had Charnley Low Friction Arthroplasty for right hip joint. She often felt mild pain on the joint from 2000. Radiograph showed central migration of the socket and huge cystic bone defect of the acetabulum surrounded by thin cortical bone like an egg-shell form. Tear drop (acetabular floor) was diminished due to massive bone destruction or severe osteolysis. CT showed that the diameter of the cavity was approximately 10 cm. In March 1, 2002, the socket was upside down and moving freely in the cavity. The patient could not weight-bear on right lower extremity but walk without two crutches. Hemiarthroplasty for her left hip joint (contra-lateral side) was done in June 26, 2006, due to femoral neck fracture. Because of continuous right hip joint pain and walking disturbance, she underwent revision surgery in May 20, 2008. At the surgery, the cavity was empty except for the socket and fibrous tissue. Impaction grafting by using morselized allograft including porous and solid hydroxyapatite granules (100 g and 40 g each) was done after the socket and the tissue were extracted. A custom made all polyethylene socket (73 × 68 mm in diameter) was fixed by polymethylmetacrylate bone cement. Postoperative course was uneventful. She can walk with one crutch and ride on/off a vehicles without help four months postoperatively. It is often difficult to reconstruct acetabulum with large bone defect in revision total hip arthroplasty. Especially, almost of support rings with hook cannot be applied in the case that the tear drop is destructive or absorbed. Impaction bone grafting is commonly used for reconstruction of bone defect in revision surgery. However, the extremely thick graft for large bone defect is at risk of collapsing lead to implant migration. The socket used in the case was custom made jumbo type to reduce the thickness of impaction grafting. It seems to be one of resolution to use the custom made jumbo socket for the case with large defect of acetabulum in revision total hip Arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 84 - 84
1 May 2016
Trinh T Kang K Lim D Yoo O Lee M Jang Y
Full Access

Introduction. Revision total knee arthroplasty (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone defects are frequently detected in revision TKA used with metal block augmentation. This study focused on identification of a potential possibility of the bone defect occurrence through the evaluation of the strain distribution on the cortical bone of the tibia implanted revision TKA with metal block augmentation, during high deep flexion. Materials and Methods. Composite tibia finite element (FE) model was developed and revision TKA FE model with a metal block augmentation (Baseplate size #5 44AP/67ML, Spacer size #5 44AP/67ML, Stem size Φ9, L30, Augment #5 44AP/67ML thickness 5mm) was integrated with the composite tibia FE model. 0°, 30° 60°, 90°, 120° and 140° flexion positions were then considered with femoral rollback phenomenon [Fig 1.A]. A compressive load of 1,600N through the femoral component was applied to the composite tibia FE model integrated with the tibia component, sharing by the medial and lateral condyles, simulating a stance phase before toe-off [Fig 1.B]. Results and Discussions. The strain distribution on the cortical bone of the tibia was shown in [Fig 2]. The results showed that the strains on the posterior region were gradually increased from extension to high deep of the knee joint and generally larger than the other regions. This fact was favorably corresponded to the femoral rollback phenomenon in the knee joint, showing a good accuracy of our FE model. In contrast to the results on the posterior region, the strains on the medial region were gradually decreased after 60° or 90° flexion position and relatively lower than the other regions. Particularly, the strains on the medial region were generally lower than 50–100 µstrain, which is known as critical value range able to inducing bone loss, during high deep flexion. This fact indicate that a potential possibility of bone defect occurrence in revision TKA used with a metal block augmentation may be relatively increased in patients who are frequently exposed to a personal lifestyle history with the loading conditions of the high flexion. This study may be valuable by identifying for the first time a potential possibility of the bone defect occurrence through evaluation of the strain distribution beneath metal block augmentation in revision TKA used with a metal block augmentation during high deep flexion. Conclusions. A potential possibility of bone defect occurrence in revision TKA used with a metal block augmentation may be dependent on loading patterns applied on the knee joint related to personal lifestyle history. Particularly, it may be relatively increased in patients who are frequently exposed to a personal lifestyle history with the loading conditions of the high flexion. Acknowledgements. This study was supported by a grant from the New Technology Product Evaluation Technical Research project, Ministry of Food and Drug Safety (MFDS), Republic of Korea


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 18 - 18
1 Nov 2021
Troiano E Facchini A Meglio MD Peri G Aiuto P Mondanelli N Giannotti S
Full Access

Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the glenoid defect according to the CT-based preoperative planning. The Bio-component was implanted with stable screws fixation on residual scapula. We decided not to replace the humeral component since it was stable and showed no signs of mobilization. Results. The new bio-implant was stable, and the patient gained a complete functional recovery of the shoulder. The scheduled radiological assessments up to 12 months showed no signs of bone resorption or mobilization of the glenoid component. Conclusions. The use of bone allograft in revision surgery after a RSA is a versatile and effective technique to treat severe glenoid bone loss and to improve the global stability of the implant. Furthermore, it represents a viable alternative to autologous graft since it requires shorter operative times and reduces graft site complications. There are very few data available regarding the use of allografts and, although the first studies are encouraging, further investigation is needed to determine the biological capabilities of the transplant and its validity in complex revisions after RSA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 2 - 2
1 Sep 2012
Li R Qamirani E Atesok K Nauth A Wang S Li C Schemitsch EH
Full Access

Purpose. Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in bone repair by promoting angiogenesis and osteogenesis. In our previous study, endothelial progenitor cells (EPCs) promoted bone healing in a rat segmental bone defect as confirmed by radiological, histological and microCT evaluations (Atesok, Li, Schemitsch 2010); EPC treatment of fractures resulted in a significantly higher strength by biomechanical examination (Li, Schemitsch 2010). In addition, cell-based VEGF gene transfer has been effective in the treatment of segmental bone defects in a rabbit model (Li, Schemitsch et al 2009); Purpose of this study: Evaluation of VEGF gene expression after EPC local therapy for a rat segmental bone defect. Method. Rat bone marrow-derived EPCs were isolated from the rat bone marrow by the Ficoll-paque gradient centrifuge technique. The EPCs were cultured for 7 to 10 days in endothelial cell growth medium with supplements (EGM-2-MV-SingleQuots, Clonetics). and collected for treatment of the rat segmental bone defect. EPCs were identified by immunocytochemistry staining with primary antibodies for CD34, CD133, FLK-1, and vWF. A total of fifty six rats were studied. A five millimeter segmental bone defect was created in the middle 1/3 of each femur followed by mini plate fixation. The treatment group received 1×106 EPCs locally at the bone defect and control animals received saline only. Seven control and seven EPC treated rats were included in each group at 1, 2, 3 and 10 weeks. Animals were sacrificed at the end of the treatment period, and specimens from the fracture gap area were collected and immediately frozen. Rat VEGF mRNA was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by VisionWorksLS. All measurements were performed in triplicate. Results. Cultured EPCs at 1 week showed positive staining for CD34, CD133, Flk-1 and vWf markers. The EPC group had a greater VEGF expression than the control group at week 1, 2 and 3 but not at week 10. Three VEGF isoforms were detected in this rat model: VEGF120, VEGF164 and VEGF188. VEGF120 and VEGF164 levels peaked at two weeks, while VEGF188 levels peaked at three weeks. All three VEGF isoform levels were low at ten weeks. Conclusion. EPC-based therapy for a segmental bone defect results in increased VEGF expression during the early period of fracture repair. In addition, the specific VEGF isoform may be a key regulator of the bone healing process. These findings demonstrate that EPCs promote fracture healing by increasing VEGF levels and thus stimulating angiogenesis, a process that is essential for early callus formation and bone regeneration


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 7 - 7
1 Jan 2019
Owston H Moisley K Tronci G Giannoudis P Russell S Jones E
Full Access

The current ‘gold’ standard surgical intervention for critical size bone defect repair involves autologous bone grafting, that risks inadequate graft containment and soft tissue invasion. Here, a new regenerative strategy was explored, that uses a barrier membrane to contain bone graft. The membrane is designed to prevent soft tissue ingrowth, whilst supporting periosteal regrowth, an important component to bone regeneration. This study shows the development of a collagen-based barrier membrane supportive of periosteal-derived mesenchymal stem cell (P-MSC) growth. P-MSC-homing barrier membranes were successfully obtained with nonaligned fibres, via free-surface electrospinning using type I collagen and poly(E-caprolactone) in 1,1,1,3,3,3-Hexafluoro-2-propanol. Introduction of collagen in the electrospinning mixture was correlated with decreased mean fibre diameter (d: 319 nm) and pore size (p: 0.2–0.6 μm), with respect to collagen-free membrane controls (d: 372 nm; p: 1–2 μm). Consequently, as the average MSC diameter is 20 μm, this provides convincing evidence of the creation of a MSC containment membrane. SEM-EDX confirmed Nitrogen and therefore collagen fibre localisation. Quantification of collagen content, using Picro Sirius Red dye, showed a 50% reduction after 24 hours (PBS, 37 °C), followed by a drop to 25% at week 3. The collagen-based membrane has a significantly higher elastic modulus compared to collagen-free control membranes. P-MSCs attached and proliferated when grown onto collagen-based membranes, imaged using confocal microscopy over 3 weeks. A modified transwell cell migration assay was developed, using MINUSHEET® tissue carriers to assess barrier functionality. In line with the matrix architecture, the collagen-based membrane proved to prevent cell migration (via confocal microscopy) in comparison to the migration facilitating positive control. The aforementioned results obtained at molecular, cellular and macroscopic scales, highlight the applicability of this barrier membrane in a new ‘hybrid graft’ regenerative approach for the surgical treatment of critical size bone defects


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 147 - 147
1 Jul 2020
Godbout C Nauth A Schemitsch EH Fung B Lad H Watts E Desjardins S Cheung KLT
Full Access

The Masquelet or induced membrane technique (IMT) is a two-stage surgical procedure used for the treatment of segmental bone defects. In this technique, the defect is first filled with a polymethyl methacrylate (PMMA) spacer, which triggers the formation of a membrane that will encapsulate the defect. During the second surgery, the spacer is carefully removed and replaced by autologous bone graft while preserving the membrane. This membrane is vascularized, contains growth factors, and provides mechanical stability to the graft, all of which are assumed to prevent graft resorption and promote bone healing. The technique is gaining in popularity and several variations have been introduced in the clinical practice. For instance, orthopaedic surgeons now often include antibiotics in the spacer to treat or prevent infection. However, the consequences of this approach on the properties of the induce membrane are not fully understood. Accordingly, in a small animal model, this study aimed to determine the impact on the induced membrane of impregnating spacers with antibiotics frequently used in the IMT. We surgically created a five-mm segmental defect in the right femur of 25 adult male Sprague Dawley rats. The bone was stabilized with a plate and screws before filling the defect with a PMMA spacer. Animals were divided into five equal groups according to the type and dose of antibiotics impregnated in the spacer: A) no antibiotic (control), B) low-dose tobramycin (1.2 g/40 g of PMMA), C) low-dose vancomycin (1 g/40 g of PMMA), D) high-dose tobramycin (3.6 g/40 g of PMMA), E) high-dose vancomycin (3 g/40 g of PMMA). The animals were euthanized three weeks after surgery and the induced membranes were collected and divided for analysis. We assessed the expression of selected genes (Alpl, Ctgf, Runx2, Tgfb1, Vegfa) within the membrane by quantitative real-time PCR. Moreover, frozen sections of the specimens were used to quantify vascularity by immunohistochemistry (CD31 antigen), proliferative cells by immunofluorescence (Ki-67 antigen), and membrane thickness. Microscopic images of the entire tissue sections were taken and analyzed using FIJI software. Finally, we measured the concentration of vascular endothelial growth factor (VEGF) in the membranes by ELISA. No significant difference was found among the groups regarding the expression of genes related to osteogenesis (Alpl, Runx2), angiogenesis (Vegfa), or synthesis of extracellular matrix (Ctgf, Tgfb1) (n = four or five). Similarly, the density of proliferative cells and blood vessels within the membrane, as well as the membrane thickness, did not vary substantially between the control, low-dose, or high-dose antibiotic groups (n = four or five). The concentration of VEGF was also not significantly influenced by the treatment received (n = four or five). The addition of tobramycin or vancomycin to the spacer, at the defined low and high doses, does not significantly alter the bioactive characteristics of the membrane. These results suggest that orthopaedic surgeons could use antibiotic-impregnated spacers for the IMT without compromising the induced membrane and potentially bone healing


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_8 | Pages 42 - 42
1 May 2018
Mazoochy H Vris A Brien J Heidari N
Full Access

Introduction. Segmental bone defect is a challenging problem. We report our experience of bone transport by hexapod external fixator in patients with segmental defects if the tibia. Method. We report herein 15 patients with segmental bone defect of tibia who completed their treatment protocol. All patients were treated had bone transport with Taylor Spatial Frame from 2012 to 2017. All were treated by the senior author NH. Parameters measured included age, sex, diabetes, smoking, diagnosis, method of fixation prior to treatment use of a free flap, bone defect size, frame-time, external fixation index. Results. Mean age at the time of frame application was 42.7 years. Mean follow-up after frame removal was 23.7 months. Three were diabetic, one smoked and one quit smoking during treatment. Seven had Gustilo-Anderson 3B (47%) and 5 Gustilo-Anderson 3A (33%) open fractures. Three (20%) had closed fractures. Nine (60%) had internal fixation with plate in eight and IM nail in one. Ten patients (67%) had soft tissue defect that required a free flap in seven, local flap in two and skin graft in one. Mean transport was 62 mm. Mean external fixator time and latency were 350.1 and 12 days, respectively. Mean External fixator, distraction and maturation indices were 2.1, 0.52 and 1.43 month per centimeter, respectively. Ten Extra- procedures were required in 7 patients. There were no docking site procedures, non-union of regenerate, adjunctive stabilization after frame removal, recurrence of bone infection and recurrence of deformity. Conclusions. Segmental resection and transport by TSF is an effective method to achieve length, alignment and eradicate infection. Although our cohort had longer external fixator indices than similar studies, the complication rate was low


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 46 - 46
1 Nov 2018
Yeung K
Full Access

Bone allograft is the most widely accepted approach in treating patients suffering from large segmental bone defect regardless of the advancement of synthetic bone substitutes. However, the long-term complications of allograft application in term of delayed union and nonunion were reported due to the stringent sterilization process. Our previous studies demonstrated that the incorporation of magnesium ions (Mg2+) into biomaterials could significantly promote the gene up-regulation of osteoblasts and new bone formation in animal model. Hence, our group has proposed to establish an Mg2+ enriched tissue microenvironment onto bone allograft so as to enhance the bone healing. The decellularization and gamma irradiation process were performed on bovine bone allograft and followed by magnesium plasma treatment. To evaluate the biocompatibility and bioactivity, materials characterizations, in vitro and in vivo studies were conducted, respectively. Mg composite layer on bone surface ranged from 500nm to ∼800nm thick. The cell viability on magnesium enriched allograft was significantly higher than that of the control. The ALP gene expression of hTMSCs in the group of PIII&D treated samples was highly up-regulated. The bone regeneration ability of Mg modified bone allograft implanted in animal model was significantly superior than the control after 2-month post-operation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 89 - 89
1 Dec 2015
Baeza J Mut T Angulo M Amaya J Baixauli F Fuertes M
Full Access

The use of new megaprosthesis for massive bone loss is an option for the replacement of skeletal segments. There are several clinical scenarios that can be associated with this situation including severe trauma with multiple failed osteosynthesis with a non union or with a previous prosthetic replacement of a neighbouring joint; multiple revision of arthroplasty with or without infections or large resections of tumours. The aim of this work is to evaluate retrospectively both clinical and radiological outcomes and any complications in patients treated with megaprosthesis in SEPTIC BONE DEFECTS in our Hospital from February 2012 to January 2015. From February 2012 to January 2014 a total of 20 patients were treated with mono-and bi-articular megaprosthesis subdivided as follows: 4 proximal femur, 11 distal femur, 3 total femur, 1 total humerus and 1 proximal humerus. Clinical and serial radiographic evaluations were performed at 6 weeks, 3, 6, 12, 18 and 24 months. Blood parameters with CRP and ESR were monitored for at least 2 months. The mean follow-up of patients was about 24.4 months (range 5 months to 31 months). The mean age of the patients was 53 years (range 37–80years). Of the patients 20, 9 were female and 11 were male. The aetiology was: 11 septic non unions, 3 infected TKA, 4 infected THR and 2 infected tumor prostheses. We have evaluated retrospectively both clinical and radiological outcomes of 20 patients. They had large bone defects that threatened the viability of the limb. They were treated with megaprosthesis. Although the mean length of follow-up was only 24.4 months they showed encouraging clinical results, with good articulation of the segments, no somato-sensory or motor deficit and acceptable functional recovery. There were three cases of dislocation, one case with rifampicin toxicity, one case with acute prosthetic infection (case that needed debridement and one case with chronic oral antimicrobial. Megaprosthesis provides a valuable opportunity to restore functionality to patients with highly disabling diseases. The number of complications is not depreciable


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 14 - 14
1 Dec 2016
Schoop R Gerlach U Sonja M
Full Access

Aim. Which patients is bone-defect-reconstruction with the Masquelet-technique suitable and which problems did we see?. Method. From 11/2011 to 4/2016 we treated 49 Patients (12f/37m) with bone-defects up to 150mm after septic complications with the Masquelet-technique. We had infected-non-unions of upper and lower extremity, chronic osteomyelitis, infected knee-arthrodesis and upper-ancle-empyema. On average the patients were 48 (8–74) years old. The mean bone-defect-size was 60 mm (25–150). From other hospitals came 47 of the 49 patient, where they had up to 20 (mean 4,9) operations caused by the infection. The time before transfer to our hospital was on average 177days (6–720). 40 patients receaved flaps because of soft tissue-defects (12 free flaps, 28 local flaps). 21 patients suffered a polytrauma. In 8 cases the femur, in 4 cases a knee-arthrodesis, in 34 cases tibia, in 2 cases humerus and in 1 case the ulna were infected resulting in bone defects. Indication for the Masquelet-technique was low-/incompliance in 35 cases due to higher grade of traumatic brain injury and polytrauma and difficult soft-tissue conditions, in 9 times problems with segment-transport and in 5 cases as dead space management. Positive microbial detection succeeded in 32 patients at the first operation. Mainly we found difficult to treat bacteria. After treating the infection with radical sequestrectomy, removal of foreign bodies and filling the defect with antibiotic loaded cement spacer and external fixation we removed the spacer6–8 weeks later and filled the defect with bone graft. In 23 cases we stabilized the defect then with an internal angle stable plate. All patients were examined clinically and radiologically every 4–6 weeks in our outpatient-department until full weight bearing, later every 3 months. Results. In 41 of 49 cases the infection was clinically treated successfully. 21 patients are allowed for full weight bearing (all with secondary internal plates). There were 8 recurrences of infection, 22 instabilities needing internal stabilization and further bone graft. We saw “Plate-breaks” in 4 cases. 2 patients underwent amputation. Conclusions. For patients with low-/incompliance for various reasons and for those with difficult soft tissue conditions following flaps the Masquelet technique is a valuable alternative to the normal bone graft and to the segment transport. The stiffness of the new Masquelet bone like a rod is a problem. Internal fixation is often necessary


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 165 - 165
1 Dec 2013
Russo A Panseri S Shelyakova T Sandri M Ortolani A Meikle S Lacey J Tampieri A Dediu V Santin M Marcacci M
Full Access

Introduction. Diaphyseal bone defect represents a significant problem for orthopaedic surgeons and patients. Bone is a complex tissue whose structure and function depend strictly on ultrastructural organization of its components: cells, organic (extracellular matrix, ECM) and inorganic components. The purpose of this study was to evaluate bone regeneration in a critical diaphyseal defect treated by implantation of a magnetic scaffold fixed by hybrid system (magnetic and mechanical), supplied through nanoparticle-magnetic (MNP) functionalized with Vascular Endothelial-Growth-Factor-(VEGF) and magnetic-guiding. Methods. A critical long bone defect was created in 8 sheep metatarsus diaphysis: it was 20.0 mm in length; the medullary canal was reamed till 8.00 mm of inner diameter. Then a 8.00 mm diameter magnetic rod was fitted into proximal medullary canal (10 mm in length). After that a scaffold made of Hydroxyapatite (outer diameter 17.00 mm) that incorporates magnetite (HA/Mgn 90/10) was implanted to fill critical long bone defect. A magnetic rod (6.00 mm diameter) was firmly incorporated at proximal side into the scaffold. Both magnets had 10 mm length. To give stability to the complex bone-scaffold-bone a plate was used as a bridge; it was fixed proximally by 2 screws and distally by 3 screws. Scaffolds biocompatibility was previously assessed in vitro using human osteoblast-like cells. Magnetic forces through scaffold were calculated by finite element software (COMSOL Multiphysics, AC/DC Model). One week after surgery, magnetic nanoparticles functionalized with VEGF were injected at the mid portion of the scaffold using a cutaneous marker positioned during surgery as reference point in 4 sheep; other sheep were used as control group. After sixteen weeks, sheep were sacrificed to analyze metatarsi. Macroscopical, radiological and microCT examinations were performed. Results. Samples obtained didn't show any inflammatory tissue around the scaffold and revealed bone tissue formation inside pores of the scaffolds and we could see also complete coverage of the scaffolds. Formation of new bone tissue was more evident at magnetized bone-scaffold interface. X-rays showed a good integration of the scaffold with a good healing process of critical bone defect: new cortical bone formation seemed to be present, recreating continuity of metatarsus diaphysis. No signs of scaffold mobilization was showed (Fig. 1). All these datas were confirmed by the microCT: new bone formation inside the scaffolds was evident, in particular at proximal bone-scaffold interface, where permanent magnet were present (Fig. 2). These preliminary results lead our research to exploiting magnetic forces to stimulate bone formation, as attested in both in vitro and in vivo models and to improve fixation at bone scaffold interface, as calculated by finite element software, and moreover to guide targeted drug delivery without functionalized magnetic nanoparticles dissemination in all body


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 103 - 103
1 Dec 2015
Horstmann P Hettwer W Song Z Petersen M
Full Access

To document early in-vivo concentrations of gentamicin in plasma and drain fluid after bone defect reconstruction using a gentamicin-eluting bone graft substitute. Introduction. Reconstruction of bone defects after surgical bone tumor resection is associated with an increased risk of infection and some surgeons therefore prefer extended antibiotic prophylaxis in these patients. A gentamicin-eluting bone graft substitute consisting of sulphate and apatite has been shown to be effective for treatment of osteomyelitis(1) and may be a valuable addition to the therapeutic and/or prophylactic antibiotic regime for this and many other indications. We performed a prospective pilot study from December 2014 to February 2015 in 7 patients (M/F: 4/3, mean age 51 (37–79) years) who underwent bone defect reconstruction with a gentamicin-eluting bone graft substitute (CERAMENT™|G – BONESUPPORT AB) containing 175 mg gentamicin per 10 mL. Indications for surgery were metastatic bone disease (n=3, proximal humerus), giant cell tumor (n=2, distal femur), aseptic prosthetic loosening (n=1, knee) and chondroid tumor (n=1, distal femur). Additional endoprosthetic reconstruction with a tumor prosthesis was performed in 3 patients (2 proximal humerus and 1 distal femur). Drain fluid and plasma was collected immediately postoperatively and each postoperative day until the drain was removed. In 2 cases we were unable to collect drain fluid directly postoperatively due to minimal fluid production. Gentamicin concentrations were analyzed using an antibody technique (Indiko™ – Thermo Scientific). A mean of 14 (10–20) mL gentamicin-eluting bone graft substitute was used, either alone or in combination with cancellous allograft and/or a bone graft substitute not containing gentamicin (CERAMENT™|BVF – BONESUPPORT AB). Mean drain fluid concentrations of gentamicin were 1200 (723–2100) mg/L immediately postoperative (0–2 hours), 1054 (300–1999) mg/L on day 1 (17–23 hours) and 509 (38–1000) mg/L on day 2 (39–45 hours). Mean plasma concentrations of gentamicin were 1.26 (1.08–1.42) mg/L immediately postoperative, 0.95 (0.25–2.06) mg/L on day 1 and 0.56 (0.20–0.88) mg/L on day 2. Discussion. As gentamicin induces a concentration-dependent bacterial killing effect, the obviously high local peak concentrations of gentamicin found in this study would be expected to deliver a substantial prophylactic effect after long operations with an increased risk of intraoperative bacterial contamination. Local implantation of a gentamicin-eluting bone graft substitute for bone defect reconstruction results in high concentrations of gentamicin in the drain fluid in the first postoperative days and low plasma concentrations


Bone & Joint Open
Vol. 5, Issue 4 | Pages 317 - 323
18 Apr 2024
Zhu X Hu J Lin J Song G Xu H Lu J Tang Q Wang J

Aims

The aim of this study was to investigate the safety and efficacy of 3D-printed modular prostheses in patients who underwent joint-sparing limb salvage surgery (JSLSS) for malignant femoral diaphyseal bone tumours.

Methods

We retrospectively reviewed 17 patients (13 males and four females) with femoral diaphyseal tumours who underwent JSLSS in our hospital.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 405 - 405
1 Jul 2010
Nanda R Ramappa M Montgomery RJ
Full Access

Introduction: Arthrodesis of the knee nowadays is used as a salvage procedure, commonly for patients with a failed TKR or in infected trauma cases. We present 4 patients with extensive bone defects following septic sequelae of trauma treated by Arthrodesis of the knee joint. Materials and Methods: Four patients (avg. 46.5 years; range 37–57 years; three male and one female) with longstanding infected non-union fractures (3 months–2 years) at the knee joint (three Tibial plateau and one distal femur) were treated by initial debridement and removal of dead or infected bone. This led to substantial bone defects (6–12 cm) of the debrided bone at the knee joint. The patients then underwent bone transport with a circular frame to compensate for this bone defect before achieving an Arthrodesis of the knee joint. Three patients also had a free muscle flap for soft tissue coverage before bone transport was begun. Results: Arthrodesis of the knee was achieved in all patients at an average time of 26 months (20–32 months). None of the patients have any active infection of the limb. Discussion and Conclusions: Knutson et al (1984) said that massive bone loss may substantially reduce the success rate of Arthrodesis of the knee. Wilde and Stearns (1989) noted decreased fusion rates with greater degrees of bone loss. In our series the bone defects were a sequelae of infective non–union, this further complicates the healing process. However, using circular frame for Bone transport to overcome the defect and to achieve compression at the Arthrodesis site is a useful technique for such challenging cases


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 96 - 96
1 Nov 2018
Perdikouri C Lidén E Diefenbeck M
Full Access

Nitrogen-containing bisphosphonates such as Zoledronic Acid (ZA) are used clinically for the treatment of skeletal diseases related with increased bone resorption. The gold standard is to administrate the drug through a systemic pathway, however this is often associated with high dosages, risk of side-effects, reduced site-specific drug delivery and hence, limited drug-effectiveness. A controlled local drug delivery, via a biomimetic bone graft, could be beneficial by direct and time-regulated application of significantly lower drug dosage at the site of interest. Thus, higher efficacy and reduced side-effects could be expected. In this experimental in vivo study, we examined the effect of ZA when used together with a Calcium Sulphate/Hydroxyapatite biomaterial in a femoral condyle bone defect in rats and compared local to systemic administration. The following groups were used: group1: empty defect (no biomaterial & no treatment), group2: biomaterial alone, group3: biomaterial + systemic ZA (0.1mg ZA/kg – single subcutaneous injection), group4–6: biomaterial conjugated with ZA at different concentrations, (0.07 to 0.70 mg ZA/mL of paste, corresponding to 0.0024 to 0.024 mg ZA/kg). The animals were sacrificed at 6 weeks and toxicological examination was performed. Bone regeneration was evaluated using qualitative and quantitative micro-CT analysis and Histomorphometry. The results showed a significant difference between the groups, suggesting that ZA has an overall effect on bone healing. The most pronounced effect was seen with the local application of approximately 10 times less ZA-dosage when compared to systemic use (p<0.001). This study demonstrates the importance of local ZA administration in bone regeneration


Aims. Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones. Methods. Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed. Results. Patient infection in both groups was eradicated after IMT surgery. As for reconstruction surgery, no substantial changes in the operative period (p = 0.852), intraoperative blood loss (p = 0.573), or length of hospital stay (p = 0.362) were found between the two groups. All patients were monitored for 12 to 60 months. The median time to bone healing was 4.0 months (interquartile range (IQR) 3.0 to 5.0; range 3 to 7) and 5.0 months (IQR 4.0 to 7.0; range 3 to 10) in Groups BMCA and BMAA, respectively. The time to heal in Group BMCA versus Group BMAA was substantially lower (p = 0.024). Conclusion. IMT with BMCA or BMAA may attain healing in large bone defects secondary to COM in children. The bone healing time was significantly shorter for BMCA, indicating that this could be considered as a new strategy for bone defect after COM treatment. Cite this article: Bone Joint Res 2021;10(1):31–40


Introduction. 20 cases of bone defect have been treated by the induced membrane technique avoiding allograft, microsurgery and amputation. Material and Methods. 9 cases of long bone defect (humerus and 2 bones arm) and 11 cases of bone defct at the hand have been included in this multicentric prospective study (3 centers). 11 cases were traumatic, 7 cases were septic non union and 2 cases were tumor. At hand level's bone reached at least one phalanx, and for long bone the mean defect was 5cm (3–11). All cases were treated by the induced membrane technique which consists in stable fixation, flap if necessary and in filling the void created by the bone defect by a cement spacer (PMMA). This technique needs a second stage procedure at the 2. nd. month where the cement is removed and the void is filled by cancellous bone. The key point of this induced membrane technique is to respect the foreign body membane which appeared around the cement spacer and which create a biologic chamber after the second time. Bone union was evaluated prospectively in each case by an surgeon not involved in the treatment by Xray and CT scan. Failure was defined as a non union at 1 year, or an uncontrolled sepsis at 1 month. Results. 3 cases failed to achieve bone union, 2 at hand level and 1 for long bone. No septic complications occured and all septic cases werre stopped. In 14 cases bone union was achieved with a delay of 5 months (1, 5–12). 2 biopsies allowed to proove us that osteoid tissue was created by the technic. At hand level all fingers have included. At shoulder and elbow level, function reached 75% of motion than controlateral side. Discussion. Masquelet first reported 35 cases of large bone defect of tibia non union treated by the induced membrane technic which allow to fill bone defect with cancellous bone alone. The cement spacer allows to induce a foreign body membrane which constitute a biological chamber. Works on animal model reported by Pellissier and Viatteau showed the properties of the membrane: secretion of growths factors (VEGF, TGFbéta1, BMP2) and osteoinductive activitie of the cells. The induced membrane seem to play the role of a neo periosteum. Using this technic is possible in emergency or in septic condition where bone defect can not been solved by shortening. This technic avoids to use microsurgical technic and the limit is the quantity of avalaible cancellous bone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 65 - 65
11 Apr 2023
Siverino C Arens D Zeiter S Richards G Moriarty F
Full Access

In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents.

A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×106 CFU/animal) and the PMMA spacer was loaded with gentamicin, and systemic therapy was applied for 4 weeks prior to chronOs application.

All the animals from the infected group were culture positive during the first revision surgery (mean 3×105 CFU/animal, n= 12), while at the second revision, after antibiotic therapy, all the animals were culture negative. The differences in bone healing between the non-infected and infected groups were evaluated by radiography and histology. The initially infected animals showed impaired bone healing at euthanasia, and some remnants of bacteria in histology. The non-infected animals reached bone bridging in both empty and chronOs conditions.

We developed a preclinical in vivo model to investigate how bacterial infection influence bone healing in large defects with the future aim to explore new treatment concepts of infected non-union.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 552 - 552
1 Nov 2011
Nauth A Schemitsch EH Li R
Full Access

Purpose: The purpose of this study was to compare the effects of two types of stem/progenitor cells on the healing of critical sized bone defects in a rat model. Endothelial Progenitor Cells (EPCs), a novel cell type with previously demonstrated effects on angiogenesis in animal models of vascular disease, were compared to both a control group of no cell therapy, and a treatment group of Mesenchymal Stem Cells (MSCs). The hypothesis was that EPCs would demonstrate both superior bone healing and angiogenesis, when compared to the control group and MSC group. Method: EPCs and MSCs were isolated from the bone marrow of syngeneic rats by differential culture and grown ex vivo for 10 days. Subsequently the cells were harvested, seeded on a gelfoam scaffold, and implanted into a 5mm segmental defect in a rat femur that had been stabilized with a plate and screws. Bone healing was assessed radiographically and by microCT. Angiogenesis was assessed by histology and physiologically, using laser doppler to assess blood flow in the bone and soft tissues. All animal protocols were approved by and performed in accordance with the St. Michael’s Hospital Animal Care Committee. ANOVA was used to test for significant differences between the groups, and a p-value of < 0.05 was considered statistically significant. Results: The EPC (n=14) group demonstrated radiographic evidence of healing of the bone defect as early as 2 weeks, and all specimens were radiographically healed at 6 weeks. Both the control group (n=14) and the MSC group (n=14) showed no radiographic evidence of healing at 10 weeks. MicroCT comparison of the EPC group versus the control group showed significantly greater bone volume and density at the defect site (p< 0.001). More blood vessel formation was observed in the EPC group versus the control group on histology at 2 weeks. Laser Doppler assessment showed significantly more soft tissue and bone blood flow at 2 and 3 weeks in the EPC group versus the control group (p=0.021). Conclusion: The results of this study demonstrate that EPCs are effective as cell-based therapy for healing critical sized bone defects in a rat model. In this model EPCs demonstrated superiority to MSCs with regard to bone healing. In addition, EPCs demonstrated superior angiogenesis over controls in a rat model of fracture healing. These results strongly suggest that EPCs are effective for therapeutic angiogenesis and osteogenesis in fracture healing. There is a clinical need for effective strategies in the management of traumatic bone defects and nonunions. Investigation into the use of MSCs as an effective alternative to autologous bone grafting has failed to translate into clinical use. It is possible that EPCs are more effective at the regeneration of bone in segmental defects because of their synergistic effect on angiogenesis and osteogenesis. Further research into EPC based therapies for fracture healing is warranted


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 323 - 323
1 Jul 2011
Nanda R Ramappa M Montgomery RJ Page J
Full Access

Introduction: Arthrodesis of the knee nowadays is used as a salvage procedure, commonly for patients with a failed TKR or in infected trauma cases. We present 4 patients with extensive bone defects following septic sequelae of trauma treated by Arthrodesis of the knee joint. Materials and Methods: Four patients (avg. 46.5 years; range 37–57 years; three male and one female) with longstanding infected non-union fractures (3 months–2 years) at the knee joint (three Tibial plateau and one distal femur) were treated by initial debridement and removal of dead or infected bone. This led to substantial bone defects (6–12 cm) of the debrided bone at the knee joint. The patients then underwent bone transport with a circular frame to compensate for this bone defect before achieving an Arthrodesis of the knee joint. Three patients also had a free muscle flap for soft tissue coverage before bone transport was begun. Results: Arthrodesis of the knee was achieved in all patients at an average time of 26 months (20–32 months). None of the patients have any active infection of the limb. Discussion and Conclusions: Knutson et al (1984) said that massive bone loss may substantially reduce the success rate of Arthrodesis of the knee. Wilde and Stearns (1989) noted decreased fusion rates with greater degrees of bone loss. In our series the bone defects were a sequelae of infective non-union, this further complicates the healing process. However, using circular frame for Bone transport to overcome the defect and to achieve compression at the Arthrodesis site is a useful technique for such challenging cases


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 24 - 24
1 Dec 2016
Babiak I Pędzisz P Janowicz J Kulig M Małdyk P
Full Access

Aim & introduction. Infected knee with bone defect resulting from failed total knee arthroplasty (TKA) or destruction of native joint can necessitate restoration of segmental defect and arthrodesis for therapy of infection and maintenance of walking ability. In segmental knee defect external fixators or KAFO are not suitable, not comfortable and poor tolerated by elderly patients. Both custom-made Femoro-Tibial Nail (FTN) combined with acrylic cement spacer and Knee Arthrodesis Nail System (KANS) offer maintenance of supportive function of extremity and avoidance of leg length discrepance after removal of TKA. Method. The group consists of 13 patients. In 12 cases knee arthrodesis have been performed due to infection with bone defect after removal of infected TKA, and in 1case due to inflammatory destruction of native knee joint. In 7 cases FTN with ALAC spacer and in 6 cases KANS (5 cases Orthopedic Salvage System-OSS; 1 case Link KANS) was used. In cases treated with FTN the gap between distal femur and proximal tibia was filled with hand-made acrylic cement spacer loaded with selected antibiotic (2g per 40 g cement) so that the spacer finally gained cylindrical shape. Results. Stable knee was noted after 7 years in 4 of 7 knees treated with FTN with ALAC spacer and after 2 years in 6 of 6 after KANS. Infection free knee was gained after 7 years in 4 of 7 cases treated with FTN with ALAC spacer and after 2 years in 5 of 6 cases treated with KANS. Amputation was necessary after 6 years in 3 of 7 cases treated with FTN with ALAC spacer and after 2 years in none case treated with KANS. Complications occurred in 2 cases after FTN with ALAC spacer (1x: FTN breackage, 1x: stress fracture of femoral neck) and in 1 case after KANS (OSS implant failure). Replacement of FTN nail and cement spacer in 1 case and respectively revision of OSS KANS in 1 cases was performed. Conclusions. Compared with the KANS, custom-made FTN combined with ALAC spacer proved to be effective up to 6 years, but shoved higher rate of complications and amputations after 6 years. It can be considered as a temporary low-cost salvage procedure for infected TKA with segmental bone defect as 1. st. stage in two-stage arthrodesis for infected knee prosthesis


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 195 - 199
1 Mar 2004
Patel JV Masonis JL Guerin J Bourne RB Rorabeck CH

We report the five- to-ten year results of Anderson Orthopaedic Research Institute type-2 bone defects treated with modular metal augments in revision knee surgery. A total of 102 revision knee arthroplasties in patients with type-2 defects treated with augments and stems were prospectively studied. Seven patients (seven knees) had incomplete follow-up and 15 patients (16 knees) died with the arthroplasty in situ. The mean follow-up of the 79 remaining knees was 7 ± 2 years (5 to 11). The presence of non-progressive radiolucent lines around the augment in 14% of knees was not associated with poorer knee scores, the range of movement, survival of the component or the type of insert which was used (p > 0.05). The survival of the components was 92 ± 0.03% at 11 years (95% CI, 10.3 to 11.2). We recommend the use of modular augmentation devices to treat type-2 defects in revision knee surgery


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 246 - 246
1 Jul 2011
Kuzyk PRT Davies JE Schemitsch EH
Full Access

Purpose: The purpose of this study was to relate the extent of reaming to bone formation occurring around a critical sized defect in the tibia. Method: Eleven canines were allocated into 2 groups: empty (N=5) or iliac crest autograft (N=6). All tibiae were reamed to 7.0 mm and fixed with a 6.5 mm statically locked intramedullary nail after creation of an 8.0 mm diaphyseal defect. The extent of reaming of the canal was dependent on the cross-sectional area of the tibia as all tibiae were reamed to 7.0 mm. Fluorescent markers were given at different times: calcein green (6 weeks), xylenol orange (9 weeks), and tetracycline (11 and 14 weeks). Animals were sacrificed at 15 weeks and perfused with a barium compound. Radiography, Micro CT, brightfield microscopy and fluorescent microscopy were used for analysis. Results: Bone and vasculature volume within the defect were reported as a percentage of the total volume of the defect. Linear regression analysis of percent bone volume (dependent variable) and canal area (independent variable) provided a Pearson correlation coefficient of 0.925 (p=0.025) for the empty group and 0.244 (p=0.641) for the autograft group. Linear regression analysis of percent vasculature volume (dependent variable) and canal area (independent variable) provided a Pearson correlation coefficient of 0.784 (p=0.117) for the empty group and −0.146 (p=0.783) for the autograft group. Bone formation at osteotomy sites was defined as the distance from the original osteotomy site to the tip of newly formed bone. Linear regression analysis of bone formation at the osteotomy sites (dependent variable) and canal area (independent variable) provided a Pearson correlation coefficient of 0.132 (p=0.832) for the empty group and −0.937 (p=0.006) for the autograft group. Bone formation rates were reported as the distance between the fluorescent labels. Bone formation rate was less within the endosteum, cortex and periosteum with extensive reaming in empty samples. Conclusion: Our results suggest that the acute management of tibia fractures with bone defects should involve limited reaming. This does not apply when the defect is autografted. Limited reaming may be defined by the cross-sectional area of the tibia in ratio to that of the reamer


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 323 - 323
1 Jul 2011
Tos P Artiaco S Antonini A Burastero G Cicero G Battiston B
Full Access

For decades the treatment of chronic posttraumatic osteomyelitis associated with bone exposure has been one of the most serious problems in the field of orthopedic surgery. “Sterilization” of the osteomyelitic site, that is radical debridement of all infected tissue, is the basic requirement of the treatment; in the past, the remaining defect of the debrided area was closed with skin grafts, which were removed in a further stage, when the infection was ceased; then the defect was filled with muscle flap and bone graft of various types. Both soft tissue and osseous reconstruction took a relatively long period of time requiring several-stage treatment. We performed a retrospective study on 9 patients treated for chronic osteomyelitis of the upper limb (6 forearm – 3 arm) by means of free fibula vascularized bone graft, between 1992 and 2003 (7 male 2 female). All patients had been more than 2 previous surgical attempt with conventional treatment (sterilization and bone graft). In most of them (7 cases) a two-stage treatment was performed (resection and sterilization, eventually with muscle transfer, in the first stage and bone transfer in the second one); in other 3 cases a one-stage treatment was performed. Two cases required a composite tissue transfer with a skin pad to cover the exposure. The length of bone defect after extensive resection of necrotic bone from septic pseudoarthrosis ranged from 5 cm to 12 cm. In all cases there was no evidence of infection recurrence in the follow-up period. The mean period to obtain radiographic bone union was 4.1 months (range 2.5–6 months). In 2 cases secondary procedures have been carried out due to an aseptic non union in one site of synthesis (cruentation and compression plate). Functional results were always satisfactory although in the forearm a complete range of motion has never been achieved (plurioperated patients with DRUJ problems). Fibular grafts allow the use of a segment of diaphyseal bone which is structurally similar to the radius, ulna and humerus of sufficient length to reconstruct most skeletal defects. The vascularized fibular graft is indicated in patients where conventional bone grafting has failed or large bone defects, exceeding 5 cm, are observed. The application of microsurgical fibular transfers for reconstruction of the extremities allows repair of bone and soft-tissue defects when shortening is not possible with good functional results


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 392 - 392
1 Oct 2006
Wan C He Q Chen X Li G
Full Access

Introduction: Peripheral blood derived mesenchymal stem cells (PBMSCs) are multipotent cells capable of forming bone, cartilage, fat, and other connective tissues. Bone marrow derived mesenchymal stem cells (BMMSCs) have promoted repair a critical-sized bone defect in several animal models including mouse, rat, rabbit, and dog. The aim of this study was to investigate whether or not the use of allogenic BMMSCs and PBMSCs could regenerate a critical-sized bone defect in rabbit ulnae. Methods: Rabbit peripheral blood mononuclear cells (PBMNCs) were isolated by density gradient centrifugation method and cultured at a density of 100,000/ cm2 in flasks with DMEM 15% FCS. Colony forming efficiency (CFE) was calculated and their multipotential differentiations into bone, cartilage, and fat were examined under different induction conditions. Specific differentiation markers were examined using cytochemistry and immunocytochemistry methods in the PBMSCs. Critical-sized ulna bone defects, 20 mm in length, were created in the mid-diaphysis of both ulnae in twelve 6 month old NZW rabbits. The ulnar defects were treated as the following 5 groups: empty control (n=4), PBMSCs/Skelite (multi-phase porous calcium phosphate resorbable substitute, EBI Company, USA) (n=5), BMMSCs/Skelite (n=4), PBMNCs/Skelite (n=5), and Skelite alone (n=5). All animals were sacrificed 12 weeks after treatment. The bone regeneration was evaluated by regular radiography, and all samples were subject to peripheral quantitative computed tomography (pQCT) and histological examination at the end point. Results: The CFE of PBMSCs ranged from 1.2 to 13 per million mononuclear cells. Spindle and polygonal shaped cells were found in the primary PBMSCs colony, showing similar differentiation potential with BMMSCs. Mineralized bone nodules formed under osteogenic media were positive for Alizarin Red S staining in the PBMSCs. Chondrogenic differentiation was identified in serum free media containing TGF-¦Â1 (10 ng/ml), with type II collagen expression and Alcian blue positive nodule formation. Adipocytic differentiation was tested with or without adipogenic media, with positive Oil Red O staining for lipid accumulation and CEBP¦Á expression in the PBMSCs. After twelve weeks implantation, the ulnar defects were not healed in the empty control group; the total bone density in PBMSCs/Skelite and BMMSCs/Skelite treated defects were greater than that of PBMNCs/Skelite and Skelite alone treated groups (p< 0.05), with higher score of X-ray evaluation (p< 0.05). Histologically, there were a greater amount of new bone present in both the PBMSCs/Skelite and BMMSCs/Skelite treated groups compared to the PBMNCs/Skelite and Skelite alone treated groups. Conclusions: This study demonstrated that PBMSCs were multipotent cells; allogenic PBMSCs loaded onto porous calcium phosphate resorbable substitute had enhanced bone regeneration of a critical-sized segmental defect in the rabbit ulna. PBMSCs may be a new source of osteogenic stem cells for bone regeneration and tissue engineering, and further investigations are undergoing to clarify their functions


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 158 - 162
1 Feb 2012
Sternheim A Backstein D Kuzyk PRT Goshua G Berkovich Y Safir O Gross AE

We report the use of porous metal acetabular revision shells in the treatment of contained bone loss. The outcomes of 53 patients with ≤ 50% acetabular bleeding host bone contact were compared with a control group of 49 patients with > 50% to 85% bleeding host bone contact. All patients were treated with the same type of trabecular metal acetabular revision shell. The mean age at revision was 62.4 years (42 to 80) and the mean follow-up of both groups was 72.4 months (60 to 102). Clinical, radiological and functional outcomes were assessed. There were four (7.5%) mechanical failures in the ≤ 50% host bone contact group and no failures in the > 50% host bone contact group (p = 0.068). Out of both groups combined there were four infections (3.9%) and five recurrent dislocations (4.9%) with a stable acetabular component construct that were revised to a constrained liner. Given the complexity of the reconstructive challenge, porous metal revision acetabular shells show acceptable failure rates at five to ten years’ follow-up in the setting of significant contained bone defects. This favourable outcome might be due to the improved initial stability achieved by a high coefficient of friction between the acetabular implant and the host bone, and the high porosity, which affords good bone ingrowth


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 515 - 516
1 Aug 2008
Sason Y Goikhman A Friedman M Almog G Mosheiff R Beyth S Amir G Rachmilewitz J
Full Access

Bone regeneration is a complicate biological process of the skeletal system leading to restoration of the limb function. This process becomes more challenging in a case of critical size defect (CSD) which defined as the smallest defect caused by infection, tumor or trauma that will not heal spontaneously. A previous study in our lab tested the usage of encapsulating Ethyl Cellulose (Hercules Inc, Wilmington, Del) membrane in CSD as compared to control (no-membrane). The study demonstrated that bone healing was more sufficient in limbs coated with the membrane than the control limbs. Additional approach to the treatment of bone deficiency is the use of multi-potent mesenchymal stem cells (MSC) that are brought into the bone defect in order to induce bone formation. The objective of this study was to investigate a new polymer formulation in order to produce the best environmental support for adhesion, proliferation and differentiation of MSC. In this study we found out that with the usage of Polyvinylacetate, PMMC R and PMMC L in PMMC RL PEG 400 [15%], MSC had similar characters to the polystyrene ( a well known ideal platform for MSC). This positive result permitted apparently thanks to creation abilities of:. Hydrogen-bonds between MSC and the partial negative charge on the carboxyl group as well as on the oxygens of the plasticizer that is intertwined within the membrane monomers. Electrostatic bonds between the positive charge (+1) on the transformed group monomers and the negative charge of MSC’s protein membrane. In summary, we have only started to reveal the remarkable potential of using MSC, and there are still many obstacles to overcome. However, applying the findings from this study, namely inserting a membrane coated with MSC into a CSD may become a true biological treatment option


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 237 - 237
1 Mar 2004
Carbonell PG Verdú JV Martinez SS Sanchis R
Full Access

Aims: Study our experience and short term results using a mix of osteoconductive (HA) and osteoinductive (AGF) materials. Methods: From October 2001 until June 2002, we have treated bone defects in 9 patients. Seven male and 2 female. Mean age 10.4 years (range 4–18 years). Mean follow-up: 5.6 months (range 3–9 months). AGF was obtained after autologous blood centrifugation according to blood volume, knowing the patient height and weight (Nadler Score). AGF was obtained through previous concentrate of platelets and red cells, with a further concentration, reducing its volume to 1/3. 10 c.c. of thrombin (500 UI) and HA (500R) were added, just before applying it to the patient. Total surgery time for preparation AGF was 20–30 minutes. Clinical cases treated were: varus osteotomy in Perthes (1 case- 11%); curettage in osteomyelitis (2 cases- 22%); essential cyst, after conventional corticoid treatment failure (2 cases- 22%); forearm pseudoarthrosis (2 cases- 23%) and triple arthodesis by valgus pronated spastic foot (2 cases- 22%). We never use autologous iliac graft with AGF- HA. Results: We have obtained radiological and clinical consolidation in all bone defects after 3–4 months. Radiological success is not clear after 4 months in one of the osteomyelitis cases (12’5%). Conclusions: 1. The iliac graft harvest morbility is about 9.4%- 49%. 2. A 2nd approach is avoided in children and adolescents. 3. With the use of AGF- HA we avoid morbility, diseases transmission, reduced surgery time and offer an alternative to autologous grafting


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 330 - 330
1 Jul 2011
Cicero G Bellomo F Artiaco S Boggio F Buttafarro E
Full Access

Introduction: In case of massive bone defect, femoral stem revision may cause significant problems to the orthopaedic surgeons. The periprosthetic infection introduces a further element of complication which often leads to complex surgical strategies. The aim of this study was to assess the preliminary results of femoral revision with modular resection femoral stems in a selected group of patients with infected total hip arthroplasty and extensive bone defect. Materials and Methods: The study group included five patients (three women – two men) with an average age of 72 years (range 62–81 years). From 2006 to 2008 the patients underwent a prosthetic femoral revision with resection modular stems to treat a septic loosened primary hip prosthesis (one case) or revision hip prosthesis (four cases). The bacteria responsible for the infection were MRSE in three cases, MSSE and Str. Agalactie in one case, Proteus Mirabilis in one case. Three patients were treated in election for septic loosening of hip implant and two were admitted in our Department as emergency for a periproshtetic femoral fracture (Duncan type B3). In all the patients the femoral bone defect was grade III-B according to Paprosky classification of femoral bone deficiency. One patient with periproshtetic femoral fracture underwent a one-stage prosthetic revision and four patients sustained a two-stage prosthetic revision. In one patient a local flap was performed and Vaacum Assisted Therapy was applied in order to treat an associated loss of substance. The patients underwent periodical clinical controls in which the result has been evaluated by means of Merle-d’Aubigné hip score. Results: The follow-up period ranged from 10 to 28 months. We observed one case of recurrence of infection in the patient treated with a one-stage revision. At present, we did not observe signs of infection in the remaining four patients who underwent a two-stage revision. As for functional result, four patients walked with supports and one without them. No patient referred moderate or severe residual pain. Discussion: The preservation of bone stock is one of the most important goals in prosthetic revision procedures. In some circumstances the amount of femoral bone loss can be so wide to prevent the application of conventional or modular uncemented femoral stems. In these selected cases cemented modular resection femoral stems may represent the only available option for femoral reconstruction. In our clinical experience this solution offered altogether successful outcomes. In our opinion two-stage revision is the preferable surgical choice


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 259 - 259
1 Mar 2004
Mikko H Strandberg N Tirri T Seppälä J Vallittu P Aho A
Full Access

Aims: To develope a prosthesis with porous surface based on polymer technology of metacrylates, bioactive glass S53P4 and glassfiber reinforcement to treat segmental bone defects. Methods: A sylindrical prosthesis matching anatomically shape of the rabbits tibia was prepared from bioactive glass S53P4 (granule size 90–315 μm) and polymethylmetacrylate (PMMA). The polymerization was perfomed extracorporally thus reducing the amount of toxic monomers introduced into the body. Three groups of prosthesis were made: 1. Surface of the bulk grinded to expose glass granules at its surface 2. Surface prepared porotic, porediameter 50–300 μm and biomechanical properties increased by glass fiber reinforcement 3. Prosthesis made from PMMA serving as control group. A 12 mm segmental defect was sawed in the tibia and replaced with the prosthesis. Prosthesis was fixed with DCP-plate. Evaluation was made after 4, 8 and 20 weeks by plain radiographs, CT, histology, histometry and SEM. Results: Bone incorporation at the interface was evident in areas where good tissue contact was obtained. Porotic surface structure enhanced bone ingrowth. Histometry revealed 16–30% bone contact at the interface in groups 1 and 2. Conclusions: Study illustrates views on biotechnical innovations combining bioactive materials to be used for bone reconstruction. This composite material has potentials to be used as new prosthesis material and artificial bone substitute


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 114 - 114
1 Jan 2017
Decambron A Fournet A Manassero M Bensidhoum M Logeart-Avramoglou D Petite H Viateau V
Full Access

Bone tissue engineering constructs (BTEC) combining natural resorbable osteoconductive scaffolds and mesenchymal stem cells (MSCs) have given promising results to repair critical size bone defect. Yet, results remain inconsistent. Adjonction of an osteoinductive factor to these BTEC, such as rh-BMP-2, to improve bone healing, seems to be a relevant strategy. However, currently supraphysiological dose of this protein are used and can lead to adverse effects such as inflammation, ectopic bone and/or bone cyst formation. Interestingly, in a preliminary study conducted in ectopic site in a murine model, a synergistic effect on bone formation was observed only when a low dose of rh-BMP-2 was associated with MSCs-seeded coral scaffolds but not with a high dose. The objective of the study was then to evaluate a BTEC combining coral scaffold, MSCs and a low dose of rh-BMP-2 in a large animal model of clinical relevance. Sixteen sheep were used for this study. MSCs were isolated from an aspirate of bone marrow harvested from the iliac crest of each sheep receiving BTEC with MSCs, cultivated and seeded on Acroporacoral scaffolds one week before implantation. Rh-BMP-2, used at two different doses (low dose: 68μg/defect and high dose: 680μg/defect), was diluted and absorbed on Acroporacoral scaffold one day before implantation. Metatarsal segmental bone defects (25 mm) were made in the left metatarsal bone of the sheep, stabilized by plate fixation, and filled with Acroporacoral scaffolds loaded with either (i) MSCs and a low dose of rh-BMP-2 (Group 1;n=6), (ii) a low dose of rh-BMP-2 (Group 2;n=5), (iii) a high dose of rh-BMP-2 (Group 3;n=5). Standard radiographs were taken after each surgery and each month until sheep sacrifice, 4 months postoperatively. Bone healing and scaffold resorption were assessed by micro-computed-tomography (μCT) and histomorphometry. Results were compared to a historical control group in which coral scaffolds were loaded with MSCs. Bone volumes (BV) evaluated by μCT and bone surfaces (BS) evaluated by histomorphometry did not differ between groups (BV: 1914±870, 1737±841, 1894±1028 and 1835±1342 mm. 3. ; BS: 25,41±14,25, 19,85±8,31, 25,54±16,98 and 26,08±22,52 %; groups 1, 2, 3 and control respectively); however, an higher bone union was observed in group 1 compared to the others (3, 1, 2 and 2 sheep with bone union in groups 1, 2, 3 and control respectively). No histological abnormalities were observed in any group. Coral resorption was almost complete in all specimens. No significant difference in coral volumes and coral surfaces was observed between groups. A trend towards a higher variability in coral resorption was noted in group 1 compared to the others. There seems to be a benefit to associate low dose of rh-BMP-2 with MSCs-seeded coral scaffolds as this strategy allowed an increase of bone unions in our model. Yet, results remain inconsistent. Although, defective coupling between scaffold resorption and bone formation impaired bone healing in some animals, adjunction of rh-BMP-2 (even at low dose) to CSMs loaded construct is a promising strategy for bone tissue engineering


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1237 - 1243
1 Sep 2017
Emori M Kaya M Irifune H Takahashi N Shimizu J Mizushima E Murahashi Y Yamashita T

Aims

The aims of this study were to analyse the long-term outcome of vascularised fibular graft (VFG) reconstruction after tumour resection and to evaluate the usefulness of the method.

Patients and Methods

We retrospectively reviewed 49 patients who had undergone resection of a sarcoma and reconstruction using a VFG between 1988 and 2015. Their mean follow-up was 98 months (5 to 317). Reconstruction was with an osteochondral graft (n = 13), intercalary graft (n = 12), inlay graft (n = 4), or resection arthrodesis (n = 20). We analysed the oncological and functional outcome, and the rate of bony union and complications.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 245 - 245
1 Jul 2011
Kuzyk PRT Schemitsch EH Davies JE
Full Access

Purpose: The aim of our study was to evaluate bone formation and angiogenesis produced within a biodegradable poly-D, L-lactide-co-glycolide acid/calcium phosphate (PLGA/CaP) scaffold when used to treat a diaphyseal tibia defect and compare this to an iliac crest autograft or an empty defect.

Method: An 8.0 mm diaphyseal defect was created in a canine tibia model. All tibiae were reamed to 7.0 mm and fixed with a 6.5 mm statically locked intramedullary nail. Eighteen canines were allotted into three treatment groups:

empty (N=5),

iliac crest autograft (N=6), or

PLGA/CaP biodegradable scaffold Tissue Regeneration Therapeutics Inc., ON, Canada) (N=7).

Fluorescent markers were given at different times: calcein green (six weeks), xylenol orange (nine weeks), and tetracycline (11 and 14 weeks). Animals were sacrificed at 15 weeks and perfused with a barium compound. Radiography, Micro CT, and brightfield and fluorescent microscopy were used for analysis.

Results: Micro CT and brightfield images of scaffold samples displayed multiple vessels (10 to 100μm) within the scaffold. The bone volume and vasculature volume (measured with Micro CT) within the tibial defect site were reported as a percentage of the total volume of the defect site. The percent bone volume within the defect site was not different between treatment groups (p=0.112). There was greater percent vasculature volume in the scaffold group than the autograft group (p< 0.001). Bone formation at the osteotomy sites was defined as the distance from the original osteotomy site to the tip of newly formed bone. Osteotomy bone formation was significantly greater in the scaffold group than the autograft group (p=0.015). Osteotomy sites associated with greater angiogenesis displayed greater bone formation. Bone formation rates were reported as the distance between the fluorescent bone labels. Autograft samples had the greatest bone formation rates within the periosteum. Autograft and scaffold samples had the greatest rate of bone formation within the cortex.

Conclusion: Our canine tibial defect model provides a satisfactory facsimile of the traumatic tibia fracture with associated bone loss. The PLGA/CaP biodegradable scaffold we have employed promotes angiogenesis within a defect and could be used in conjunction with autografting.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1555 - 1560
1 Dec 2009
Lingaraj K Teo YH Bergman N

We investigated the early results of modular porous metal components used in 23 acetabular reconstructions associated with major bone loss. The series included seven men and 15 women with a mean age of 67 years (38 to 81), who had undergone a mean of two previous revisions (1 to 7).

Based on Paprosky’s classification, there were 17 type 3A and six type 3B defects. Pelvic discontinuity was noted in one case. Augments were used in 21 hips to support the shell and an acetabular component-cage construct was implanted in one case. At a mean follow-up of 41 months (24 to 62), 22 components remained well fixed. Two patients required rerevision of the liners for prosthetic joint instability. Clinically, the mean Harris Hip Score improved from 43.0 pre-operatively (14 to 86) to 75.7 post-operatively (53 to 100). The mean pre-operative Merle d’Aubigné score was 8.2 (3 to 15) and improved to a mean of 13.7 (11 to 18) post-operatively.

These short-term results suggest that modular porous metal components are a viable option in the reconstruction of Paprosky type 3 acetabular defects. More data are needed to determine whether the system yields greater long-term success than more traditional methods, such as reconstruction cages and structural allografts.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 31 - 31
1 Mar 2006
Athanasiou V Papachristou D Saridis A Scopa C Lambiris E Megas P
Full Access

Aims: This experiment study was undertaken to evaluate the differences, in bone response to various grafts.

Methods: Ninety, 3.5 months New Zeland white rabbits, weighing 4kg, were divided randomly in 6 groups of 15 animals. Under anesthesia, a 4.5mm hole was drilled in the 2 posteriors femoral condyles of each rabbit, in totaling 180 condyles. Holes were filled with various grafts as follow: Group I-autograft, Group II-xenograft (Lubboc®), Group III-allograft DBM (Grafton®), Group IV-substitute calcium sulfate (Osteoset®), Group V-substitute calcium phosphate hydroxyapatite (Ceraform®), Group VI- was used control. After the implantation, the animals were sacrificed at 1, 3 and 6 months intervals tissue samples from the implanted areas were processed for histological evaluation.

Results: Group I: At 1 month, autologous grafts were lined with activated osteoblasts and osteoclasts. Lamellar bone and cartilage were evident. Neoangiogenesis was prominent. At 3, 6 months defects were filled with mature bone. Group II: Lubboc® displayed moderate (1 month) to intense (3 months) remodeling activity and pronounced neoangiogenesis. At 3 months, endochondral osteogenesis and lamellar bone production were more prominent. At 6 months graft material was significantly restricted and lamellar had considerably replaced woven bone. Group III: Grafton® putty was present at 1, 3 months. There were few osteoblasts and numerous multinuclaeated cells rimming implant surfaces. Endochondral ossification foci, new bone formation and neovascularisation were observed (1, 3 months). At 6 months DBM fibers were absent. Lamellar and woven bone was evident. Group IV: At 1 month new bone (mostly woven) was present, lined with activated osteoblast and few osteoclasts. Endochondral ossification and angiogenesis were evident. At 3, 6 months bone remodeling was augmented, and Osteoset® graft was diminished. Complete closure of defects was observed, at 6 months. Group V: Ceraform® exhibited almost the same properties as Osteoset®. However, endochondral osteopoiesis and bone remodeling were less intense. Additionally, after 6 months, Ceraform® was still evident. Group VI: The defect areas were clearly observed at 1, 3 months.

Conclusion: Autografts are the most effective graft materials. Although Lubboc® is not totally resorbed, it seems to induce lamellar bone synthesis stronger than Grafton®. Bone substitutes are inferior to allografts.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 806 - 809
1 Jun 2008
Burkhart KJ Rommens PM

We describe a patient with insufficient bone regeneration of the tibia after bone transport over an intramedullary nail, in whom union was ultimately achieved after exchange nailing and intramedullary application of rh-bone morphogenetic protein-7 at the site of distraction.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 436 - 444
1 Apr 2000
van Loon CJM de Waal Malefijt MC Buma P Stolk PWT Verdonschot N Tromp AM Huiskes R Barneveld A

The properties of impacted morsellised bone graft (MBG) in revision total knee arthroplasty (TKA) were studied in 12 horses. The left hind metatarsophalangeal joint was replaced by a human TKA. The horses were then randomly divided into graft and control groups. In the graft group, a unicondylar, lateral uncontained defect was created in the third metatarsal bone and reconstructed using autologous MBG before cementing the TKA. In the control group, a cemented TKA was implanted without the bone resection and grafting procedure. After four to eight months, the animals were killed and a biomechanical loading test was performed with a cyclic load equivalent to the horse’s body-weight to study mechanical stability. After removal of the prosthesis, the distal third metatarsal bone was studied radiologically, histologically and by quantitative and micro CT.

Biomechanical testing showed that the differences in deformation between the graft and the control condyles were not significant for either elastic or time-dependent deformations. The differences in bone mineral density (BMD) between the graft and the control condyles were not significant. The BMD of the MBG was significantly lower than that in the other regions in the same limb. Micro CT showed a significant difference in the degree of anisotropy between the graft and host bone, even although the structure of the area of the MBG had trabecular orientation in the direction of the axial load. Histological analysis revealed that all the grafts were revascularised and completely incorporated into a new trabecular structure with few or no remnants of graft. Our study provides a basis for the clinical application of this technique with MBG in revision TKA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 162 - 162
1 Sep 2012
Lyons F Gleeson J Partap S Synnott K O'Byrne J O'Brien F
Full Access

Treatment of segmental bone loss remains a major challenge in orthopaedic surgery. This study evaluated the healing potential of a series of highly porous tissue engineering scaffolds with the current clinical gold standard. We compare healing of collagen-glycosaminoglycan (CG) and collagen micro-hydroxyapatite (CHA) scaffolds, with and without recombinant bone morphogenetic protein-2 (BMP2), with autogenous bone graft (ABG) in the healing of a 15mm rabbit radius defect, which were filled with either CG scaffold, CHA scaffold, CG-BMP2, CHA-BMP2 or ABG. Serial radiographs and micro-computed tomography (µCT) at six week radiographs demonstrated complete defect bridging with callus using CHA and CG-BMP2 while the CHA-BMP2 was already in an advanced state of healing with cortical remodeling. By sixteen weeks CHA, CG-BMP2 and ABG all had advanced healing with cortical remodeling while CHA-BMP2 had complete anatomic healing. Quantitative histomorphometry values demonstrated similarly high healing levels of healing in CHA, CG-BMP2 and ABG with highest overall values in the CHA-BMP2 group. Thus, treatment of a critical sized, weight bearing, rabbit radius defect with a CHA scaffold can result in full cortical bridging with medullary cavity development. In addition, a CHA-BMP2 combination can result in fully mature, anatomic healing. The use of an off-the-shelf CHA scaffold for direct surgical placement into a defect site may be an effective bone graft substitute in the treatment of skeletal defects. The ease of manufacture, storage and peri-operative preparation may offer an alternative to traditional strategies, as well as to more recent BMP2 devices. This study provides clear evidence that CHA scaffolds can perform as well as autogenous bone grafts and supports their use as a viable alternative. Where the use of BMP2 may be desirable, these materials provide an ideal delivery mechanism and using a very low (near physiological) dose, healing superior to autogenous graft may be achieved.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 510 - 516
1 Apr 2011
Sugata Y Sotome S Yuasa M Hirano M Shinomiya K Okawa A

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks.

In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 80 - 80
1 Jan 2017
Cavallo M Maglio M Parrilli A Martini L Guerra E Pagani S Fini M Rotini R
Full Access

Autologous bone grafting is a standard procedure for the clinical repair of skeletal defects, and good results have been obtained. Autologous vascularized bone grafting is currently the procedure of choice because of high osteogenic potential and resistance against reabsorption. Disadvantages of this procedure include limited availability of donor sites, clinical difficulty in handling, and a failure rate exceeding 10%. Allografts are often used for massive bone loss, but since only the marginal portion is newly vascularized after the implantation non healing fractures are often reported, along with a graft reabsorption. To overcome these problems, some studies in literature tried to conjugate bone graft and vascular supply, with encouraging results. On the other side, several studies in literature reported the ability of bone marrow derived cells to promote neo-vascularization. In fact, bone marrow contains not only hematopoietic stem cells (HSCs) and MSCs as a source for regenerating tissues but also accessory cells that support angiogenesis and vasculogenesis by producing several growth factors. In this scenario a new procedure was developed, consisting in an allogenic bone graft transplantation in a critical size defect in rabbit radius, plus a deviation at its inside of the median artery and vein with a supplement of autologous bone marrow concentrate on a collagen scaffold.

Twenty-four New Zealand male white rabbits (2500–3000 g) were divided into 2 groups, each consisting of 12 animals. Surgeries were performed as follow:

Group 1 (#12): allogenic bone graft (left radius) / allogenic bone graft + vascular pedicle + autologous bone marrow concentrate (right radius)

Group 2 (#12): sham operated (left radius)/ allogenic bone graft + vascular pedicle (right radius)

For each group, 3 experimental time: 8, 4 and 2 weeks (4 animals for each time).

The bone used as graft was previously collected from an uncorrelated study. An in vitro evaluation of bone marrow concentrate was performed in all cases, and at the time of sacrifice histological and histomorphometrical assessment were performed with immunohistochemical assays for VEGF, CD31 e CD146 to highlight the presence of vessels and endothelial cells. Micro-CT Analysis with quantitative bone evaluation was performed in all cases.

The bone marrow concentrate showed a marked capability to differentiate into osteogenic, chondrogenic and agipogenic lineages. No complications such as infection or intolerance to the procedure were reported. The bone grafts showed only a partial integration, mainly at the extremities in the group with vascular and bone marrow concentrate supplement, with a good and healthy residual bone. immunohistochemistry showed an interesting higher VEGF expression in the same group. Micro CT analysis showed a higher remodeling activities in the groups treated with vascular supplement, with an area of integration at the extremities increasing with the extension of the sacrifice time.

The present study suggests that the vascular and marrow cells supplement may positively influence the neoangiogenesis and the neovascularization of the homologous bone graft. A longer time of follow up and improvement of the surgical technique are required to validate the procedure.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 249 - 249
1 Sep 2005
Koort J Mäkinen T Suokas E Veiranto M Jalava J Knuuti J Törmälä P Aro H
Full Access

Introduction: Drug delivery systems (DDSs) using resorbable materials have been developed for local therapy of adult osteomyelitis. An ideal DDS would provide controlled release of antibiotic for an extended period and have an osteoconductive component for spontaneous restoration of bone stock.

Materials and Methods: The developed DDS consisted of three components: poly(DL)-lactide (PDLLA), ciprofloxacin (AB) and bioactive glass (BG) as the osteoconductive component. Based on in vitro studies, the composite provides a long-lasting release (> 3 months) of the ciprofloxacin at therapeutic levels. The localized osteomyelitis model (Stage IIIA) was applied in adult male New Zealand white rabbits (n=30). A cortical bone window was drilled in the proximal tibial metaphysis and filled with bone cement. 0.1 ml of Staphylococcus aureus lxl05 1/ml was injected into the defect. Infection was allowed to develop for two weeks, when the bone cement was surgically removed (debridement) and osteomyelitis was confirmed by positive bacteriology. In treated experimental animals, antibiotic containing composite (AB-PDLLA-BG) was impacted into the infected medullary space. In untreated infection control group, the infected the medullary space was subjected only to surgical debridement. In sham-treated control group, the infected medullary space was filled with a composite without antibiotic (PDLLA-BG). In the negative control group, the injection of bacterial suspension was replaced by saline injection. The treatment response was evaluated by FDG-PET and pQCT at 3 and 6 weeks. Concentration of ciprofloxacin was also measured from bone tissue. The statistical significance of the differences was calculated using paired t-test and one-way ANOVA with Tukey t-test.

Results: Before infection treatment, 96% of the animals had positive bacterial cultures, while none of the negative control group had positive cultures. At sacrifice, all animals in untreated and sham-treated control groups had culture positive infection, while all bone cultures were negative in treated animals. However, three treated animals had culture positive soft-tissue infection. In untreated infection control group, the FDG uptake was increased many-fold compared with the negative control group both at 3 and 6 weeks. The treatment with AB-PDLLA-BG significantly decreased the FDG uptake and the difference was highly significant (p=0.013) compared the untreated animals. Based on pQCT imaging, the cortical defect healing was faster in treated and negative control animals than in untreated and sham-treated groups. In treated animals, the local therapy resulted in high bone concentration of ciprofloxacin.

Conclusions: The current experiment confirmed by collaborative results of both bacteriologic, FDG-PET and pQCT studies that the local infection therapy by the selected antibiotic composite was successful in bone eradication of Staphylococcus aureus pathogen.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 66 - 66
1 Mar 2005
Donati D Lucarelli E Beccheroni A Fini M Di Bella C Giavaresi G Guzzardella G Martini L Aldini NN Cenacchi A Del Vento AM Di Maggio N Fornasari PM Giardino R Mercuri M
Full Access

Aim: This study wants to investigate whether the administration of stromal stem cells (SSC) in a platelet-rich plasma (PRP) scaffold could promote angiogenesis which resulted in a better allograft integration.

Methods: surgery: A monolateral resection of 3cm segment of the metatarsus, was perfomed in 10 adult cross-breed sheep (3–4 years old), weighting 60–70 kg.

Isolation and ex-vivo expansion of SSC: nucleated cells were isolated with density gradient and expanded ex-vivo with alpha-MEM containing 20% FCS.

Radiographic and histomorphometric analysis: Radiographs were made after surgery and after 1, 2 and 4 months. Histomorphometric studies were carried out to study the defect and the new bone formation at the implant site

Results: Union had occurred in all the 5 animals of the SSC group after 4 months as observed radiographically and morphologically, while in the control group the osteotomy line was still visible. Histomorphometric analysis demonstrated a higher % of new-bone formation in both the host (%section quadrant) and the grafted bone in SSC animals.

Conclusions: Results presented suggest that SSC in PRP-based scaffold have improved allograft integration. In conclusion the application of this surgical approach may result in an increased and accelerated bone graft integration, reducing the time required for bone healing and increasing the chances of a successful bone implant.


Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 106 - 106
1 May 2011
Apard T Bigorre N Cronier P Steiger V Talha H Massin P Bizot P
Full Access

Introduction: diaphyseal bone defect is one of the most difficult challenge in Orthopaedic and Traumatologic Surgery. One of the techniques for reconstruction of bone defect described by Masquelet is a two-stage procedure: induction of a membrane around a ciment spacer and autologous cancellous bone graft with external fixator. The aim of the study is to evaluate a modified technique with intramedullary nailing for tibial bone defect. Materials and Methods: between 2001 and 2006, 13 patients presented important tibial bone defect. On radiological examination, the mean size was 18,5 cm. 3. (12–30 cm. 3. ). Initially, there were 12 opened fractures (1 Gustilo 1, 2 Gustilo II, 9 fractures Gustilo III), and one osteomyelitis following a compartment syndrome. The mean age of the patients at the procedure was 41 years old (18–74). Our modified technique was as follows:. several debridment and stabilization of bone fragments with a temporary external fixator. first stage: removal of external fixator, intramedullary nailing, and filling of the bone defect with gentamycin cement spacer. Local or free muscular fiap to cover the soft tissue defect. second stage: removal of the spacer and placing autologous cancellous bone graft inside the induced membrane at 3 months. 10 patients had hyperbare oxygenotherapy. All patients were evaluated radiographically and by physical examination. using SF-36 questionnary. Results: There was no amputation but 4 complications. There were 3 deep infections: one just between the 2 stages and one 2 years after the second stage: both were treated by nail exchange and adapted intra-venous anti-biotherapy. The third one was the complete bone graft resorption because of an infection just after the second stage (the only failure of the method). The fourth complication is the nonunion 13 months after the second stage: nails has broken and has been changed. Bone healing was obtained in 12 patients at mean follow-up was 32 months (12–69). They were able to walk 4,3 months after bone grafting. 8 patients answered to the SF-36 questionnary: overall function was limited with a mean score of 99.8. Discussion: and conclusion: Our modified technique gave satisfactory results at medium term. Nailing, comparing to external fixator, offers a better stabilization of bone fragments, better control of axis and length of lower limb, and an easier access for plastic surgery and nurse care. Others bone reconstruction treatment like ilizarov bone transport, free vascularized fibula fiap or allograft are still possible if failure. However, the rate of deep infections are quite high (4/13) may be questionable. Sacrifice of intramedullary blood supply and the difficulties to confirm union on radiological exams are still problematics


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 243 - 243
1 Jul 2014
Decambron A Manassero M Bensidhoum M Petite H Viateau V
Full Access

Summary. MSCs could promote bone regeneration in sheep when loaded on natural fully-resorbable scaffolds, but results are highly variable. Improving the ultimate performance of cell-containing constructs cannot be limited to the decreased rate of scaffold resorption. Introduction. Tissue constructs containing mesenchymal stem cells (MSCs) are an appealing strategy for repairing massive segmental bone defects. However, their therapeutic effectiveness does not match that of autologous bone grafts; among the failure reasons the scaffold resorbability has been identified as a critical feature for achieving bone regeneration. In the present study, the osteogenic potential of 2 constructs obtained by expanding in a bioreactor autologous MSCs onto granules of Acropora or Porites coral, natural fully-resorbable scaffolds, was compared. Materials and methods. 15 sheep underwent a 25 mm long metatarsal ostectomy stabilised with a 3.5 DCP plate. Bone defects were replaced with (i) MSCs-Acropora constructs (n=7), (ii) MSCs-Porites constructs (n=6), (iii) autograft (n=2). Animals were sacrificed 4 months later and bone healing and coral resorption was documented by radiographic, histologic and microCT studies. Results. Results were highly variable in both scaffold groups. Bone formation. Non-union occurred in half cases of each group. In the other half, abundant new bone formation within the defect was observed. This permitted full bone regeneration in 2 animals from the Acropora group and 1 from the Porites group. MicroCT and histomorphometric analysis confirmed great variations as regard of the amount of newly formed bone in defects. Two Acropora-filled defects showed greater amount of newly formed bone than all the Porites-filled defects and were equivalent to the autograft-filled defects, however the difference between the 2 groups wasn't significant. In all groups, the amount of newly formed bone was similar in the proximal, central, and distal thirds of the defects. Coral resorption. The quantitative analysis provided evidence that the Acropora scaffold resorption rate was slower than the Porites one. Bone formation was not statistically associated with coral resorption. However, the 2 Acropora-filled defects with the highest rate of resorption showed a less extend bone formation. Discussion and conclusions. Interestingly, osteogenesis within the 2 constructs was not only found continuous with the bony stumps, but also at the core of the implants. Moreover, bone was observed inside the residual coral fragments. Scaffold resorption was almost complete at 4 months, leading to full bone regeneration in 3 animals. These results provided evidence that MSCs could promote bone regeneration in sheep when loaded on a natural fully-resorbable scaffold. The capacity of the 2 scaffolds to repair defects is statistically similar, despite their different resorption rates and kinetics. This finding suggests that improving the ultimate performance of cell-containing constructs cannot be limited to the decreased rate of scaffold resorption


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 680 - 685
1 May 2017
Morris R Hossain M Evans A Pallister I

Aims

This study describes the use of the Masquelet technique to treat segmental tibial bone loss in 12 patients.

Patients and Methods

This retrospective case series reviewed 12 patients treated between 2010 and 2015 to determine their clinical outcome. Patients were mostly male with a mean age of 36 years (16 to 62). The outcomes recorded included union, infection and amputation. The mean follow-up was 675 days (403 to 952).


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 777 - 781
1 Jun 2013
Abolghasemian M Drexler M Abdelbary H Sayedi H Backstein D Kuzyk P Safir O Gross AE

In this retrospective study we evaluated the proficiency of shelf autograft in the restoration of bone stock as part of primary total hip replacement (THR) for hip dysplasia, and in the results of revision arthroplasty after failure of the primary arthroplasty. Of 146 dysplastic hips treated by THR and a shelf graft, 43 were revised at an average of 156 months, 34 of which were suitable for this study (seven hips were excluded because of insufficient bone-stock data and two hips were excluded because allograft was used in the primary THR). The acetabular bone stock of the hips was assessed during revision surgery. The mean implant–bone contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%) at the time of the revision, which was a significant improvement (p < 0.001). At primary THR all hips had had a segmental acetabular defect > 30%, whereas only five (15%) had significant segmental bone defects requiring structural support at the time of revision. In 15 hips (44%) no bone graft or metal augments were used during revision.

A total of 30 hips were eligible for the survival study. At a mean follow-up of 103 months (27 to 228), two aseptic and two septic failures had occurred. Kaplan-Meier survival analysis of the revision procedures demonstrated a ten-year survival rate of 93.3% (95% confidence interval (CI) 78 to 107) with clinical or radiological failure as the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for non-revised cases at final follow-up.

Our results indicate that the use of shelf autografts during THR for dysplastic hips restores bone stock, contributing to the favourable survival of the revision arthroplasty should the primary procedure fail.

Cite this article: Bone Joint J 2013;95-B:777–81.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option.

Cite this article: Bone Joint J 2013;95-B:166–72.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_23 | Pages 25 - 25
1 May 2013
Chilbule S Dutt V Gahukambale A Madhuri V
Full Access

Purpose

We retrospectively evaluated the outcome of fibula grafts in upper limb post infectious diaphyseal gap nonunions and assessed the following modifiers: age, site, vascularised/ nonvascularised, and length of the graft on time to union, graft incorporation, complication rate and reoperation rate.

Methods

Thirty seven paediatric upper limb segmental defects treated over a period of 10 years were identified. Twenty two post septic defects in 21 children were treated with intramedullary fixation and vascularised/ nonvascularised fibula grafting. Union time was assessed from records and radiographs. Graft incorporation was assessed using Pixel value ratio (Hazra et al). Complications were defined as nonunion, delayed union, implant failure, refractures, graft loss and infection.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 1 - 1
23 Apr 2024
Tsang SJ van Rensburg AJ Epstein G Venter R van Heerden J Ferreira N
Full Access

Introduction. The reconstruction of segmental long bone defects remains one of the holy grails of orthopaedic surgery. The optimal treatment of which remains a topic of great debate. This study aimed to evaluate the outcomes following the management of critical-sized bone defects using a classification-based treatment algorithm. Materials & Methods. A retrospective review of all patients undergoing treatment for segmental diaphyseal defects of long bones at a tertiary-level limb reconstruction unit was performed. The management of the bone defect was standardised as per the classification by Ferreira and Tanwar (2020). Results. A total of 96 patients (mean age 39.8, SD 15.2) with a minimum six months follow-up were included. Most bone defects were the result of open fractures (75/96) with 67% associated with Gustilo-Anderson IIIB injuries. There was a statistical difference in the likelihood of union between treatment strategies with more than 90% of cases undergoing acute shortening and bone transport achieving union and only 72% of cases undergoing the induced membrane technique consolidating (p=0.049). Of those defects that consolidated, there was no difference in the time to bone union between strategies (p=0.308) with an overall median time to union 8.33 months (95% CI 7.4 — 9.2 months). The induced membrane technique was associated with a 40% risk of sepsis. Conclusions. This study reported the outcomes of a standardised approach to the management of critical-sized bone defects. Whilst overall results were supportive of this approach, the outcomes associated with the induced membrane technique require further refinement of its indications in the management of critical-sized bone defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 50 - 50
17 Apr 2023
Li Y Xu J Li G Qin L
Full Access

Critical size bone defects are frequently caused by accidental trauma, oncologic surgery, and infection. Distraction osteogenesis (DO) is a useful technique to promote the repair of critical size bone defects. However, DO is usually a lengthy treatment, therefore accompanied with increased risks of complications such as infections and delayed union. Herein, we developed an innovative intramedullary biodegradable magnesium (Mg) nail to accelerate bone regeneration in critical size bone defect repair during DO. We observed that Mg nail induced almost 4-fold increase of new bone formation and over 5-fold of new vessel formation at 2 weeks after distraction. Mg nail upregulated the expression of calcitonin gene-related peptide (CGRP) in the new bone as compared with the DO alone group. We further revealed that blockade of the sensory nerve by overdose capsaicin blunted Mg nail enhanced critical size bone defect repair during the DO process. Moreover, inhibitors/antagonist of CGRP receptor, FAK, and VEGF receptor blocked the Mg nail stimulated vessel and bone formation. In summary, we revealed, for the first time, a CGRP-FAK-VEGF signaling axis linking sensory nerve and endothelial cells, which may be the main mechanism underlying Mg-enhanced critical size bone defect repair when combined with DO, suggesting a great potential of Mg implants in reducing DO treatment time for clinical applications


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 297 - 301
1 Feb 2022
Jamshidi K Bagherifard A Mohaghegh MR Mirzaei A

Aims. Giant cell tumours (GCTs) of the proximal femur are rare, and there is no consensus about the best method of filling the defect left by curettage. In this study, we compared the outcome of using a fibular strut allograft and bone cement to reconstruct the bone defect after extended curettage of a GCT of the proximal femur. Methods. In a retrospective study, we reviewed 26 patients with a GCT of the proximal femur in whom the bone defect had been filled with either a fibular strut allograft (n = 12) or bone cement (n = 14). Their demographic details and oncological and nononcological complications were retrieved from their medical records. Limb function was assessed using the Musculoskeletal Tumor Society (MSTS) score. Results. Mean follow-up was 116 months (SD 59.2; 48 to 240) for the fibular strut allograft group and 113 months (SD 43.7; 60 to 192) for the bone cement group (p = 0.391). The rate of recurrence was not significantly different between the two groups (25% vs 21.4%). The rate of nononcological complications was 16.7% in the strut allograft group and 42.8% in the bone cement group. Degenerative joint disease was the most frequent nononcological complication in the cement group. The mean MSTS score of the patients was 92.4% (SD 11.5%; 73.3% to 100.0%) in the fibular strut allograft group and 74.2% (SD 10.5%; 66.7% to 96.7%) in the bone cement group (p < 0.001). Conclusion. Given the similar rate of recurrence and a lower rate of nononcological complications, fibular strut grafting could be recommended as a method of reconstructing the bone defect left by curettage of a GCT of the proximal femur. Cite this article: Bone Joint J 2022;104-B(2):297–301


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 130 - 130
4 Apr 2023
Shi Y Deganello D Xia Z
Full Access

Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. Materials and methods:. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 136 - 136
11 Apr 2023
Glatt V Woloszyk A Agarwal A
Full Access

Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of large bone defects at extremely low doses of rhBMP-2 (0.33 μg). The aim of this study was to determine if an extremely low dose of rhBMP-2 delivered within BH can efficiently heal large bone defects in goats. Goat 2.5 cm tibial defects were stabilized with circular fixators, and divided into groups (n=2-3): 2.1 mg rhBMP-2 delivered on an absorbable collagen sponge (ACS); 52.5 μg rhBMP-2 delivered within BH; and an empty group. BH was created using autologous blood with a mixture of calcium and thrombin at specific concentrations. Healing was monitored with X-rays. After 8 weeks, femurs were assessed using microCT. Using 2.1 mg on ACS was sufficient to heal 2.5 cm bone defects. Empty defects resulted in a nonunion after 8 weeks. Radiographic evaluation showed earlier and more robust callus formation with 97.5 % (52.5 μg) less of rhBMP-2 delivered within the BH, and all tibias were fully bridged at 3 weeks. The bone mineral density was significantly higher in defects treated with BH than with ACS. Defects in the BH group had smaller amounts of intramedullary and cortical trabeculation compared to the ACS group, indicating advanced remodeling. The results confirm that the delivery of rhBMP-2 within the BH was much more efficient than on an ACS. Not only did the large bone defects heal consistently with a 40x lower dose of rhBMP-2, but the quality of the defect regeneration was also superior in the BH group. These findings should significantly influence how rhBMP-2 is delivered clinically to maximize the regenerative capacity of bone healing while minimizing the dose required, thereby reducing the risk of adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 84 - 84
2 Jan 2024
Tashmetov E Saginova D Kamyshanskiy Y Saginov A Koshanova A
Full Access

Various approaches have been implemented to enhance bone regeneration, including the utilization of autologous platelet-rich plasma and bone morphogenetic protein-2. The objective of this study was to evaluate the impact of Marburg Bone Bank-derived bone grafts in conjunction with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (ZA) on osteogenesis within rabbit bone defects. Methodology. Bone defects (5mm in diameter) were created in the femurs of 96 male rabbits. The animals were allocated into five groups: (1) bone graft + PRP (BG + PRP), (2) bone graft + 5μg rhBMP-2 (BG + rhBMP-2), (3) bone graft + 5μg ZA (BG + ZA), (4) bone graft + 10μg rhBMP-2 + 5μg ZA (BG + rhBMP-2 + ZA), and (5) bone graft (BG). Marburg Bone Bank-processed human femoral head allografts were utilized for bone grafting. The rabbits were euthanized at 14-, 30-, and 60-days post-surgery, and their femurs underwent histopathological and histomorphometric assessments. Results. Histomorphometric analysis revealed significantly enhanced de novo osteogenesis within the bone allografts in the BG + PRP and BG + rhBMP-2 groups compared to the BG, BG + ZA, and BG + rhBMP-2 + ZA groups at 14 and 30 days (p < 0.05). However, on day 60, the BG + rhBMP-2 group exhibited elevated osteoclastic activity (early resorption). The local co-administration of ZA with thermally treated grafts impeded both bone graft resorption and new bone formation within the bone defect across all time points. The addition of ZA to BG + rhBMP-2 resulted in diminished osteogenic activity compared to the BG + rhBMP-2 group (p < 0.000). Conclusion. The study findings indicated that the combination of PRP and rhBMP-2 with Marburg bone grafts facilitates early-stage osteogenesis in bone defect healing. Incorporating ZA into the thermally treated bone graft hinders both graft resorption and de novo bone formation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 12 - 12
1 Dec 2022
Maggini E Bertoni G Guizzi A Vittone G Manni F Saccomanno M Milano G
Full Access

Glenoid and humeral head bone defects have long been recognized as major determinants in recurrent shoulder instability as well as main predictors of outcomes after surgical stabilization. However, a universally accepted method to quantify them is not available yet. The purpose of the present study is to describe a new CT method to quantify bipolar bone defects volume on a virtually generated 3D model and to evaluate its reproducibility. A cross-sectional observational study has been conducted. Forty CT scans of both shoulders were randomly selected from a series of exams previously acquired on patients affected by anterior shoulder instability. Inclusion criterion was unilateral anterior shoulder instability with at least one episode of dislocation. Exclusion criteria were: bilateral shoulder instability; posterior or multidirectional instability, previous fractures and/or surgery to both shoulders; congenital or acquired inflammatory, neurological, or degenerative diseases. For all patients, CT exams of both shoulders were acquired at the same time following a standardized imaging protocol. The CT data sets were analysed on a standard desktop PC using the software 3D Slicer. Computer-based reconstruction of the Hill-Sachs and glenoid bone defect were performed through Boolean subtraction of the affected side from the contralateral one, resulting in a virtually generated bone fragment accurately fitting the defect. The volume of the bone fragments was then calculated. All measurements were conducted by two fellowship-trained orthopaedic shoulder surgeons. Each measurement was performed twice by one observer to assess intra-observer reliability. Inter and intra-observer reliability were calculated. Intraclass Correlation Coefficients (ICC) were calculated using a two-way random effect model and evaluation of absolute agreement. Confidence intervals (CI) were calculated at 95% confidence level for reliability coefficients. Reliability values range from 0 (no agreement) to 1 (maximum agreement). The study included 34 males and 6 females. Mean age (+ SD) of patients was 36.7 + 10.10 years (range: 25 – 73 years). A bipolar bone defect was observed in all cases. Reliability of humeral head bone fragment measurements showed excellent intra-observer agreement (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good interobserver agreement (ICC: 0.89, CI 95%: 0.80 – 0.94). Similarly, glenoid bone loss measurement resulted in excellent intra-observer reliability (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good inter-observer agreement (ICC: 0.84, CI 95%:0.72 – 0.91). In conclusion, matching affected and intact contralateral humeral head and glenoid by reconstruction on a computer-based virtual model allows identification of bipolar bone defects and enables quantitative determination of bone loss


Bone & Joint Research
Vol. 11, Issue 2 | Pages 82 - 90
7 Feb 2022
Eckert JA Bitsch RG Sonntag R Reiner T Schwarze M Jaeger S

Aims. The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the stability of both variants in a worst-case scenario of bone defects and suboptimal cementation. Methods. Single and twin pegs were implanted randomly allocated in 12 pairs of human fresh-frozen femora. We generated 5° bone defects at the posterior condyle. Relative movement was simulated using a servohydraulic pulser, and analyzed at 70°/115° knee flexion. Relative movement was surveyed at seven points of measurement on implant and bone, using an optic system. Results. At the main fixation zone, the twin peg shows less relative movement at 70°/115°. At the transition zone, relative movements are smaller for the single peg for both angles. The single peg shows higher compression at 70° flexion, whereas the twin peg design shows higher compression at 115°. X-displacement is significantly higher for the single peg at 115°. Conclusion. Bony defects should be avoided in OUKA. The twin peg shows high resilience against push-out force and should be preferred over the single peg. Cite this article: Bone Joint Res 2022;11(2):82–90


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 492 - 499
1 Mar 2021
Garcia-Rey E Saldaña L Garcia-Cimbrelo E

Aims. Bone stock restoration of acetabular bone defects using impaction bone grafting (IBG) in total hip arthroplasty may facilitate future re-revision in the event of failure of the reconstruction. We hypothesized that the acetabular bone defect during re-revision surgery after IBG was smaller than during the previous revision surgery. The clinical and radiological results of re-revisions with repeated use of IBG were also analyzed. Methods. In a series of 382 acetabular revisions using IBG and a cemented component, 45 hips (45 patients) that had failed due to aseptic loosening were re-revised between 1992 and 2016. Acetabular bone defects graded according to Paprosky during the first and the re-revision surgery were compared. Clinical and radiological findings were analyzed over time. Survival analysis was performed using a competing risk analysis. Results. Intraoperative bone defect during the initial revision included 19 Paprosky type IIIA and 29 Paprosky type IIIB hips; at re-revision, seven hips were Paprosky type II, 27 type IIIA and 11 were type IIIB (p = 0.020). The mean preoperative Harris Hip Score was 45.4 (SD 6.4), becoming 80.7 (SD 12.7) at the final follow-up. In all, 12 hips showed radiological migration of the acetabular component, and three required further revision surgery. The nine-year cumulative failure incidence (nine patients at risk) of the acetabular component for further revision surgery was 9.6% (95% confidence interval (CI) 2.9 to 21.0) for any cause, and 7.5% (95% CI 1.9 to 18.5) for aseptic loosening. Hips with a greater hip height had a higher risk for radiological migration (odds ratio 1.09, 95% CI 1.02 to 1.17; p = 0.008). Conclusion. Bone stock restoration can be obtained using IBG in revision hip surgery. This technique is also useful in re-revision surgery; however, a better surgical technique including a closer distance to hip rotation centre could decrease the risk of radiological migration of the acetabular component. A longer follow-up is required to assess potential fixation deterioration. Cite this article: Bone Joint J 2021;103-B(3):492–499


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 89 - 89
2 Jan 2024
Gao Y Wu X Zhang Z Xu J
Full Access

Stem cell therapy is an effective means to address the repair of large segmental bone defects. However, the intense inflammatory response triggered by the implants severely impairs stem cell differentiation and tissue regeneration. High-dose transforming growth factor β1 (TGF-β1), the most locally expressed cytokine in implants, inhibits osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and promotes tissue fibrosis, severely compromising the efficacy of stem cell therapy. Small molecule inhibitors of TGF-β1 can be used to ameliorate the osteogenic disorders caused by high concentrations of TGF-β1, but systemic inhibition of TGF-β1 function will cause strong adverse effects. How to find safe and reliable molecular targets to antagonize TGF-β1 remains to be elucidated. Orphan nuclear receptor Nr4a1, an endogenous inhibitory molecule of TGF-β1, suppresses tissue fibrosis, but its role in BMSC osteogenesis is unclear. We found that TGF-β1 inhibited Nr4a1 expression through HDAC4. Overexpression of Nr4a1 in BMSCs reversed osteogenic differentiation inhibited by high levels of TGF- β1. Mechanistically, RNA sequencing showed that Nr4a1 activated the ECM-receptor interaction and Hippo signaling pathway, which in turn promoted BMSC osteogenesis. In bone defect repair and fracture healing models, transplantation of Nr4a1-overexpressing BMSCs into C57BL/6J mice or treatment with the Nr4a1 agonist Csn-B significantly ameliorated inflammation-induced bone regeneration disorders. In summary, our findings confirm the endogenous inhibitory effect of Nr4a1 on TGF- β1 and uncover the effectiveness of Nr4a1 agonists as a therapeutic tool to improve bone regeneration, which provides a new solution strategy for the treatment of clinical bone defects and inflammatory skeletal diseases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 34 - 34
4 Apr 2023
Kaneko Y Minehara H Nakamura M Sekiguchi M Matsushita T Konno S
Full Access

Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model. The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining, immunohistochemical staining (IHC) was used to evaluate the CD68 expression as a marker of M1 macrophage. Iron staining was performed additionally to distinguish them from hemosiderin-phagocytosed macrophages. In group M, HE staining revealed a hematoma-like structure, and CD68-positive cells were observed between the spacer and fibroblast layer at 1 week. The number of CD68-positive cells decreased at 2 weeks, while they were observed around the new bone at 4 and 6 weeks. In group C, fibroblast infiltration and fewer CD68-positive cells were observed in the bone defect without hematoma-like structure until 2 weeks, and no CD68-positive cells were observed at 4 and 6 weeks. Iron staining showed hemosiderin deposition in the surrounding area of the new bone in both groups at 4 and 6 weeks. The location of hemosiderin deposition was different from that of macrophage aggregation. This study suggests that M1 macrophage aggregation is involved in the formation of induced membranes and osteogenesis and may be facilitated by the presence of spacers


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 63 - 63
2 Jan 2024
Charbonnier B Guyon L Touya N Dutilleul M Véziers J Maitre P Gauthier O Corre P Weiss P
Full Access

Developments in the field of additive manufacturing have allowed significant improvements in the design and production of scaffolds with biologically relevant features to treat bone defects. Unfortunately, the workflow to generate personalized scaffolds is source of inaccuracies leading to a poor fit between the implant and patients' bone defects. In addition, scaffolds are often brittle and fragile, uneasing their handling by surgeons, with significant risks of fracture during their insertion in the defect. Consequently, we developed organo-mineral cementitious scaffolds displaying evolutive mechanical properties which are currently being evaluated to treat maxillofacial bone deformities in veterinary clinics. Treatment of dog patients was approved by ethic and welfare committees (CERVO-2022-14-V). To date, 8 puppies with cleft palate/lip deformities received the following treatment. Two weeks prior surgery, CT-scan of patient's skull was performed to allow for surgical planning and scaffold designing. Organo-mineral printable pastes were formulated by mixing an inorganic cement precursor (α-Ca3(PO4)2) to a self-reticulating hydrogel (silanized hyaluronic acid) supplemented with a viscosifier (hydroxymethylpropylcellulose). Scaffolds were produced by robocasting of these pastes. Surgical interventions included the reconstruction of soft tissues, and the insertion of the scaffold soaked with autologous bone marrow. Bone formation was monitored 3 and 6 months after reconstruction, and a biopsy at 6 months was performed for more detailed analyses. Scaffolds displayed great handling properties and were inserted within bone defects without significant issue with a relevant bone edges/scaffold contact. Osteointegration of the scaffolds was observed after 3 months, and regeneration of the defect at 6 months seemed quite promising. Preliminary results have demonstrated a potential of the set-up strategy to treat cleft lip/palate deformities in real, spontaneous clinical setting. Translation of these innovative scaffolds to orthopedics is planned for a near future