header advert
Results 1 - 50 of 73
Results per page:
Bone & Joint Open
Vol. 4, Issue 12 | Pages 932 - 941
6 Dec 2023
Oe K Iida H Otsuki Y Kobayashi F Sogawa S Nakamura T Saito T

Aims

Although there are various pelvic osteotomies for acetabular dysplasia of the hip, shelf operations offer effective and minimally invasive osteotomy. Our study aimed to assess outcomes following modified Spitzy shelf acetabuloplasty.

Methods

Between November 2000 and December 2016, we retrospectively evaluated 144 consecutive hip procedures in 122 patients a minimum of five years after undergoing modified Spitzy shelf acetabuloplasty for acetabular dysplasia including osteoarthritis (OA). Our follow-up rate was 92%. The mean age at time of surgery was 37 years (13 to 58), with a mean follow-up of 11 years (5 to 21). Advanced OA (Tönnis grade ≥ 2) was present preoperatively in 16 hips (11%). The preoperative lateral centre-edge angle ranged from -28° to 25°. Survival was determined by Kaplan-Meier analysis, using conversions to total hip arthroplasty as the endpoint. Risk factors for joint space narrowing less than 2 mm were analyzed using a Cox proportional hazards model.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 715 - 722
10 Oct 2022
Matsuyama Y Nakamura T Yoshida K Hagi T Iino T Asanuma K Sudo A

Aims

Acridine orange (AO) demonstrates several biological activities. When exposed to low doses of X-ray radiation, AO increases the production of reactive radicals (radiodynamic therapy (AO-RDT)). We elucidated the efficacy of AO-RDT in breast and prostate cancer cell lines, which are likely to develop bone metastases.

Methods

We used the mouse osteosarcoma cell line LM8, the human breast cancer cell line MDA-MB-231, and the human prostate cancer cell line PC-3. Cultured cells were exposed to AO and radiation at various concentrations followed by various doses of irradiation. The cell viability was then measured. In vivo, each cell was inoculated subcutaneously into the backs of mice. In the AO-RDT group, AO (1.0 μg) was locally administered subcutaneously around the tumour followed by 5 Gy of irradiation. In the radiation group, 5 Gy of irradiation alone was administered after macroscopic tumour formation. The mice were killed on the 14th day after treatment. The change in tumour volume by AO-RDT was primarily evaluated.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1809 - 1814
1 Dec 2021
Nakamura T Kawai A Hagi T Asanuma K Sudo A

Aims

Patients with soft-tissue sarcoma (STS) who undergo unplanned excision (UE) are reported to have worse outcomes than those who undergo planned excision (PE). However, others have reported that patients who undergo UE may have similar or improved outcomes. These discrepancies are likely to be due to differences in characteristics between the two groups of patients. The aim of the study is to compare patients who underwent UE and PE using propensity score matching, by analyzing data from the Japanese Bone and Soft Tissue Tumor (BSTT) registry.

Methods

Data from 2006 to 2016 was obtained from the BSTT registry. Only patients with STS of the limb were included in the study. Patients with distant metastasis at the initial presentation and patients with dermatofibrosarcoma protuberans and well-differentiated liposarcoma were excluded from the study.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 821 - 826
1 Nov 2020
Hagi T Nakamura T Kita K Iino T Asanuma K Sudo A

Aims

Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines.

Methods

We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims

Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation.

Methods

Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 87 - 87
1 Feb 2020
Yoshitani J Kabata T Kajino Y Inoue D Ohmori T Taga T Takagi T Ueno T Ueoka K Yamamuro Y Nakamura T Tsuchiya H
Full Access

Aims

Accurate positioning of the acetabular component is essential for achieving the best outcome in total hip arthroplasty (THA). However, the acetabular shape and anatomy in severe hip dysplasia (Crowe type IV hips) is different from that of arthritic hips. Positioning the acetabular component in the acetabulum of Crowe IV hips may be surgically challenging, and the usual surgical landmarks may be absent or difficult to identify. We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component as assessed by morphometric geometrical analysis and its reliability.

Patients and Methods

A total of 52 Crowe IV and 50 normal hips undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiographic inclination of 40° and anteversion of 20° (Figure 1). Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis (Figure 2). To describe major trends in shape variations within the sample, we performed a principal component analysis of partial warp variables (Figure 3).


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 189 - 197
1 Feb 2019
Yoshitani J Kabata T Kajino Y Ueno T Ueoka K Nakamura T Tsuchiya H

Aims

We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component, as assessed by morphometric geometrical analysis, and its reliability.

Patients and Methods

A total of 52 Crowe IV hips (42 patients; seven male, 35 female; mean age 68.5 years (32 to 82)) and 50 normal hips (50 patients; eight male, 42 female; mean age 60.7 years (34 to 86)) undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiological inclination of 40° and anteversion of 20°. Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 47 - 47
1 Mar 2017
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1].

In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state.

The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment.

Methods

Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium).

The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane.

The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 73 - 73
1 May 2016
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Kinematically or anatomically aligned total knee arthroplasty (TKA) has been reported to provide improved clinical outcomes by replicating patient's original joint line [1][2].

It has been known that tibial (joint line) varus varies among patients, and the tibial varus would increase over progression of arthritis and bone remodeling. For those patients with significant deformity, the current tibial varus may significantly differ from its pre-diseased state.

In this exploratory study, geometry and alignment of the tibial growth plate were measured with respect to tibial anatomical landmarks in order to better understand modes of tibial deformity and seek possible application in reconstructing pre-diseased joint alignment.

Methods

CT scans of sixteen healthy Japanese knees (M6:F10, Age 31.9±13.9 years) were studied. Three-dimensional reconstruction models were created using Mimics 17 (Materialise, Leuven, Belgium). First, a mid-sagittal tibial reference plane, for comparing the varus/valgus orientation of the tibial plateau to that of the growth plate, was defined by the medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined from three points; dwell point of femur (aligned in extension) on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface sampled in the sagittal view and coinciding with dwell point of femur on medial tibia.

Then, a three-dimensional model of the tibial growth plate was extracted using the Livewire function and mask editing tools in Mimics. To determine 3D orientation of the growth plate (GP), the vertical mass moment of inertia axis was calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 150 - 150
1 Jan 2016
Liao Y Whitaker D Nakamura T Hardaker C
Full Access

Introduction

Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes Joint Reconstruction, Warsaw, IN) is made from polyethylene resin GUR 1050, gamma-irradiated at a dose of 5.0 Mrads to create crosslinking of polyethylene, and followed by a remelting process to eliminate free radicals for oxidative stability. 10-year clinical study [1] and laboratory wear simulation tests [2–3] have reported excellent wear performance of the MARATHON poly.

There continues to be demand for improved head-to-shell ratio acetabular systems because larger head sizes have the benefits of increased stability and range of motion. The increased head-to-shell ratio is often times achieved by using a reduced liner thickness. One of the clinical concerns of thinner poly liners is the potential for rim fracture, particularly in the occurrences of rim loading or impingement at high cup angles [4–7].

This study investigated the performance of thinner poly liners to the challenge of high angle rim loading and neck-to-liner impingement.

Materials and Methods

Three groups of ETO sterilized MARATHON polyethylene liners (ID/OD: 28/44, 32/48, and 36/52 mm) were paired with matching CoCrMo heads (n=6 each group). To simulate rim loading, liners were assembled in the metal shells tilted at 64° (Figure 1) with sinusoidal loading (0 to 5000N at 3Hz) in a 37°C water bath for 5-million cycles or until component failure, whichever occurred first.

For neck-liner impingement testing, metal shells were potted at 54º (in the abduction/adduction plane with a ±10° of motion per ISO 14242–1 [8]) on a hip simulator (n=4 each group) using a physiological loading (max 3000N at 1Hz) for 3-million cycles (Figure 2). The impingement occurred at 64º during the simulated gait cycle (Figure 3).

The liners were inspected every million cycles, using a high intensity light to search for signs of crack initiation and/or fractures. Both test methods were validated to be able to replicate liner fractures.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 131 - 131
1 Jan 2016
Fitzpatrick CK Clary C Nakamura T Rullkoetter P
Full Access

Introduction

The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain.

Methods

A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and HKA angle was altered from neutral to ±3° and ±7° (valgus and varus) (Figure 1).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 98 - 98
1 Jan 2016
Kawamura H Oe K Ueda Y Okamoto N Nakamura T Ueda N Iida H
Full Access

Introduction

Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head.

Materials and Methods

A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 96 - 96
1 Jan 2016
Oe K Ueda N Nakamura T Okamoto N Ueda Y Iida H
Full Access

Introduction

Antibiotic-loaded acrylic cement (ALAC) is employed in the treatment or prevention of infected total hip arthroplasty (THA). We have administered vancomycin (VCM) as the ALAC for the treatment of THAs with methicillin-resistant Staphylococcus aureus, or for the prevention of THAs with high risks. This study aimed to evaluate the serum concentration of VCM from ALAC in THA or cement beads.

Methods

Between December 2013 and February 2014, 16 hips (16 patients) underwent application of the ALAC including VCM at our institution. Two hips were used for the treatment of infection, in the first stage of two-staged revision THAs (i.e., cement beads). Two hips were used for the both treatment and prevention of infection, in one-staged revision THAs. Twelve hips were used for the prevention of infection, in aseptic revision THAs or primary THAs with high risks. Patients were classified into two groups depending on the VCM concentration of ALAC, as follows: high-dose group (2 hips), average 4.4% (3.8–5.0%); low-dose group (14 hips), average 1.6% (1.3–2.5%). The amount of VCM placed as ALAC into the hip was calculated by using the remaining ALAC. The serum concentration of VCM was evaluated at 1 day, 4 days, 7 days, and 28 days after surgery. Statistical analysis was performed by using the t-test, and the differences were considered significant when the p value was <0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 132 - 132
1 Jan 2016
Fitzpatrick CK Nakamura T Niki Y Rullkoetter P
Full Access

Introduction

A large number of total knee arthroplasty (TKA) patients, particularly in Japan, India and the Middle East, exhibit anatomy with substantial proximal tibial torsion. Alignment of the tibial components with the standard anterior-posterior (A-P) axis of the tibia can result in excessive external rotation of the tibial components with respect to femoral component alignment. This in turn influences patellofemoral (PF) mechanics and forces required by the extensor mechanism. The purpose of the current study was to determine if a rotating-platform (RP) TKA design with an anatomic patellar component reduced compromise to the patellar tendon, quadriceps muscles and PF mechanics when compared to a fixed-bearing (FB) design with a standard dome-shaped patellar component.

Methods

A dynamic three-dimensional finite element model of the knee joint was developed and used to simulate a deep knee bend in a patient with excessive external tibial torsion (Figure 1). Detailed description of the model has been previously published [1]. The model included femur, tibia and patellar bones, TKA components, patellar ligament, quadriceps muscles, PF ligaments, and nine primary ligaments spanning the TF joint. The model was virtually implanted with two contemporary TKA designs; a FB design with domed patella, and a RP design with anatomic patella. The FB design was implanted in two different alignment conditions; alignment to the tibial A-P axis, and optimal alignment for bone coverage. Four different loading conditions (varying internal-external (I-E) torque and A-P force) were applied to the model to simulate physiological loads during a deep knee bend. Quadriceps muscle force, patellar tendon force, and PF and TF joint forces were compared between designs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 120 - 120
1 Jan 2016
Watanabe T Muneta T Sekiya I Koga H Horie M Nakamura T Otabe K Banks S
Full Access

INTRODUCTION

Total knee arthroplasty (TKA) is one of the most successful and beneficial treatments for osteoarthritic knees. We have developed posterior-stabilized (PS) total knee prosthesis for Asian patients, especially Japanese patients, and have used it since November, 2010. The component was designed based on the CT images of osteoarthritic knees, aiming to achieve deep flexion and stability. The purpose of this study was to analyze in- vivo kinematics of this new prosthesis.

METHODS

We analyzed a total of 28 knees implanted with PS TKAs: Fourteen knees with the new PS prosthesis (group A), and the other fourteen knees with a popular PS prosthesis as a control group (group B). Preoperative data of both groups were not significantly difference. Flat-panel radiographic knee images were recorded during five static knee postures including full extension standing, lunge at 90° and maximum flexion, and kneeling at 90° and maximum flexion. The three-dimensional position and orientation of the implant components were determined using model-based shape matching techniques. The results of this shape-matching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 to 1.0 mm for translations in the sagittal plane. Unpaired t-tests were used for statistical analysis and probability values less than 0.05 were considered significant.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1582 - 1587
1 Nov 2015
Suzuki T Seki A Nakamura T Ikegami H Takayama S Nakamura M Matsumoto M Sato K

This retrospective study was designed to evaluate the outcomes of re-dislocation of the radial head after corrective osteotomy for chronic dislocation. A total of 12 children with a mean age of 11 years (5 to 16), with further dislocation of the radial head after corrective osteotomy of the forearm, were followed for a mean of five years (2 to 10). Re-operations were performed for radial head re-dislocation in six children, while the other six did not undergo re-operation (‘non-re-operation group’). The active range of movement (ROM) of their elbows was evaluated before and after the first operation, and at the most recent follow-up.

In the re-operation group, there were significant decreases in extension, pronation, and supination when comparing the ROM following the corrective osteotomy and following re-operation (p < 0.05).

The children who had not undergone re-operation achieved a better ROM than those who had undergone re-operation.

There was a significant difference in mean pronation (76° vs 0°) between the non- re-operation and the re-operation group (p = 0.002), and a trend towards increases in mean flexion (133° vs 111°), extension (0° vs 23°), and supination (62° vs 29°). We did not find a clear benefit for re-operation in children with a re-dislocation following corrective osteotomy for chronic dislocation of the radial head.

Cite this article: Bone Joint J 2015;97-B:1582–7.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 847 - 852
1 Jun 2015
Nakamura T Matsumine A Asanuma K Matsubara T Sudo A

The aim of this study was to determine whether the high-sensitivity modified Glasgow prognostic score (Hs-mGPS) could predict the disease-specific survival and oncological outcome in adult patients with non-metastatic soft-tissue sarcoma before treatment. A total of 139 patients treated between 2001 and 2012 were retrospectively reviewed. The Hs-mGPS varied between 0 and 2. Patients with a score of 2 had a poorer disease-specific survival than patients with a score of 0 (p < 0.001). The estimated five-year rate of disease-specific survival for those with a score of 2 was 0%, compared with 85.4% (95% CI 77.3 to 93.5) for those with a score of 0. Those with a score of 2 also had a poorer disease-specific survival than those with a score of 1 (75.3%, 95% CI 55.8 to 94.8; p < 0.001). Patients with a score of 2 also had a poorer event-free rate than those with a score of 0 (p < 0.001). Those with a score of 2 also had a poorer event-free survival than did those with a score of 1 (p = 0.03). A multivariate analysis showed that the Hs-mGPS remained an independent predictor of survival and recurrence. The Hs-mGPS could be a useful prognostic marker in patients with a soft-tissue sarcoma.

Cite this article: Bone Joint J 2015; 97-B:847–52.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 209 - 209
1 Jul 2014
Ishikawa M Ito H Yoshitomi H Murata K Shibuya H Furu M Kitaori T Nakamura T Matsuda S
Full Access

Summary Statement

MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated.

Results

PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. In vivo Antagonist Study: To elucidate whether MCP-1/CCR2 axis is involved during the early phase of fracture healing, we continuously administered RS102895, CCR2 antagonist, before or after rib fracture. Micro-CT analysis showed delayed fracture healing in the before-group compared with both the control and after-group. On day 21, the hard callus volume in the before-group was significantly smaller than that in the control-group. Histological analysis showed that fractures in both the control and the after-groups were healed by day 21. In contrast, less of cartilage in the callus was observed in the before-group on day 7. Gain of Function: To examine the roles of MCP-1 at the periosteum and the endosteum during the fracture healing, we created a segmental bone graft exchanging model. The bone grafts were transplanted from MCP-1−/− mice to another MCP-1−/− mice (KO-to-KO). Micro-CT analysis showed that KO-to-KO transplantation led to the delay of fracture healing on day 21. Next, we created exchanging-bone graft models between MCP-1−/− and WT mice, in which a segmental bone derived from a WT mouse was transplanted into a host MCP-1−/− mouse (WT-to-KO). In contrast to KO-to-KO bone graft transplantation, the transplantation of WT-derived graft into host KO mouse resulted in a significant increase of new bone formation on day 21. Histological analysis revealed that marked and localised induction of MCP-1 expression in the periosteum and the endosteum around the WT-derived graft was observed in the host MCP-1−/− mouse. Loss of Function: To validate whether MCP-1 is a crucial chemokine for fracture healing, we created WT-to-WT and KO-to-WT bone graft models. When WT-donor graft was transplanted into WT-host, abundant new bone formation was observed around a WT-derived graft on day 21. In contrast, transplantation of KO-derived graft into WT-host resulted in a marked reduction of periosteal bone formation on a donor graft.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 352 - 352
1 Jul 2014
Oki S Matsumura N Morioka T Ikegami H Kiriyama Y Nakamura T Toyama Y Nagura T
Full Access

Summary Statement

We measured scapulothoracic motions during humeral abduction with different humeral rotations in healthy subjects and whole cadaver models and clarified that humeral rotation significantly influenced scapular kinematics.

Introduction

Scapular dyskinesis has been observed in various shoulder disorders such as impingement syndrome or rotator cuff tears. However, the relationship between scapular kinematics and humeral positions remains unclear. We hypothesised that humeral rotation would influence scapular motions during humeral abduction and measured scapular motion relative to the thorax in the healthy subjects and whole cadavers.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 665 - 672
1 May 2014
Gaston CL Nakamura T Reddy K Abudu A Carter S Jeys L Tillman R Grimer R

Bone sarcomas are rare cancers and orthopaedic surgeons come across them infrequently, sometimes unexpectedly during surgical procedures. We investigated the outcomes of patients who underwent a surgical procedure where sarcomas were found unexpectedly and were subsequently referred to our unit for treatment. We identified 95 patients (44 intra-lesional excisions, 35 fracture fixations, 16 joint replacements) with mean age of 48 years (11 to 83); 60% were males (n = 57). Local recurrence arose in 40% who underwent limb salvage surgery versus 12% who had an amputation. Despite achieving local control, overall survival was worse for patients treated with amputation rather than limb salvage (54% vs 75% five-year survival). Factors that negatively influenced survival were invasive primary surgery (fracture fixation, joint replacement), a delay of greater than two months until referral to our oncology service, and high-grade tumours. Survival in these circumstances depends mostly on factors that are determined prior to definitive treatment by a tertiary orthopaedic oncology unit. Limb salvage in this group of patients is associated with a higher rate of inadequate marginal surgery and, consequently, higher local recurrence rates than amputation, but should still be attempted whenever possible, as local control is not the primary determinant of survival.

Cite this article: Bone Joint J 2014;96-B:665–72.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 565 - 565
1 Dec 2013
Ueda N Oe K Kawamura H Nakamura T Okamoto N Ueda Y Iida H
Full Access

Introduction:

The diagnosis of implant-associated infections is challenging, and the conventional culturing of periprosthetic tissue has been the gold standard for diagnosis of implant-associated infections. However, conventional diagnostic tests are inaccurate because the pathogenesis of implant-associated infection is related to microorganisms growing in biofilms. We compared culture of samples obtained by sonication of explanted implants to dislodge adherent bacteria from implants with conventional culture of periprosthetic tissue. The purpose of this study is to evaluate the results of sonication that is microbiological diagnostic method for implant-associated infections.

Materials and Methods:

Between January 2013 and April 2013, a total of 19 consecutive patients underwent the removal of implants at our institution. There were 15 women and 4 men with a mean age of 71 years (32 to 90) at the time of the operation. Implants were removed because of aseptic loosening in 9 patients, infection in 6 patients, necrosis in 2 patients, dislocation in 1 patient and implant fracture in 1 patient. Removed implants, including 17 joint prostheses and 2 fracture fixation devices, were subjected to sonication in a BactoSonic (BANDELIN, Germany). Preoperative bacterial culture, intraoperative conventional culture of periprosthetic tissue, intraoperative culture of sonicate-fluid, and pathological examination were assessed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 586 - 586
1 Dec 2013
Whitaker D Liao Y Nakamura T Hardaker C
Full Access

Introduction:

Moderately crosslinked polyethylene maintains a balance of wear resistance and mechanical properties. The GVF poly was manufactured from GUR1020 UHMWPE bars, sealed in vacuumed foil package, and gamma sterilized at 4 Mrads. The MARATHON® polyethylene inserts were manufactured from GUR1050 UHMWPE bars, crosslinked by gamma irradiation at 5 Mrad, and followed by a remelting process that eliminates free radicals. The final sterilization method is gas plasma (GP) or ethylene oxide (EtO). Both methods will not introduce free radicals. Previous studies have shown MARATHON polyethylene (GP sterilized) with 83% lower wear than conventional polyethylene in a simulation test [1], compared to a 10-year clinical study that showed 77% wear reduction [2]. There is no study to compare the wear performance of MARATHON (EtO sterilized) and conventional poly.

Materials and Methods:

Four groups of polyethylene inserts (Table 1) were paired with matching femoral heads that were manufactured from CoCrMo (ASTM F1537) with diameters of 28, 32, and 36 mm. The inserts were chosen to have similar thickness at the dome for MARATHON, while for GVF it was the largest head size available.

Wear testing was performed on an AMTI Hip Simulator per the ISO 14242-1 standard [3] at 1 Hz using the described inputs (Table 2), which provide a larger range of motion than the ISO standard. The cups were mounted in accordance with ISO 14242-1 using custom fixturing and secured with cement while the femoral heads were mounted on a vertical taper support. Testing was performed in 25% bovine calf serum at 37 ± 2°C. Wear of the inserts was determined gravimetrically. Finally, wear rates were calculated by linear regression and then compared between the groups using ANOVA analysis (α = 0.05).


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1280 - 1284
1 Sep 2013
Yamaguchi T Matsumine A Niimi R Nakamura T Matsubara T Asanuma K Hasegawa M Sudo A

The aim of this study was to define the incidence of venous thromboembolism (VTE) and risk factors for the development of deep-vein thrombosis (DVT) after the resection of a musculoskeletal tumour. A total of 94 patients who underwent resection of a musculoskeletal tumour between January 2003 and December 2005 were prospectively studied. There were 42 men and 52 women with a mean age of 54.4 years (18 to 86). All patients wore intermittent pneumatic compression devices and graduated compression stockings. Ultrasound examination of the lower limbs was conducted to screen for DVT between the fifth and ninth post-operative days.

DVT was detected in 21 patients (22%). Of these, two were symptomatic (2%). One patient (1%) had a fatal pulmonary embolism. Patients aged ≥ 70 years had an increased risk of DVT (p = 0.004).

The overall incidence of DVT (both symptomatic and asymptomatic) after resection of a musculoskeletal tumour with mechanical prophylaxis was high. It seems that both mechanical and anticoagulant prophylaxis is needed to prevent VTE in patients who have undergone the resection of a musculoskeletal tumour.

Cite this article: Bone Joint J 2013;95-B:1280–4.


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1139 - 1143
1 Aug 2013
Nakamura T Grimer RJ Carter SR Tillman RM Abudu A Jeys L Sudo A

We evaluated the risk of late relapse and further outcome in patients with soft-tissue sarcomas who were alive and event-free more than five years after initial treatment. From our database we identified 1912 patients with these pathologies treated between 1980 and 2006. Of these 1912 patients, 603 were alive and event-free more than five years after initial treatment and we retrospectively reviewed them. The mean age of this group was 48 years (4 to 94) and 340 were men. The mean follow-up was 106 months (60 to 336). Of the original cohort, 582 (97%) were alive at final follow-up. The disease-specific survival was 96.4% (95% confidence interval (CI) 94.4 to 98.3) at ten years and 92.9% (95% CI 89 to 96.8) at 15 years. The rate of late relapse was 6.3% (38 of 603). The ten- and 15-year event-free rates were 93.2% (95% CI 90.8 to 95.7) and 86.1% (95% CI 80.2 to 92.1), respectively. Multivariate analysis showed that tumour size and tumour grade remained independent predictors of events. In spite of further treatment, 19 of the 38 patients died of sarcoma. The three- and five-year survival rates after the late relapse were 56.2% (95% CI 39.5 to 73.3) and 43.2% (95% CI 24.7 to 61.7), respectively, with a median survival time of 46 months. Patients with soft-tissue sarcoma, especially if large, require long-term follow-up, especially as they have moderate potential to have their disease controlled.

Cite this article: Bone Joint J 2013;95-B:1139–43.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 96 - 96
1 Aug 2013
Enomoto H Nakamura T Shimosawa H Niki Y Kiriyama Y Nagura T Toyama Y Suda Y
Full Access

Although proximal tibia vara is physiologically and pathologically observed, it is difficult to measure the varus angle accurately and reproducibly due to inaccuracy of the radiograph because of rotational and/or torsional deformities. Since tibial coronal alignment in TKA gives influence on implant longevity, intra- or extra-medurally cutting guide should be set carefully especially in cases with severe tibia vara. In this context, we measured the proximal tibial varus angle by introducing 3D-coordinate system.

Materials & Methods

Three-dimensional models of 32 tibiae (23 females, 9 males, 71.2 ± 7.8 y/o) were reconstructed from CT data of the patients undergoing CT-based navigation assisted TKA. Clinically relevant mid-sagittal plane is defined by proximal tibial antero-posterior axis and an apex of the tibial plafond. After the cross-sectional contours of the tibial canal were extracted, least-square lines were fitted to define the proximal diaphyseal and the metaphyseal anatomical axis. The proximal tibia vara was firstly investigated in terms of distribution of proximal anatomical axis exits at the joint surface. TVA1 and TVA2 were defined to be a project angle on the coronal plane between the metaphyseal tibial anatomical axis and the proximal diaphyseal anatomical axis, and that between the metaphyseal tibial anatomical axis and the tibial functional axis, respectively. The correlations of each angle with age and femoro-tibial angle (FTA) were also examined.

Results

The proximal anatomical axis exits distributed 4.3 ± 1.7 mm medially and 17.1 ± 3.4 mm anteriorly. TVA1 and TVA2 were 12.5 ± 4.5°(4.4?23.0°) and 11.8 ± 4.4° (4.4?22.0°), respectively. The correlations of FTA with TVA1 (r=0.374, p<0.05) and TVA2 (r=0.439, p<0.05) were statistically significant.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 67 - 67
1 Apr 2013
Ikeda S Sakai A Tanaka H Takeuchi Y Ohnishi H Murakami H Saito M Ito M Nakamura T
Full Access

Introduction

Atypical femoral fracture focused on relation of bisphosphonate use, frequently. However, the mechanism of atypical femoral fracture was not yet clarified. Atypical femoral fractures have been kept femoral shaft cortical thickness and BMD, practically. We hypothesized that atypical femoral fractures were associated with impaired bone quality and curvature of femoral shaft.

Materials & Methods

We experienced four atypical femoral fractures. One was subtrochanteric and three were shaft fracture. Two cases received bisphosphonate therapy for 3–5 years. BMD, bone metabolic markers, and bone quality markers were evaluated. Histomorphometry and collagen cross-link analysis were performed. Curvature of femoral shaft and 3-D finite element analysis in one incomplete fracture case were assessed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 45 - 45
1 Apr 2013
Zenke Y Sakai A Oshige T Menuki K Murai T Yamanaka Y Furukawa K Nakamura T
Full Access

The previous bioabsorbable plates have had several issues with regard to clinical usage for fractures. The aims of this study were to demonstrate the clinical results of novel bioabsorbable plates made of hydroxyapatite/poly-L-lactide and titanium plates for metacarpal fractures and to compare mechanical properties of them in a fracture model. The subjects were 33 metacarpal diaphyseal fractures of 27 consecutive patients treated with bioabsorbable plates. The mean age was 35.8 (17–78), 22 male and 5 female was included. The mean follow up period was 7.4months (2–14). All cases achieved bone union, and there were no complication especially for aseptic swelling etc.

Furthermore, we compared the mechanical properties of bioabsorbable and titanium plates. There were no significant differences in 6 month postoperative clinical results including total range of active motion and % of the contralateral grip strength between patients receiving bioabsorbable and titanium plates. The bending strength and stiffness of one-third tubular bioabsorbable plate constructs were comparable with those of titanium plates for 1.5mm screws, and those of semi-tubular bioabsorbable plates were comparable with those of titanium plates for 2.0mm screws. The torsional strength of semi-tubular bioabsorbable plates was significantly greater than that of titanium plates for 2.0mm screws.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 288 - 288
1 Mar 2013
Oe K Okamoto N Asada T Nakamura T Wada T Iida H
Full Access

Introduction

It is still controversial whether one or two-stage revision should be indicated for deeply infected hip prosthesis, and there are no scoring systems for the decision of them. An assessment system for the treatment of deeply infected hip prosthesis was evaluated for the patients who had undergone one or two-stage revision total hip arthroplasty (THA).

Materials and Methods

Between February 2001 and November 2009, revision THA for deep infection was carried out in 60 hips on 59 patients by the senior authors. Nineteen hips underwent one-stage revision THA using antibiotic-loaded acrylic cement (ALAC), and 41 hips did two-stage revision THA using ALAC beads, based on the criteria by Jackson and Schmalzried. This study included 47 revisions in 47 patients for which a minimum follow-up of two years (average 4.7 years). Six parameters were employed in the assessment system: 1) general condition, 2) duration of infection, 3) wound complication after initial operation, 4) microorganism, 5) C-reactive protein (CRP), and 6) necessity for grafting bone. Each parameter ranged from 0 to 2 points, giving a full score of 12 points. Healing was defined as the lack of clinical signs and symptoms of infection, a CRP level < 10 mg/l or an erythrocyte sedimentation rate < 20 mm/h, and the absence or radiological signs of infection at the follow-up visit > 24 months after first revision, described by Giulieri et al.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 411 - 418
1 Mar 2013
Nakamura T Grimer RJ Gaston CL Watanuki M Sudo A Jeys L

The aim of this study was to determine whether the level of circulating C-reactive protein (CRP) before treatment predicted overall disease-specific survival and local tumour control in patients with a sarcoma of bone.

We retrospectively reviewed 318 patients who presented with a primary sarcoma of bone between 2003 and 2010. Those who presented with metastases and/or local recurrence were excluded.

Elevated CRP levels were seen in 84 patients before treatment; these patients had a poorer disease-specific survival (57% at five years) than patients with a normal CRP (79% at five years) (p < 0.0001). They were also less likely to be free of recurrence (71% at five years) than patients with a normal CRP (79% at five years) (p = 0.04). Multivariate analysis showed the pre-operative CRP level to be an independent predictor of survival and local control. Patients with a Ewing’s sarcoma or chondrosarcoma who had an elevated CRP before their treatment started had a significantly poorer disease-specific survival than patients with a normal CRP (p = 0.02 and p < 0.0001, respectively). Patients with a conventional osteosarcoma and a raised CRP were at an increased risk of poorer local control.

We recommend that CRP levels are measured routinely in patients with a suspected sarcoma of bone as a further prognostic indicator of survival.

Cite this article: Bone Joint J 2013;95-B:411–18.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 28 - 28
1 Oct 2012
Takemoto M Neo M Fujibayashi S Okamoto T Ota E Sakamoto T Nakamura T
Full Access

The accuracy of pedicle screw placement is essential for successful spinal reconstructive surgery. The authors of several previous studies have described the use of image-based navigational templates for pedicle screw placement. These are designed based on a pre-operative computed tomographic (CT) image that fits into a unique position on an individual's bone, and holes are carefully designed to guide the drill or the pedicle probe through a pre-planned trajectory. The current study was conducted to optimise navigational template design and establish its designing method for safe and accurate pedicle screw placement.

Thin-section CT scans were obtained from 10 spine surgery patients including 7 patients with adolescent idiopathic scoliosis (AIS) and three with thoracic ossification of the posterior longitudinal ligament (OPLL). The CT image data were transferred to the commercially available image-processing software and were used to reconstruct a three-dimensional (3D) model of the bony structures and plan pedicle screw placement. These data were transferred to the 3D-CAD software for the design of the template. Care was taken in designing the template so that the best intraoperative handling would be achieved by choosing several round contact surfaces on the visualised posterior vertebral bony structure, such as transverse process, spinous process and lamina. These contact surfaces and holes to guide the drill or the pedicle probe were then connected by a curved pipe. STL format files for the bony models with planned pedicle screw holes and individual templates were prepared for rapid prototype fabrication of the physical models. The bony models were made using gypsum-based 3D printer and individual templates were fabricated by a selective laser melting machine using commercially pure titanium powder. Pedicle screw trajectory of the bony model, adaptation and stability of the template on the bony model, and screw hole orientation of the template were evaluated using physical models. Custom-made titanium templates with adequate adaptation and stability in addition to proper orientation of the screw holes were sterilised by autoclave and evaluated during surgery.

During segmentation, reproducibility of transverse and spinous processes were inferior to the lamina and considered inadequate to select as contact surfaces. A template design with more bone contact area might enhance the stability of the template on the bone but it is susceptible to intervening soft tissue and geometric inaccuracy of the template. In the bony model evaluation, the stability and adaptation of the templates were sufficient with few small round contact surfaces on each lamina; thus, a large contact surface was not necessary. In clinical patients, proper fit for positioning the template was easily found manually during the operation and 141/142 screws were inserted accurately with 1 insignificant pedicle wall breach in AIS patient.

This study provides a useful design concept for the development and introduction of custom-fit navigational template for placing pedicle screws easily and safely.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 67 - 67
1 Oct 2012
Enomoto H Nakamura T Shimosawa H Waseda A Niki Y Toyama Y Suda Y
Full Access

Although optimal alignment is essential for improved function and implant longevity after TKA, we have less bony landmarks of tibia relative to femur. Trans-malleolar axis (TMA) is a reference line of distal tibia in the axial plane, which externally rotated relative to a ML axis of proximal tibia. We originally defined another reference axis associated with the orientation of tibial plafond, and then measured tibial torsion in the 3D-coordinate system.

Three-dimensional CAD models of 20 tibiae were reconstructed based on pre-operative CT data from OA patients (16 females and 4 males, 73.8 ± 6.9 years old). TMA was a line connecting each apex of medial and lateral malleolus. The plafond axis (PLA) that we originally defined in this study was a line connecting each midpoint of medial and lateral margin of talocrural facet. In terms of interobserver correlation coefficiency and mean errors of the designated points to define those axes, TMA was found out to be 0.982, 3.14 ± 0.47 mm (medial), and 0.988, 4.88 ± 0.59 mm (lateral). Those of PLA were 0.997, 1.97 ± 0.53 mm (medial), and 0.995, 2.02 ± 0.44 mm (lateral). The tibial torsion was 16.3 ± 6.3°with reference to TMA, and 10.2 ± 8.4°to PLA.

Based on these results, as for the rotational reference axis in the axial plain of distal tibia, we consider the plafond axis to be another reliable and reproducible axis, which is expected to be applicable in preoperative planning in TKA to reduce outliers of coronal alignment.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 119 - 119
1 Sep 2012
Nakamura T
Full Access

It is very important to fix implant to bone. Bioactive materials as hydroxyapatite or glass-ceramics have bone-bonding ability. Hydroxyapatite-coating is applied to cementless THA or TKA. I and coworkers investigated bone-bonding mechanism of bioactive material and found that bone-like apatite formation play key role for bonding. If the surface of metal is changed to form apatite on it in body, the inert metal changes into bone-bonding material. We developed alkaline and heat treatment of titanium to change titanium to bone –bonding material as follows. At first, titanium is dipped in 5N NaOH solution for 24 hours, at second the metal is washed in pure water and finally it is sintered in 500 degree C for 2 hours. The treated surface has bioactivity, bone bonding ability like hydroxyapatite. The advantage of this treatment over hydroxyapatite-coating procedure is to treat the porous surface without any change of pore figures. As to hydroxyapatite-coating procedure, pore of the small diameter is filled with hydroxyapatite and pore figures are change. We applied this alkaline and heat treatment to cementless THA and its good results of more than ten years was reported.

Porous titanium can be changed to bioactive material by alkaline and heat treatment. This bioactive porous titanium was found to have a property of material-induced osteoinduction, that is, the bone formation in pore of porous titanium implanted in canine back muscle. They can be used for bone substitute for big bone defect. We used two procedures to make porous titanium, sintering of titanium powder with spacer particle of ammonium sulfate and selective lazar melting. The latter procedure can produce any type of pore structure of titanium. Selective laser melting was employed to fabricate porous Ti implants (diameter 3.3 mm, length 15 mm) with a channel structure comprising four longitudinal square channels, representing pores, of different diagonal widths, 500, 600, 900, and 1200 micrometer. These were then subjected to chemical and heat treatments to induce bioactivity. Significant osteoinduction was observed in widths 500 and 600 micrometer, with the highest observed osteoinduction occurring at 5 mm from the end of the implants. A distance of 5 mm probably provides a favorable balance between blood circulation and fluid movement.

New bioactive bone cement is another topic of the application of bioactive titanium in this lecture. The bone cement contains barium sulphate for radiocontrast. We developed a procedure to replace barium sulphate with bioactive titanium powder. This new bone cement has not only better biocompatibility than conventional cement but also bone bonding ability. It is potent material for the fixation of implant to bone. I will speak the evaluation of this cement using canine model of THA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 118 - 118
1 Sep 2012
Nakamura S Nakamura T Kobayashi M Ito H Ikeda N Nakamura K Komistek R
Full Access

Introduction

Achieving high flexion after total knee arthroplasty is very important for patients in Asian countries where deep flexion activities are an important part of daily life. The Bi-Surface Total Knee System (Japan Medical Material, Kyoto, Japan), which has a unique ball-and-socket mechanism in the mid-posterior portion of the femoral and tibial components, was designed to improve deep knee flexion and long-term durability after total knee arthroplasty (Figure 1). The purpose of this study was to determine the in vivo three dimensional kinematics of Bi-Surface Total Knee System in order to evaluate and analyze the performance of this system with other conventional TKA designs currently available in the market today.

Materials and Methods

Three dimensional kinematics were evaluated during a weight-bearing deep knee bend activity using fluoroscopy and a 2D-to-3D registration technique for 66 TKA. Each knee was analyzed to determine femorotibial kinematics, including weight-bearing range of motion, anterior/posterior contact position, and tibio-femoral rotation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 227 - 227
1 Jun 2012
Suguro T Yamamoto K Miyazaki Y Nakamura T Sekiguchi M Banks S
Full Access

Aims

Recently, total knee arthroplasty (TKA) has been generalized as an operation that achieves excellent clinical results. However, younger and Asian patients require even greater implant longevity and functional performance. We hypothesized a novel posterior cruciate-retaining TKA design that restores the anatomical jointline in both sagittal and coronal planes, maintains the femoral posterior condylar offset, and provides low contact stress would provide enhanced patient function with the potential for greater implant longevity.

Methods

The novel TKA design was created based on geometry determined from anatomic specimens, 3-degree step of femorotibial jointline was incorporated in the TKA design for Asian. The novel TKA has an asymmetrical design between the medial and lateral femoral condyle, the medial femoral condyle designed to be 3 degrees larger than the lateral femoral condyle. It refined using finite element analyses (FEA) to minimize peak contact stresses. The alignment evaluation after TKA was performed using using bidirectional CR and CT images. Femorotibial-angle (FTA), the position of the femoral component relative to the 3D mechanical axis, and the rotational alignment of the femoral component relative to the PC line were evaluated before and after TKA to identify changes in the femoral condylar shape. The kinematic evaluation after TKA was performed using a 3D-to-2D model registration technique. Single-plane fluoroscopic imaging was used to record and quantify the motions of knees during a stair-step activity. The contact points between the tibiofemoral motions and the tibial rotational angle were evaluated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 77 - 77
1 Jun 2012
Goto K Akiyama H Kawanabe K So K Nakamura T
Full Access

One cementless cup which had porous outer surface with Apatite-Wollastonite glass ceramic (AWGC) coating, was revised 13 years after primary THA because of massive osteolysis expanded to medial iliac wall along the screws. While many retrieved studies of hydroxyapatite-coated cup have been reported, there has been no report on the retrieved cup with AWGC coating. The purpose of this study was to describe this rare case in detail, confirm the bone ingrowth to the porous cup, and discuss on the effectiveness of porous surface with AWGC coating.

Case

The patient was a 64 old woman and complained of chronic mild pain around her left groin region. X-ray examination revealed that osteolysis had been expanding around the screws and extended proximally. The revision surgery was performed for the massive osteolysis through Hardinge antero-lateral approach. The retrieved implants included a cementless cup made of titanium alloy (QPOC cup, Japan Medical Materirals Inc.(JMM) Osaka, Japan), the outer surface of which was plasma-sprayed with titanium for porous formation and coated with AWGC in the deep layer. It was found that the polyethylene liner was destructed partially in the supero-lateral portion, but the cup was well fixed to the bone. The bone-attached area was found to be dispersed over the porous surface of the hemispherical cup. Histological examination revealed that matured bony tissue intruded into the porous surface of the cup, and contacted to bone directly, which was also demonstrated in the back-scattered electron image. It was also demonstrated that there were residual silicon (Si) rich regions on the porous surface by the SEM-EDX analysis, which indicated that constituents of AWGC still remained on the surface. On the other hand, the results of elementary analyses in the Si rich regions varied among the sections, which probably indicated that the extent of degradation and absorption of AWGC varied among the sections.

AWGC was one of the bioactive ceramics and reported to have an ability to bond to bone earlier than hydroxyapatite (HA). In the present case, though massive osteolysis occurred with aggressive wear, it did not expand on the porous surface, and rather progressed along the smooth surface of the screws. Considering that there are many clinical studies reporting poor clinical results of HA-coated smooth cups, bioactive ceramic coating may function well and bring superior clinical results when combined with porous coated substrate. In our study, though the cause of massive polyethylene wear and intrapelvic giant osteolysis could not be revealed, the porous cup with AW-GC bottom coating was well fixed and gained bone-ingrowth at the porous surface under osteolytic conditions, which may demonstrate the long-term durability of this surface treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 308 - 314
1 Mar 2012
Ito H Tanino H Yamanaka Y Nakamura T Takahashi D Minami A Matsuno T

We have previously described the mid- to long-term results of conventional simple varus intertrochanteric osteotomy for osteonecrosis of the femoral head, showing that 19 of the 26 hips had good or excellent results. We extended the follow-up to a mean of 18.1 years (10.5 to 26) including a total of 34 hips in 28 patients, with a mean age at surgery of 33 years (19 to 53). There were 18 men and ten women and 25 hips (74%) had a satisfactory result with a Harris hip score ≥ 80. In all, six hips needed total hip replacement (THR) or hemiarthroplasty. The collapse of the femoral head or narrowing of the joint space was found to have progressed in nine hips (26%). Leg shortening after osteotomy was a mean of 19 mm (8 to 36). With conversion to THR or hemiarthroplasty as the endpoint, the ten-year survival rate was 88.2% (95% confidence interval (CI) 82.7 to 93.7) and the 20-year survival rate was 79.7% (95% CI 72.1 to 87.3); four hips were converted at ten years and other two hips were converted at 20 years.

Shortening of the leg after osteotomy remains a concern; however, the conventional varus half-wedge osteotomy provides favourable long-term results in hips with less than two-thirds of the medial part of the femoral head affected by necrotic bone and with normal bone superolaterally.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 432 - 432
1 Nov 2011
Enomoto H Nakamura T Yanagimoto S Kaneko H Fujita Y Funayama A Suda Y Toyama Y
Full Access

In the light of the increasing popularity of femoral resurfacing implants, there has been growing concern regarding femoral neck fracture. This paper presents a detailed investigation of femoral neck anatomy, the knowledge of which is essential to optimise the surgical outcome of hip resurfacing as well as short hip stem implantation.

Three-dimensional lower limb models were reconstructed from the CT-scan data by using the Mimics (Materialise NV, Leuven, Belgium). We included the CT data for 22 females and nine males with average age of 60.7 years [standard deviation: 16.4]. A local coordinate system based on anatomical landmarks was defined and the measurements were made on the unaffected side of the models.

First, the centre of the femoral head was identified by fitting an optimal sphere to the femoral head surface. Then, two reference points, one each on the superior and the inferior surface of the base of femoral neck were marked to define the neck resection line, to which an initial temporary neck axis was set perpendicular. Cross-sectional contours of the cancellous/cortical border were defined along the initial neck axis. For each cross-sectional contour, a least-square fitted ellipse was determined. The line that connects the centre of the ellipse at the base of the femoral neck and the centre of the femoral head was defined as the new neck axis. The above process was repeated to reduce variances in the estimation of the initial neck axis. The neck isthmus was identified according to the axial distributions of the cross-sectional ellipse parameters.

The short axis of the ellipse decreased monotonically since it was calculated from the center of the femoral head to the neck resection level (base of neck), whereas the long axis changed with the local minima. The cross section at which the long axis of the fitted ellipse had the local minima was determined as the neck isthmus.

The following measurements were made on the proximal part of the femur. The neck axis length measured from the center of the femoral head to the lateral endosteal border of the proximal femur was 67.3 mm [6.4]. The length between the center of the femoral head and the neck isthmus was 22.5 mm [2.7]. The diameter of the ellipse long axis at the neck isthmus was 27.6 mm [3.5] and was 23.6 mm [3.3] for the short axis.

The center of the neck isthmus did not align with the neck axis. The deviation of the isthmus from the neck axis which we defined as the isthmus offset was 0.7 mm [0.4].

If an alternative neck axis was defined between the center of the femoral head and the center of the neck isthmus, there would be a certain degree of angular shift with respect to the original neck axis. An angular shift of 1.8 degrees between the two axes can be expected for a 0.7-mm isthmus offset. In the worst case, an angular shift of 4.59 degrees was estimated for a subject with the largest isthmus offset of 1.93 mm.

Further investigations would be necessary to determine the axis configuration that represents the clinically relevant centre of the femoral neck. In order to reduce the deviations in the three-dimensional determination of the femoral neck axis, the reference anatomical landmarks and methods of evaluation should be carefully selected.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 405 - 405
1 Nov 2011
Nakamura S Kobayashi M Ito H Yoshitomi H Arai R Nakamura K Ueo T Nakamura T
Full Access

In Far East, including Japan and the Middle East, daily activities are frequently carried out on the floor. Deep flexion of the knee joint is therefore very important in these societies. Some patients who underwent total knee arthroplasty (TKA) in these countries often perform deep flexion activity, such as squatting, cross-leg sitting and kneeling. However it is still unknown that deep flexion activity affects long term durability after TKA. The purpose of this study was to examine the correlation between deep flexion and long term durability.

Between December 1989 and May 1997, 507 total knee arthroplasties were carried out in 371 patients using the Bi-Surface Knee System (Japan Medical Material, Osaka, Japan) at two institutions and routine rehabilitation program continued for one to two months after TKA. One patient who underwent simultaneous bilateral TKA was excluded because of pulmonary embolism within one month. The other 505 knees (370 patients) were divided into two groups according to the range of flexion after our routine rehabilitation program; one group (Group A: 207 knees) consisted of more than 135 degrees flexion knees and the other group (Group B: 298 knees) consists of less than 135 degrees flexion knees. Patients whose follow-up period was less than 10 years were excluded from this clinical evaluation. Range of flexion was measured preoperatively, at the time after routine rehabilitation program, and at the latest follow-up. Knee function was evaluated on the basis of Knee Society knee score and functional score preoperatively and at the latest follow-up. Kaplan-Meier survivorship analysis was performed with revision for any operation as the end point.

In Group A, the mean preoperative range of flexion was 133.0±16.3 degrees, and at the time after routine rehabilitation program, this improved to 139.7±5.1 degrees. This angle maintained to 136.2±14.3 at the latest follow-up. In Group B, the mean preoperative range of flexion was 111.6±20.4 degrees, and at the time after routine rehabilitation program, this improved to 114.5±13.6 degrees. This angle maintained to 118.2±17.8 at the latest follow-up. The Knee Society knee score and functional score was improved from 43.0±16.9 points and 39.0±20.2 points preoperatively to 95.1±5.8 points and 51.8±21.2 points at the latest follow-up, respectively in Group A. The Knee Society knee score and functional score was improved from 37.1±16.7 points and 31.9±18.4 points preoperatively to 92.5±8.7 points and 53.1±26.1 points at the latest follow-up, respectively in Group B. Kaplan-Meier survivorship at 10-year was 95.5% in Group A and 96.2% in Group B with any operation as the end point. The survivorship between Group A and Group B was not statistically significant.

Good range of flexion was maintained and Knee society score was excellent after a long time follow-up for the patients who achieved deep flexion after TKA. Deep flexion was proved not to affect long term durability in this Bi-Surface Knee System.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 416 - 416
1 Nov 2011
Nakamura T Fukuda C Imamura M Goto K Kokubo T
Full Access

Many types of bioactive bone cement have been developed to overcome the disadvantages of polymethyl-methacrylate (PMMA) bone cement, especially its lack of bone-bonding ability, which occasionally leads to aseptic loosening of prostheses used for arthroplasty. Earlier, we showed that bioactive bone cements containing either nano-sized or micron-sized titania (TiO2) particles had excellent in vivo osteoconductivity.

However, anatase phase titania particles contained in these bioactive bone cements raise concerns about their safety in vivo. We developed pure rutile micron-sized titania particles. because rutile is the only stable phase, whereas anatase is metastable.

In this study, polymethylmethacrylate (PMMA)-based bone cement containing pure rutile micron-sized titania (TiO2) particles were developed, and their mechanical properties and osteoconductivity are evaluated. The three types of bioactive bone cement were T10, T20, and T30, which contained 10, 20, and 30wt% TiO2, respectively.

Commercially available PMMA cement (PMMAc) was used as a control. Hardened cylindrical cement sample (φ2.5mm*10mm) was inserted manually on rabbit femur vertically. Push out test was performed for evaluation of bonding strength. For mechanical testing, the flexural strength, flexural modulus, and compressive strength were measured.

Results of this study revealed that polymethylmeth-acrylate (PMMA)-based bone cement containing pure rutile micron-sized titania particles has outstanding osteoconductivity in vivo, and their mechanical properties were exceeded that of commercially available PMMA cement. Interfacial shear strength of T10, T20 and T30 were 17.1~24.0MPa each at 12 weeks, and were significantly higher than PMMAc. In general, the interfacial bonding strength of bone cement depends mainly on its interdigitation with cancellous tissue, which is accomplished by the pressurized injection of the cement in paste form. On the other hand, we inserted the hardened specimens into oversized holes on rabbit femur in this study, because we intended to examine the osteoconductive and bone-bonding potentials of each material. The flexural strength, flexural modulus, and compressive strength were equivalent to or exceeded that of PMMAc.

These results show that bone cement containing pure rutile micron-sized titania particles is a promising material applied to prosthesis fixation as well as vertebroplasty.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 413 - 413
1 Nov 2011
Goto K Akiyama H Kawanabe K Sou K Nakamura T
Full Access

Poly-L-lactic acid (PLLA) is characterized by its biocompatibility and biodegradability, and is used clinically. In our hospital, we started to use PLLA screws instead of metallic or ceramic screws in the fixation of acetabular bone grafts in total hip arthroplasty (THA) in 1990, because there were concerns about the use of rigid and nonbioabsorble screws, which might contribute to the absorption of the grafted bone and induce metallosis or third-body wear when breakage of the screws occurs. The purpose of this study was to review a series of cemented THA for dysplasia, with structural autograft fixed with PLLA screws. We focused on the survival rate of the acetabular component and radiological change of the grafted bone–socket interface.

This study included 104 consecutive cemented total hip arthroplasties (80 patients) performed between July 1990 and December 1995 in our hospital. All patients were followed over 10 years and reviewed retrospectively. The grafted bone trimmed from the excised femoral head was fixed rigidly with 1 or 2 PLLA screws (cancellous lag screws 6.5 mm in bore diameter and 4.1 mm in grove diameter) (Fixsorb; Takiron Co., Ltd., Osaka, Japan).

X-ray photographs taken just after the primary operation showed an obscure but still visible radiolu-cent region corresponding to the inserted PLLA screws in many cases.

However, X-ray photographs at the final follow-up showed an unclear radiolucent zone at the sites of the PLLA screws, and the osteosclerotic line surrounding the site where the radiolucent zone had been found was confirmed in only 4 cases. Bone union was confirmed radiologically at the grafted site in every case, and there were no cases of early collapse or extravasation of the grafted bone. No positive resorption of the grafted bone was observed in any case. Kaplan–Meier survivorship analysis of socket revision, radiological loosening of the socket, and the appearance of a radiolucent line > 1 mm in the graft–socket interface as the endpoints indicated survival rates of 99%, 97.1%, and 63.5% at 10 years, and 96.6%, 90.2%, and 56.1% at 15 years, respectively.

The results of this study indicated that PLLA screws are safe and useful for the fixation of acetabular bone graft concomitant to cemented THA with a careful rehabilitation program. However, because of concern about the mechanical insufficiency of the PLLA screws for THA with an early weight-bearing rehabilitation program, we have used mechanically stronger and bioabsorbable screws made of forged composites of hydroxyapatite and PLLA since 2003.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1194 - 1200
1 Sep 2011
Akiyama H Yamamoto K Tsukanaka M Kawanabe K Otsuka H So K Goto K Nakamura T

We retrospectively reviewed 40 hips in 36 patients who had undergone acetabular reconstruction using a titanium Kerboull-type acetabular reinforcement device with bone allografts between May 2001 and April 2006. Impacted bone allografts were used for the management of American Academy of Orthopaedic Surgeons Type II defects in 17 hips, and bulk bone allografts together with impacted allografts were used for the management of Type III defects in 23 hips. A total of five hips showed radiological failure at a mean follow-up of 6.7 years (4.5 to 9.3), two of which were infected. The mean pre-operative Merle d’Aubigné score was 10 (5 to 15) vs 13.6 (9 to 18) at the latest follow-up. The Kaplan-Meier survival rate at ten years, calculated using radiological failure or revision of the acetabular component for any reason as the endpoint, was 87% (95% confidence interval 76.3 to 97.7). A separate experimental analysis of the mechanical properties of the device and the load-displacement properties of bone grafts showed that a structurally hard allograft resected from femoral heads of patients with osteoarthritis should be preferentially used in any type of defect. If impacted bone allografts were used, a bone graft thickness of < 25 mm was acceptable in Type II defects.

This clinical study indicates that revision total hip replacement using the Kerboull-type acetabular reinforcement device with bone allografts yielded satisfactory mid-term results.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 726 - 731
1 Jun 2011
Ito H Tanino H Yamanaka Y Nakamura T Minami A Matsuno T

We report the mid- to long-term (mean 20.3 years, 10 to 32.5) results of the Chiari pelvic osteotomy in patients with pre- to advanced stage osteoarthritis in dysplastic hips. We followed 163 Japanese patients (173 hips) with a mean age at surgery of 20 years (9 to 54). Overall, 124 hips (72%) had satisfactory results, with Harris hip scores ≥ 80. Satisfactory results were seen in 105 of 134 hips with pre- or early osteoarthritis (78%) and 19 of 39 hips with advanced osteoarthritis (49%). A total of 15 hips (9%) underwent a total hip replacement (THR) with a mean interval between osteotomy and THR of 16.4 years. With conversion to THR as the endpoint, the 30-year survival rate was 85.9% (95% confidence interval 82.3 to 89.5). It was 91.8% for patients with pre- or early osteoarthritis and 43.6% for those with advanced osteoarthritis (p < 0.001).

We now perform the Chiari osteotomy for patients with dysplastic hips showing poor joint congruency and who prefer a joint-conserving procedure to THR.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 217 - 222
1 Feb 2011
Ochi K Horiuchi Y Tazaki K Takayama S Nakamura T Ikegami H Matsumura T Toyama Y

We have reviewed 38 surgically treated cases of spontaneous posterior interosseous nerve palsy in 38 patients with a mean age of 43 years (13 to 68) in order to identify clinical factors associated with its prognosis. Interfascicular neurolysis was performed at a mean of 13 months (1 to 187) after the onset of symptoms. The mean follow-up was 21 months (5.5 to 221). Medical Research Council muscle power of more than grade 4 was considered to be a good result. A further 12 cases in ten patients were treated conservatively and assessed similarly.

Of the 30 cases treated surgically with available outcome data, the result of interfascicular neurolysis was significantly better in patients < 50 years old (younger group (18 nerves); good: 13 nerves (72%), poor: five nerves (28%)) than in cases > 50 years old (older group (12 nerves); good: one nerve (8%), poor: 11 nerves (92%)) (p < 0.001). A pre-operative period of less than seven months was also associated with a good result in the younger group (p = 0.01). The older group had a poor result regardless of the pre-operative delay.

Our recommended therapeutic approach therefore is to perform interfascicular neurolysis if the patient is < 50 years of age, and the pre-operative delay is < seven months. If the patient is > 50 years of age with no sign of recovery for seven months, or in the younger group with a pre-operative delay of more than a year, we advise interfascicular neurolysis together with tendon transfer as the primary surgical procedure.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 111 - 114
1 Jan 2011
Iwai S Sato K Nakamura T Okazaki M Itoh Y Toyama Y Ikegami H

We present a case of post-traumatic osteonecrosis of the radial head in a 13-year-old boy which was treated with costo-osteochondral grafts. A satisfactory outcome was seen at a follow-up of two years and ten months.

Although costo-osteochondral grafting has been used in the treatment of defects in articular cartilage, especially in the hand and the elbow, the extension of the technique to manage post-traumatic osteonecrosis of the radial head in a child has not previously been reported in the English language literature. Complete relief of pain was obtained and an improvement in the range of movement was observed. The long-term results remain uncertain.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 518 - 518
1 Oct 2010
Hirano F Fujii H Mori T Nakamura T Ohnishi H Okabe S Tanaka S Tsurukami H Uchida S
Full Access

Purpose: There is no report concerning about long-term comparison result of high placed cementless cup stability with or without screws for developmental dysplasia of the hip. The aim of this study was to ascertain whether or not there are any differences in high placed cementless cup stability with or without screws at the mean 10-year (6–14) follow-up period.

Method: We divided 109 hip-cases who underwent identical cementless total hip arthoplasty system (Mallory – Head : Biomet Inc.) to two groups: 57 cups with screw (screw group) and 52 cups without screw (no screw group). No case in both group underwent bulk bone graft for acetabular roof. Radiographic signs of cup instability were defined as the development of radiolucent line (> 2mm) or migration (> 4mm). Degree of subluxation by Crowe classification, cup size and cup abduction angle were also measured.

Results: In both groups, there was no significant difference in terms of degree of subluxation (each grade’s %) (screw vs no screw = I (68, 73), II (21, 25), III (11,0), IV (0, 2)), age (yrs) (58, 60), cup size (mm) (46, 47) and cup abduction angle (49, 47). In screw group, one case was revised by replacing only polyethylene insert due to excessive ware. No case in both group showed any sign of component instability.

Conclusion: High placed Mallory-Head type cementless cup without screws showed stable radiographic fixation as well as cup with screws at mean 10 years follow-up period.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 111 - 111
1 Mar 2010
Akiyama H Kawanabe K Goto K So K Nakamura T
Full Access

Removal of femoral bone cement is required for preparation of proper implant bed for reimplantation of a new femoral component in revision total hip arthroplasty. Several devices and procedures have been developed for cement removal, including an extracorporal shock-wave lithotripter and YAG laser, as well as a high-powered drill or burr under the control of conventional fluoroscopic images and an intrafemoral endoscopy. Ultrasonic tools are efficient for removal of bone cement with minimal damage to bone. We use a high-powered burr to remove the deep femoral bone cement under the control of conventional fluoroscopic images, although the problem of this procedure is large exposure of X-ray and two dimensional viewing of burr position which can result in perforation in the third plane.

Computer-assisted fluoroscopic navigation system allows the surgeons to provide positional information about surgical instrument to target bones during operations. Two-dimensional image data are obtained using the fluoroscope with a reference frame and stored on a computer workstation. A camera interfaced with the computer then tracks the position of the patient and registered surgical instruments during the procedure. Taking advantage of the real-time guidance of computer-assisted fluoroscopic navigation system, we introduce a valuable technique using computer-assisted fluoroscopic navigation system for performing removal of the cement of the femoral canal in revision cemented total hip arthroplasty.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 93 - 93
1 Mar 2010
Yamaguchi S Kizuki T Takadama H Matsushita T Kokubo T Nakamura T
Full Access

Titanium alloys such as Ti-6Al-4V and Ti-6Al-7Nb have been widely used as orthopedic implants such as artificial hip joint, because of their high mechanical strengths and good biocompatibilities. Recently, new kinds of titanium-based alloys free from elements such as V and Al, which are suspicious for cytotoxicities, are being developed. Ti-15Zr-4Ta-4Nb (Ti-15-4-4) is one of such alloys and shows high mechanical strength and corrosion resistance which are comparable to those of the Ti-6Al-4V alloy. In the present study, chemical treatments for providing bone-bonding ability to this alloy were investigated. Apatite-forming ability in a simulated body fluid (SBF) was used as an indication of the bone-bonding ability.

Ti-15-4-4 alloy plates 10×10×1 mm3 in size were soaked in 5M-NaOH solution at 60 °C for 24 h, soaked in 100mM-CaCl2 solution at 40 °C for 24 h, heated at 600 °C for 1 h and then soaked in hot water at 80 °C for 24 h. Surface structural changes of the alloy with these treatments were analyzed by a field emission scanning electron microscope (FE-SEM) attached with an energy-dispersive X-ray spectrometer (EDX), Thin-film X-ray diffraction (TF-XRD) and Fourier transform confocal laser Raman spectroscopy (FT-Raman). Scratch resistance of surface layer of the alloy was measured by a thin-film scratch tester. Apatite-forming ability of the specimens was examined by soaking them in SBF for 3 days. Long-term stability of the apatite-forming ability was examined after keeping the specimens in an incubator with relative humidity of 95 % at 80 °C for 1 week.

A sodium hydrogen titanate layer about 500 nm in thickness was formed on the surface of the alloy by the NaOH treatment. This specimen formed some amounts of apatite in SBF within 3 days, but its scratch resistance was as low as less than 10 mN. When the NaOH-treated specimen was subsequently heat treated, the sodium hydrogen titanate transformed into sodium titanate to give scratch resistance as high as 92 mN, but lost its apatite-forming ability.

When the NaOH-treated specimen was soaked in CaCl2 solution, the sodium hydrogen titanate was isomorphously transformed into calcium hydrogen titanate. Thus treated specimen increased its apatite-forming ability, but its scratch resistance was still low. When the NaOH- and CaCl2-treated specimen was subsequently heat treated, the calcium hydrogen titanate transformed into calcium titanate to give scratch resistance as high as 169 mN. However, its apatite-forming ability was lost. Thus treated specimen was then soaked in hot water. As a result, its apatite-forming ability remarkably increased without decreasing scratch resistance. It showed high apatite-forming ability even after a long-term-stability test.

The NaOH-, CaCl2-, heat- and hot-water-treated Ti-15-4-4 alloy is believed to be promising materials for artificial joints, because of its high apatite-forming ability with long-term stability as well as high scratch resistance.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 93 - 93
1 Mar 2010
Kawanabe K Akiyama H Goto K Tanaka K Fujibayashi S Nakamura T
Full Access

Kokubo and one of the present authors (T.N) have developed a new technique of bioactive coating using alkaline and heat treatment, which induces the formation of a thin HA layer on the surface of titanium after implantation in the body. This new coating technique is not associated with degradation or separation of the HA coating, because a bone-like apatite layer of 1 μm in width begins to form in the body tissue after implantation.

Chemically and thermally treated titanium possesses bone-bonding ability, which has been confirmed by detachment tests. Bone ingrowth into bioactive titanium continues to increase throughout the 26 weeks of implantation, whereas bone ingrowth into non-treated or HA plasma coating implants tends to decrease between 6 and 12 weeks. These findings suggest the long-term stability and osteoconduction of the bioactive layer of chemically and thermally treated titanium.

We carried out a series of 70 cementless primary total hip arthroplasties using this coating technique on a porous titanium surface, and followed up the patients for a mean period of 4.8 years. There were no instances of loosening or revision, or formation of a reactive line on the porous coating. Although radiography just after surgery showed a gap between the host bone and the socket in 70% of cases, all the gaps disappeared within a year, indicating the good osteoconduction provided by the coating. Alkaline-heat treatment of titanium to provide a HA coating has several advantages over plasma-spraying, including no degeneration or absorption of the HA coating, simplicity of the manufacturing process, and cost effectiveness. In addition, this method allows homogeneous deposition of bone-like apatite within a porous implant.

Although this was a relatively short-term study, treatment that creates a bioactive surface on titanium and titanium alloy implants has considerable promise for clinical application.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 102 - 107
1 Jan 2009
Zenke Y Sakai A Oshige T Moritani S Nakamura T

A total of 118 consecutive patients with a fracture of the distal radius were treated with a volar locking plate; 50 patients had no ulnar styloid fracture, 41 had a basal ulnar styloid fracture, and 27 had a fracture of the tip of the ulnar styloid. There were no significant differences in radiological and clinical results among the three groups. The outcome was good and was independent of the presence of a fracture of the ulnar styloid. A total of five patients (4.2%) had persistent ulnar-sided wrist pain at final follow-up. Nonunion of the ulnar styloid fracture did not necessarily lead to ulnar wrist pain. Patients with persistent ulnar pain had a higher mean initial ulnar variance and increased post-operative loss of ulnar variance.

The presence of an associated ulnar styloid fracture of the ulnar styloid does not adversely affect the outcome in patients with a fracture of the distal radius treated by volar plating.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1013 - 1018
1 Aug 2008
Goto K Kawanabe K Akiyama H Morimoto T Nakamura T

We reviewed 44 consecutive revision hip replacements in 38 patients performed using the cement-in-cement technique. All were performed for acetabular loosening in the presence of a well-fixed femoral component. The mean follow-up was 5.1 years (2 to 10.1). Radiological analysis at final follow-up indicated no loosening of the femoral component, except for one case with a continuous radiolucent line in all zones and peri-prosthetic fracture which required further revision. Peri-operative complications included nine proximal femoral fractures (20.4%) and perforation of the proximal femur in one hip. In five hips wiring or fixation with a braided suture was undertaken but no additional augmentation was required. There was an improvement in the mean Japanese Orthopaedic Association score from 55.5 (28 to 81) pre-operatively to 77.8 (40 to 95) at final follow-up (p < 0.001). Revision using a cement-in-cement technique allows increased exposure for acetabular revision and is effective in the medium term. Further follow-up is required to assess the long-term results in the light of in vitro studies which have questioned the quality of the cement-in-cement bond.