header advert
Results 601 - 650 of 4366
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 136 - 136
2 Jan 2024
Seah M Birch M Moutsopoulos I Mohorianu I McCaskie A
Full Access

Despite osteoarthritis (OA) representing a large burden for healthcare systems, there remains no effective intervention capable of regenerating the damaged cartilage in OA. Mesenchymal stromal cells (MSCs) are adult-derived, multipotent cells which are a candidate for musculoskeletal cell therapy. However, their precise mechanism of action remains poorly understood.

The effects of an intra-articular injection of human bone-marrow derived MSCs into a knee osteochondral injury model were investigated in C57Bl/6 mice. The cell therapy was retrieved at different time points and single cell RNA sequencing was performed to elucidate the transcriptomic changes relevant to driving tissue repair. Mass cytometry was also used to study changes in the mouse immune cell populations during repair.

Histological assessment reveals that MSC treatment is associated with improved tissue repair in C57Bl/6 mice. Single cell analysis of retrieved human MSCs showed spatial and temporal transcriptional heterogeneity between the repair tissue (in the epiphysis) and synovial tissue. A transcriptomic map has emerged of some of the distinct genes and pathways enriched in human MSCs isolated from different tissues following osteochondral injury. Several MSC subpopulations have been identified, including proliferative and reparative subpopulations at both 7 days and 28 days after injury. Supported by the mass cytometry results, the immunomodulatory role of MSCs was further emphasised, as MSC therapy was associated with the induction of increased numbers of regulatory T cells correlating with enhanced repair in the mouse knee.

The transcriptomes of a retrieved MSC therapy were studied for the first time. An important barrier to the translation of MSC therapies is a lack of understanding of their heterogeneity, and the consequent lack of precision in its use. MSC subpopulations with different functional roles may be implicated in the different phases of tissue repair and this work offers further insights into repair process.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 83 - 83
11 Apr 2023
Khojaly R Rowan F Nagle M Shahab M Shah V Dollard M Ahmed A Taylor C Cleary M Niocaill R
Full Access

Is Non-Weight-Bearing Necessary? (INWN) is a pragmatic multicentre randomised controlled trial comparing immediate protected weight-bearing (IWB) with non-weight-bearing cast immobilisation (NWB) following ankle fracture fixation (ORIF). This trial compares; functional outcomes, complication rates and performs an economic analysis to estimate cost-utility.

IWB within 24hrs was compared to NWB, following ORIF of all types of unstable ankle fractures. Skeletally immature patients and tibial plafond fractures were excluded. Functional outcomes were assessed by the Olerud-Molander Ankle Score (OMAS) and RAND-36 Item Short Form Survey (SF-36) taken at regular follow-up intervals up to one year. A cost-utility analysis via decision tree modelling was performed to derive an incremental cost effectiveness ratio (ICER). A standard gamble health state valuation model utilising SF-36 scores was used to calculate Quality Adjusted Life Years (QALYs) for each arm.

We recruited 160 patients (80 per arm), aged 15 to 94 years (M = 45.5), 54% female. Complication rates were similar in both groups. IWB demonstrated a consistently higher OMAS score, with significant values at 6 weeks (MD=10.4, p=0.005) and 3 months (MD 12.0, p=0.003). Standard gamble utility values demonstrated consistently higher values (a score of 1 equals perfect health) with IWB, significant at 3 months (Ẋ = 0.75 [IWB] / 0.69 [NWB], p=0.018). Cost-utility analysis demonstrated NWB is €798.02 more expensive and results in 0.04 fewer QALYs over 1 year. This results in an ICER of −€21,682.42/QALY. This negative ICER indicates cost savings of €21,682.42 for every QALY (25 patients = 1 QALY gain) gained implementing an IWB regime.

IWB demonstrates a superior functional outcome, greater cost savings and similar complication rates, compared to NWB following ankle fracture fixation.


We aim to analyze the role of patient-related factors on the yield of progenitor cells in the bone marrow aspiration concentrate (BMAC).

We performed a retrospective analysis of patients who underwent autologous iliac crest-based BMAC therapy between Jan 2021–and June 2021. Patient-related factors such as age, sex, and comorbidities and procedure variables such as aspirate volume were analyzed. The yield of the bone marrow aspiration concentrate was assessed with MNC count and CFU assay from the aspirates.

63 patients with a mean age of 51.33±17.98 years were included in the study. There were 31 males and 32 females in the study population with a mean volume of 67.16±17.312 ml being aspirated from the iliac crest for the preparation of BMAC. The final aspirate had a mean MNC count of 20.16±15.73×10^6 cells which yielded a mean of 11±12 CFUs. We noted significant negative correlation between age and MNC count (r=minus;0.671, p<0.001) and CFUs (r=minus;0.688, p<0.001). We did not find the sex to have any significant role in MNC (p=0.082) count or CFUs formed (p=0.348). The presence of comorbidity significantly reduced the MNC count (p=0.003) and CFUs formed (p=0.005). The aspiration volume significantly negatively correlated with MNC count (r=minus;0.731, p<0.001) and CFUs (r=minus;0.618, p<0.001).

The MNC count and CFUs formed from the BMAC depend on the patient-specific subjective variables such as age, and comorbid conditions present in them. Sex and volume of aspiration do not alter the MNC count or the CFUs formed from BMAC.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 32 - 32
2 Jan 2024
Traweger A
Full Access

Approximately 30% of general practice consultations for musculoskeletal pain are related to tendon disorders, causing substantial personal suffering and enormous related healthcare costs. Treatments are often prone to long rehabilitation times, incomplete functional recovery, and secondary complications following surgical repair. Overall, due to their hypocellular and hypovascular nature, the regenerative capacity of tendons is very poor and intrinsically a disorganized scar tissue with inferior biomechanical properties forms after injury. Therefore, advanced therapeutic modalities need to be developed to enable functional tissue regeneration within a degenerative environment, moving beyond pure mechanical repair and overcoming the natural biological limits of tendon healing.

Our recent studies have focused on developing biologically augmented treatment strategies for tendon injuries, aiming at restoring a physiological microenvironment and boosting endogenous tissue repair. Along these lines, we have demonstrated that the local application of mesenchymal stromal cell-derived small extracellular vesicles (sEVs) has the potential to improve rotator cuff tendon repair by modulating local inflammation and reduce fibrotic scarring. In another approach, we investigated if the local delivery of the tendon ECM protein SPARC, which we previously demonstrated to be essential for tendon maturation and tissue homeostasis, has the potential to enhance tendon healing. Finally, I will present results demonstrating the utility of nanoparticle-delivered, chemically modified mRNAs (cmRNA) to improve tendon repair.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 86 - 86
11 Apr 2023
Souleiman F Zderic I Pastor T Varga P Gueorguiev B Richards G Osterhoff G Hepp P Theopold J
Full Access

Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction.

The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral defects were simulated by gradually removing osteochondral structures in 5%-stages up to 20% of the intact diameter. The glenoid morphological parameters glenoid depth, concavity gradient, and defect radius were measured at each stage by means of optical motion tracking. Based on these parameters, the osteochondral stability ratio (OSSR) was calculated. Correlation analyses between SSR and all morphological parameters, as well as OSSR were performed.

The loss of SSR, concavity gradient, depth and OSSR with increasing defect size was significant (all p<0.001). The loss of SSR strongly correlated with the losses of concavity gradient (PCC = 0.918), of depth (PCC = 0.899), and of OSSR (PCC = 0.949). In contrast, the percentage loss based on intact diameter (defect size) correlated weaker with SSR (PCC=0.687). Small osteochondral defects (≤10%) led to significantly higher SSR decrease in small glenoids (diameter <25mm) compared to large (≥ 25mm) ones (p ≤ 0.009).

From a biomechanical perspective, the losses of concavity gradient, glenoid depth and OSSR correlate strong with the loss of SSR. Therefore, especially the loss of glenoidal depth may be considered as a valid and reliable alternative parameter to describe shoulder instability. Furthermore, smaller glenoids are more vulnerable to become unstable in case of small osteochondral loosening. On the other hand, the standardly used percentage defect size based on intact diameter correlates weaker with the magnitude of instability and may therefore not be a valid parameter for judgement of shoulder instability.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 141 - 141
2 Jan 2024
Wendlandt R Volpert T Schroeter J Schulz A Paech A
Full Access

Gait analysis is an indispensable tool for scientific assessment and treatment of individuals whose ability to walk is impaired. The high cost of installation and operation are a major limitation for wide-spread use in clinical routine.

Advances in Artificial Intelligence (AI) could significantly reduce the required instrumentation. A mobile phone could be all equipment necessary for 3D gait analysis. MediaPipe Pose provided by Google Research is such a Machine Learning approach for human body tracking from monocular RGB video frames that is detecting 3D-landmarks of the human body.

Aim of this study was to analyze the accuracy of gait phase detection based on the joint landmarks identified by the AI system.

Motion data from 10 healthy volunteers walking on a treadmill with a fixed speed of 4.5km/h (Callis, Sprintex, Germany) was sampled with a mobile phone (iPhone SE 2nd Generation, Apple). The video was processed with Mediapipe Pose (Version 0.9.1.0) using custom python software. Gait phases (Initial Contact - IC and Toe Off - TO) were detected from the angular velocities of the lower legs. For the determination of ground truth, the movement was simultaneously recorded with the AS-200 System (LaiTronic GmbH, Innsbruck, Austria).

The number of detected strides, the error in IC detection and stance phase duration was calculated.

In total, 1692 strides were detected from the reference system during the trials from which the AI-system identified 679 strides. The absolute mean error (AME) in IC detection was 39.3 ± 36.6 ms while the AME for stance duration was 187.6 ± 140 ms.

Landmark detection is a challenging task for the AI-system as can clearly be seen be the rate of only 40% detected strides. As mentioned by Fadillioglu et al., error in TO-detection is higher than in IC-detection.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 98 - 98
2 Jan 2024
Mehta S Goel A Mahajan U Reddy N Bhaskar D
Full Access

Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty.

Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence.

Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision.

564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6-8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05).

DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 38 - 38
2 Jan 2024
Frese J Schulz A Kowald B Gerlach U Frosch K Schoop R
Full Access

In a consecutive retrospective analysis of 190 patients treated with the Masquelet technique at the BG Klinikum Hamburg from January 2012 to January 2022, defect-specific features such as the extent and morphology of the defect were recorded, and their influence on the time to reach full weight-bearing of the affected limb was investigated.

A total of 217 defects were treated in 190 patients using the Masquelet technique. 70% of all defects were located in the tibia, followed by 22% in the femur and only about 7% in the upper extremity. The average length of all defects was 58 mm (+/−31 mm), with the largest defect measuring 180 mm and the smallest measuring 20 mm. 89% of the patients achieved full weight-bearing at the end of therapy. The average time from initiation of therapy to reaching safe full weight-bearing was 589 days. There was a significant correlation between defect length and time to reach full weight-bearing (p = 0.0134). These results could serve as a basis for creating a score for prognostics and evaluation of bone healing after treatment with the Masquelet technique. Additionally, the results could help guide indications for secondary stabilization using internal fixation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 93 - 93
11 Apr 2023
de Angelis N Beaule P Speirs A
Full Access

Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down.

Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10-16 m4/N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio.

High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control.

Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve high hip flexion. The high stresses at the cartilage labrum interface could explain so-called bucket-handle tears of the labrum.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 41 - 41
2 Jan 2024
Singh S Dhar S Kale S
Full Access

The management of comminuted metaphyseal fractures is a technical challenge and satisfactory outcomes of such fixations often remain elusive. The small articular fragments and bone loss often make it difficult for standard fixation implants for proper fixation. We developed a novel technique to achieve anatomical reduction in multiple cases of comminuted metaphyseal fractures at different sites by employing the cantilever mechanism with the help of multiple thin Kirschner wires augmented by standard fixation implants.

We performed a retrospective study of 10 patients with different metaphyseal fractures complicated by comminution and loss of bone stock. All patients were treated with the help of cantilever mechanism using multiple Kirschner wires augmented by compression plates. All the patients were operated by the same surgeon between November 2020 to March 2021 and followed up till March 2023. Surgical outcomes were evaluated according to the clinical and radiological criteria.

A total of 10 patients were included in the study. Since we only included patients with highly unstable and comminuted fractures which were difficult to fix with traditional methods, the number of patients in the study were less. All 10 patients showed satisfactory clinical and radiological union at the end of the study with good range of motion. One of the patient in the study had post-operative wound complication which was managed conservatively with regular dressings and oral antibiotics.

Comminuted metaphyseal fractures might differ in pattern and presentation with every patient and there can be no standard treatment for all. The cantilever technique of fracture fixation is based on the principle of cantilever mechanism used in bridges and helps achieve good anatomical reduction and fixation. It provides a decent alternative when standard modes of fixation don't give desired result owing to comminuted nature of fractures and deficiency of bone stock.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 42 - 42
2 Jan 2024
Oliveira V
Full Access

Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response.

Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of metastatic disease is a challenge due to its complexity and heterogeneity, vascularization, reduced size and limited access. It requires a multidisciplinary treatment and depending on different factors it is palliative or curative-like treatment. For multiple bone metastases it is important to relief pain and increases function in order to provide the best quality of life and expect to prolong survival. Advances in nanotechnology, bioinformatics, and genomics, will increase biomarkers for early detection, prognosis, and targeted treatment effectiveness. We are taking the leap forward in precision medicine and personalized care.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 44 - 44
17 Apr 2023
Wang M Lu X Li G
Full Access

To evaluate the therapeutic effect of Pulsed Electromagnetic Field (PEMF) in the treatment of meniscal tears in the avascular region.

Seventy-two twelve-week-old male Sprague-Dawley rats with full-thickness longitudinal medial meniscal tears in the avascular region were divided into 3 groups: control group (Gcon), treated with classic signal PEMF (Gclassic), and high slew rate signal PEMF(GHSR). The HSR signal has the same pulse and burst frequencies as the classic signal, but with a higher slew rate. Macroscopic observation and histological analysis of the meniscus and articular cartilage were performed to evaluate the meniscal healing and progressions of osteoarthritis. The synovium was harvested for histological and immunofluorescent analysis to assess the intra-articular inflammation. The meniscal healing, articular cartilage degeneration, and synovitis were quantitatively evaluated according to their respective scoring system.

Dramatic degenerative changes of the meniscus and articular cartilage were noticed during gross observation and histological evaluation in the control group at 8 weeks. However, the menisci in the two treatment groups were restored to normal morphology with a smooth surface and shiny white color. Particularly, the HSR signal remarkably enhanced the fibrochondrogenesis and accelerated the remodeling process of the regenerated tissue. The meniscal healing scores of PEMF treatment groups were significantly higher than those in the control group at 8 weeks. Specifically, the HSR signal showed a significantly higher meniscal repair score than the classic signal at week 8 (P < .01). The degeneration score (Gcon versus Gclassic: P < .0001; Gcon versus GHSR: P < .0001) and synovitis score (Gcon versus Gclassic: P < .0001; Gcon versus GHSR: P = .0002) of the control groups were significantly higher than those in the two treatment groups.

PEMF promoted the healing of meniscal tears in the avascular region and restored the injured meniscus to its structural integrity in a rat model. Compared to the classic signal, the HSR signal showed the increased capability to promote fibrocartilaginous tissue formation and modulate the inflammatory environment and therefore protected the knee joint from post-traumatic osteoarthritis development.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 104 - 104
2 Jan 2024
der Broeck L Geurts J Qiu S Poeze M Blokhuis T
Full Access

The optimal treatment strategy for post-traumatic long bone non-unions is subject of an ongoing discussion. At the Maastricht University Medical Center (MUMC+) the induced membrane technique is used to treat post-traumatic long bone non-unions. This technique uses a multimodal treatment algorithm involving bone marrow aspirate concentrate (BMAC), the reamer-irrigator-aspirator (RIA) and P-15 bioactive peptide (iFactor, Cerapedics). Bioactive glass (S53P4 BAG, Bonalive) is added when infection is suspected. This study aims to objectify the effect of this treatment algorithm on the health-related quality of life (HRQoL) of patients with post-traumatic long bone non-unions. We hypothesized that HRQoL would improve after treatment.

From January 2020 to March 2023, consecutive patients who were referred to a multidisciplinary (trauma, orthopaedic and plastic surgery) non-union clinic at the MUMC+, The Netherlands, were evaluated using the Non-Union Scoring System (NUSS). The EQ-5D-5L questionnaire and the Lower Extremity Functional Scale (LEFS) were employed to obtain HRQoL outcomes both prior to and subsequent to surgery, with a follow-up at 6, 18 and 35 weeks.

Seventy-six patients were assessed at baseline (T0), with a mean NUSS of 40 (± 13 SD). Thirty-eight patients had their first follow-up, six weeks after surgery (T1). Thirty-one patients had a second follow-up at 18 weeks (T2), and twenty patients had the third follow-up at 35 weeks (T3). The EQ-5D index mean at baseline was 0.480, followed by an index of 0.618 at T1, 0.636 at T2, and 0.702 at T3. A significant difference was found in the HRQoL score between T0 and T1, as well as T2 and T3 (p<0.001; p=0.011). The mean LEFS significantly increased from 26 before intervention to 34, 39, and 43 after treatment (p<0.001; p=0.033; p=0.016).

This study demonstrated a significant improvement in the health-related quality of life of patients with post-traumatic long bone non-unions after the standardized treatment algorithm following the induced membrane technique.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 105 - 105
2 Jan 2024
Screen H
Full Access

Tendon injury is debilitating and recalcitrant. With limited knowledge of disease aitiology we have are lacking in effective treatments for this prevalent musculoskeletal complaint.

This presentation will outline our findings over the past few years in which we have demonstrated the importance of the interfascicular matrix (IFM) niche in maintaining healthy tendon function and driving disease progression1,2. It will also continue to describe our progress in developing both in vivo and in vitro models to interrogate disease progression.

We have developed and validated a rat Achilles tendon overload model, in order to explore the impact of loading on IFM and fascicle structure, and the resulting cell response. Data highlights that structural disruption and inflammatory response both initiate in the IFM region, and can be seen in the absence of demonstrable changes to animal gait, indicating a sub-injury response in the tendon which we hypothesis may drive increased matrix turnover and repair3.

We are now looking to interrogate the pathways driving this inflammatory behaviour in an organ-chip model, exploring the interplay between IFM cells and cells within fascicles. We have demonstrated phenotypic distinction of cells from the two niche environments, localized the progenitor phenotype to the IFM region and demonstrated significant mechanosensitivity in the IFM cell population4. We are currently building appropriate niche environments to maintain cell phenotype in our in vitro models, to explore the metabolic changes associated with disease progression.

Acknowledgements: This body of work has received funding from: BBSRC (BB/K008412 /1); Versus Arthritis (project grant 20262); Horserace Betting Levy Board (T5); Dunhill Medical Charity (project grant RPGF1802\23); MRC (MR/T015462/1).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 99 - 99
11 Apr 2023
Domingues I Cunha R Domingues L Silva E Carvalho S Lavareda G Carvalho R
Full Access

The covid-19 pandemic had a great impact in the daily clinical and surgical practice. Concerning patients with a femoral neck fracture, there is the need of a negative Sars-CoV-2 test or an established isolation period for the positive cases, pre-operatively. The goal of this study was to evaluate the impact of the pandemic in the management of patients with femoral neck fractures, who were submitted to surgical treatment with hemiarthroplasty, in our hospital.

A retrospective, observational study was performed, analysing the patients with femoral neck fractures submitted to hip hemiarthroplasty, during the years 2019 (before the pandemic) and 2020 (first year of the pandemic). We analysed the first 5 patients operated in each month of the mentioned years.

We analysed 56 and 60 patients submitted to surgery in the years 2019 and 2020, respectively. The inpatient days were, in average, 14.1 and 13.1. Patients were operated, in average, 3.0 and 3.8 days after admission (corrected to 2.5 and 3.6 days if the time of discontinuation of anticoagulants or antiplatelets needed before surgery is deducted). There were peri-operative complications in 53.6% and 46.7% of the patients, in 2019 and 2020 respectively. The most common complication in both groups was a low postoperative haemoglobin level needing red blood cell transfusion. One-year postoperative mortality rate was 17.9% and 13.3%, respectively.

Despite the changes triggered by the new pandemic, there was an overall maintenance of the quality of the management of these patients, with only a slight increase in the interval between admission and surgery. Some of the remaining variables even showed an improvement when comparing the two groups of patients. Nevertheless, it is important to mention that there were patients infected with Covid-19 who died before being submitted to surgery, therefore not being present in these statistics.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 47 - 47
17 Apr 2023
Akhtar R
Full Access

To compare the efficacy of intra-articular and intravenous modes of administration of tranexamic acid in primary total knee arthroplasty in terms of blood loss and fall in haemoglobin level.

Study Design: Randomized controlled trial.

Duration of Study: Six months, from May 2019 to Nov 2019.

Seventy-eight patients were included in the study. All patients undergoing unilateral primary total knee replacement were included in the study. Exclusion criteria were patients with hepatitis B and C, history of previous knee replacement, bilateral total knee replacement, allergy to TXA, Hb less than 11g/dl in males and less than 10g/dl in females, renal dysfunction, use of anticoagulants for 7 days prior to surgery and history of thromboembolic diseases. Patients were randomly divided into group A and B. Group A patients undergoing unilateral primary total knee replacement (TKR) were given intravenous tranexamic acid (TXA) while group B were infiltrated with intra-articular TXA. Volume of drain output, fall in haemoglobin (Hb) level and need for blood transfusion were measured immediately after surgery and at 12 and 24 hours post operatively in both groups.

The study included 35 (44.87%) male and 43 (55.13%) female patients. Mean age of patients was 61 ± 6.59 years. The mean drain output calculated immediately after surgery in group A was 45.38 ± 20.75 ml compared with 47.95 ± 23.86 ml in group B (p=0.73). At 24 hours post operatively, mean drain output was 263.21 ± 38.50 ml in intravenous group versus 243.59 ± 70.73 ml in intra-articular group (p=0.46). Regarding fall in Hb level, both groups showed no significant difference (p>0.05). About 12.82% (n=5) patients in group A compared to 10.26% (n=4) patients required blood transfusion post operatively (p=0.72).

Intra-articular and intravenous TXA are equally effective in patients undergoing primary total knee arthroplasty in reducing post-operative blood loss.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 49 - 49
2 Jan 2024
Duquesne K Emmanuel A
Full Access

For many years, marker-based systems have been used for motion analysis. However, the emergence of new technologies, such as 4D scanners provide exciting new opportunities for motion analysis. In 4D scanners, the subjects are measured as a dense mesh, which enables the use of shape analysis techniques. In this talk, we will explore how the combination of the rising new motion analysis methods and shape modelling may change the way we think about movement and its analysis.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 109 - 109
2 Jan 2024
Rahbek O Halloum A Rolfing J Kold S Abood A
Full Access

The concept of guided growth was proposed by Andry in 1741. In the last decades the concept has been widely used as implants has been introduced that can modulate the growth of the bone and pediatric longitudinal and angular deformities is widely treated by this technique. However, there is there is a huge variation in techniques and implants used and high-quality clinical trials is still lacking. Recently implants correcting rotational bony deformities have been proposed and clinical case series have been published.

The current status of guided growth will be presented in this narrative review and preliminary experiences with rotational guided growth will be shared. Is guided growth to be considered a safe treatment at this time point?


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 51 - 51
2 Jan 2024
Peiffer M
Full Access

Syndesmotic ankle lesions involve disruption of the osseous tibiofibular mortise configuration as well as ligamentous structures stabilizing the ankle joint. Incomplete diagnosis and maltreatment of these injuries is frequent, resulting in chronic pain and progressive instability thus promoting development of ankle osteoarthritis in the long term. Although the pathogenesis is not fully understood, abnormal mechanics has been implicated as a principal determinant of ankle joint degeneration after syndesmotic ankle lesions. Therefore, the focus of this presentation will be on our recent development of a computationally efficient algorithm to calculate the contact pressure distribution in patients with a syndesmotic ankle lesion, enabling us to stratify the risk of OA development in the long term and thereby guiding patient treatment.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 50 - 50
17 Apr 2023
Li Y Xu J Li G Qin L
Full Access

Critical size bone defects are frequently caused by accidental trauma, oncologic surgery, and infection. Distraction osteogenesis (DO) is a useful technique to promote the repair of critical size bone defects. However, DO is usually a lengthy treatment, therefore accompanied with increased risks of complications such as infections and delayed union.

Herein, we developed an innovative intramedullary biodegradable magnesium (Mg) nail to accelerate bone regeneration in critical size bone defect repair during DO.

We observed that Mg nail induced almost 4-fold increase of new bone formation and over 5-fold of new vessel formation at 2 weeks after distraction. Mg nail upregulated the expression of calcitonin gene-related peptide (CGRP) in the new bone as compared with the DO alone group. We further revealed that blockade of the sensory nerve by overdose capsaicin blunted Mg nail enhanced critical size bone defect repair during the DO process. Moreover, inhibitors/antagonist of CGRP receptor, FAK, and VEGF receptor blocked the Mg nail stimulated vessel and bone formation.

In summary, we revealed, for the first time, a CGRP-FAK-VEGF signaling axis linking sensory nerve and endothelial cells, which may be the main mechanism underlying Mg-enhanced critical size bone defect repair when combined with DO, suggesting a great potential of Mg implants in reducing DO treatment time for clinical applications.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 103 - 103
11 Apr 2023
Domingues I Cunha R Domingues L Silva E Carvalho S Lavareda G Carvalho R
Full Access

Patients who are Jehovah's witnesses do not accept blood transfusions. Thus, total hip arthroplasty can be challenging in this group of patients due to the potential for blood loss. Multiple strategies have been developed in order to prevent blood loss.

A 76-year-old female, Jehovah's witness medicated with a platelet antiaggregant, presented to the emergency department after a fall from standing height. Clinically, she had pain mobilizing the right lower limb and radiological examination revealed an acetabular fracture with femoral head protrusion and ipsilateral isquiopubic fracture. Skeletal traction was applied to the femur during three weeks and no weight bearing was maintained during the following weeks. Posteriorly, there was an evolution to hip osteoarthritis with necrosis of the femoral head.

The patient was submitted to surgery six months after the initial trauma, for a total hip arthroplasty. The surgery was performed with hypotensive anaesthesia, careful surgical technique and meticulous haemostasis and there was no need for blood transfusion. Posteriorly, there was a positive clinical evolution with progressive improvement on function and deambulation.

Total hip arthroplasty may be safely carried out with good clinical outcomes in Jehovah's witnesses, without the need for blood transfusion, if proper perioperative precautions are taken, as has already been shown in previous studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 51 - 51
17 Apr 2023
Al-Musawi H Sammouelle E Manara J Clark D Eldridge J
Full Access

The aim is to investigate if there is a relation between patellar height and knee flexion angle. For this purpose we retrospectively evaluated the radiographs of 500 knees presented for a variety of reasons.

We measure knee flexion angle using a computer-generated goniometer. Patellar height was determined using computer generated measurement for the selected ratios, namely, the Insall–Salvati (I/S), Caton–Deschamps (C/D) and Blackburne–Peel (B/P) indices and Modified I/S Ratio.

A search of an NHS hospital database was made to identify the knee x rays for patients who were below the age of forty. A senior knee surgeon (DC) supervised three trainee trauma and orthopaedics doctors (HA, JM, ES) working on this research. Measurements were made on the Insall–Salvati (I/S), Caton–Deschamps (C/D) and Blackburne–Peel (B/P) indices and Modified I/S Ratio. The team leader then categorised the experimental measurement of patients’ knee flexion angle into three groups. This categorisation was according to the extent of knee flexion. The angles were specifically, 10.1 to 20, 20.1 to 30, and 30.1 to 40 degrees of knee flexion.

Out of the five-hundred at the start of the investigation, four hundred and eighteen patients were excluded because they had had either an operation on the knee or traumatic fracture that was treated conservatively.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 111 - 111
2 Jan 2024
Wong S Lee K Razak H
Full Access

Medial opening wedge high tibial osteotomy (MOWHTO) is the workhorse procedure for correcting varus malalignment of the knee. There have been recent developments in the synthetic options to fill the osteotomy gap. The current gold standard for filling this osteotomy gap is autologous bone graft which is associated with donor site morbidity. We would like to introduce and describe the process of utilizing the novel Osteopore® 3D printed, honeycomb structured, Polycaprolactone and β-Tricalcium Phosphate wedge for filling the gap in MOWHTO. In the advent of additive manufacturing and the quest for more biocompatible materials, the usage of the Osteopore® bone wedge in MOWHTO is a promising technique that may improve the biomechanical stability as well the healing of the osteotomy gap.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 106 - 106
11 Apr 2023
McIff T Funk G Horn E Hageman K Varner A Kilway K
Full Access

We developed a novel silorane-based biomaterial (SBB) for use as an orthopedic cement. SBB is comprised of non-toxic silicon-based monomers, undergoes non-exothermic polymerization, and has weight-bearing strength required of orthopedic cements. We sought to compare the antibiotic release kinetics of this new cement to that of commercially available PMMA bone cement. We also evaluated each material's inherent propensity to support the attachment of bacteria under both static and dynamic conditions.

One gram of either rifampin or vancomycin was added to 40g batches of PMMA and SBB. Pellets were individually soaked in PBS. Eluate was collected and tested daily for 14 days using HPLC. Compressive strength and modulus were tested over 21 days. Bioassays were used to confirm the bioactivity of the antibiotics eluted.

We measured the growth and maturation of staphylococcus aureus (SA) biofilm on the surface of both PMMA and SBB disks over the course of 72 hours in a static well plate and in a dynamic biofilm reactor (CDC Biofilm Reactor). N=4 at 24, 48, and 72 hours. A luminescent strain of SA (Xen 29) was employed allowing imaging of bacteria on the discs.

SBB eluted higher concentrations of vancomycin than did PMMA over the course of 14 days (p<0.001). A significant 55.1% greater day 1 elution was observed from SBB. Silorane cement was able to deliver rifampin in clinically favorable concentrations over 14 days. On the contrary, PMMA was unable to deliver rifampin past day 1. The incorporation of rifampin into PMMA severely reduced its mechanical strength (p<0.001) and modulus (p<0.001).

Surface bacterial radiance of PMMA specimens was significantly greater than that of SBB specimens at all time points (p<0.05).

The novel silorane-based cement demonstrated superior antibiotic release and, even without antibiotic incorporation, demonstrated an innate inhabitation to bacterial attachment and biofilm.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 55 - 55
17 Apr 2023
Adlan A AlAqeel M Evans S Davies M Sumathi V Botchu R
Full Access

The primary aim of this study was to compare the clinical outcomes of osteoid osteoma (OO) between the group of patients with the presence of nidus on biopsy samples from radiofrequency ablation (RFA) with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO reflecting our experience as a tertiary orthopaedic oncology centre.

We retrospectively reviewed 88 consecutive patients diagnosed with OO treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). Median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%) while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions.

Pain improvement in the patient group with nidus in histology sample was significantly better than the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus (OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007).

Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of OO following RFA is better in patients with appendicular lesions than spinal or axially located lesions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 58 - 58
17 Apr 2023
McCall B Cowie R Jennings L
Full Access

The clinical success of osteochondral autografts is heavily reliant on their mechanical stability, as grafts which protrude above or subside below the native cartilage can have a negative effect on the tribological properties of the joint [1]. Furthermore, high insertion forces have previously been shown to reduce chondrocyte viability [2]. Commercial grafting kits may include a dilation tool to increase the diameter of the recipient site prior to insertion. The aim of this study was to evaluate the influence of dilation on the primary stability of autografts.

Six human cadaveric femurs were studied. For each femur, four 8.5 × 8mm autografts were harvested from the trochlear groove and implanted into the femoral condyles using a Smith & Nephew Osteochondral grafting kit. Two grafts were implanted into dilated recipient sites (n=12) and two were implanted with no dilation (n=12). Insertion force was measured by partially inserting the graft and applying a load at a rate of 1 mm/min, until the graft was flush with the surrounding cartilage. Push-in force was measured by applying the same load, until the graft had subsided 4mm below congruency. Significance was taken as (p<0.05).

Average maximum insertion force of dilated grafts was significantly lower (p<0.001) than their non-dilated equivalent [28.2N & 176.7N respectively]. There was no significant difference between average maximum push-in force between the dilated and non-dilated groups [1062.8N & 1204.2N respectively].

This study demonstrated that significantly less force is required to insert dilated autografts, potentially minimising loss of chondrocyte viability. However, once inserted, the force required to displace the grafts below congruency remained similar, indicating a similar degree of graft stability between both groups.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 125 - 125
2 Jan 2024
Mbuku R Sanchez C Evrard R Englebert A Manon J Henriet V Nolens G Duy K Schubert T Henrotin Y Cornu O
Full Access

To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in in-vitro and in-vivo models.

A graft composed by hydroxyapatite (HA) and β-TCP was designed as a cylinder with 3D gyroid porosities and 7 mm medullary space based on swine's anatomy. It was produced using a stereolithography 3D-printing machine (V6000, Prodways).

Sterile bone grafts impregnated with or without a 10µg/mL porcine BMP-2 (pBMP-2) solution were implanted into porcine femurs in a bone loss model. Bone defect was bi-weekly evaluated by X-ray during 3 months. After sacrifice, microscanner and non-decalcified histology analysis were conducted on biopsies.

Finally, osteoblasts were cultured inside the bone graft or in monolayer underneath the bone graft. Cell viability, proliferation, and gene expression were assessed after 7 and 14 days of cell culture (n=3 patients).

3D scaffolds were successfully manufactured with a composition of 80% HA and 20% β-TCP ±5% with indentation compressive strength of 4.14 MPa and bending strength of 11.8MPa.

In vivo study showed that bone regeneration was highly improved in presence of pBMP-2. Micro-CT shows a filling of the gyroid sinuses of the implant (Figure 1).

In vitro, the presence of BMP2 did not influence the viability of the osteoblasts and the mortality remained below 3%. After 7 days, the presence of BMP2 in the scaffold significantly increased by 85 and 65% the COL1A1 expression and by 8 and 33-fold the TNAP expression by osteoblasts in the monolayer or in the scaffold, respectively. This BMP2 effect was transient in monolayer and did not modify gene expression at day 14.

BMP2-impregnated bone graft is a promising patient-personalized 3D-printed solution for bone defect regeneration, by promoting neighboring host cells recruitment and solid new bone formation.

For any figures and tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 63 - 63
17 Apr 2023
MacLeod A Dal Fabbro G Grassi A Belvedere C Nervuti G Casonato A Leardini A Gil H Zaffagnini S
Full Access

High tibial osteotomy (HTO) is a joint preserving alternative to knee replacement for medial tibiofemoral osteoarthritis in younger, more active patients. The procedure is technically challenging and limited also by ‘one size fits all’ plates which can result in patient discomfort necessitating plate removal.

This clinical trial evaluated A novel custom-made HTO system – TOKA (3D Metal Printing LTD, Bath, UK) for accuracy of osteotomy correction and improvements in clinical outcome scores.

The investigation was a single-arm single-centre prospective clinical trial (IRCCS Istituto Ortopedico Rizzoli; ClinicalTrials.gov NCT04574570), with recruitment of 25 patients (19M/6F; average age: 54.4 years; average BMI: 26.8), all of whom received the TOKA HTO 3D planning and surgery. All patients were predominantly diagnosed with isolated medial knee osteoarthritis and with a varus deformity under 20°. Patients were CT scanned pre- and post-operatively for 3D virtual planning and correctional assessment. All surgeries were performed by the lead clinical investigator – a consultant knee surgeon with a specialist interest in and clinical experience of HTO.

On average, Knee Society Scores (KSS) improved significantly (p<0.001) by 27.6, 31.2 and 37.2 percentage points respectively by 3-, 6- and 12-months post-surgery respectively. Other measures assessed during the study (KOOS, EQ5D) produced similar increases.

Our early experience using custom implants is extremely promising. We believe the reduced profile of the plate, as well as the reduced invasiveness and ease of surgery contributed to faster patient recovery, and improved outcome scores compared to conventional techniques. These clinical outcome results compare very favourably other case-series with published KOOS scores using different devices.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 64 - 64
17 Apr 2023
Bermudez-Lekerika P Croft A Crump K Wuertz-Kozak K Le Maitre C Gantenbein B
Full Access

Previous research has shown catabolic cell signalling induced by TNF-α and IL-1β within intervertebral (IVD) cells. However, these studies have investigated this in 2D monolayer cultures, and under hyper-physiological doses. Thus, we aim to revisit the catabolic responses of bovine IVD cells in vitro in 3D culture under increasing doses of TNF-α or IL-1β stimulation at three different timepoints.

Primary bovine nucleus pulposus (NP) and annulus fibrosus (AF) cells were isolated and expanded for two weeks. Subsequently, NP and AF cells were encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks for phenotype recovery. Re-differentiated cells were stimulated with 0.1, 1 and 10 ng/ml TNF-α or with 0.01, 0.1 and 10 ng/ml IL-1β for one week. Beads were collected on the stimulation day (Day 0) and on Day 1 and 7 after stimulation.

A dose-dependent upregulation of catabolic markers was observed in both cell types after one day of TNF-α or IL-1β stimulation. 10 ng/ml TNF-α stimulation induced a significant upregulation (p<0.05) of ADAMTS4, MMP3 and MMP13 in AF cells after one day of stimulation. Similarly, MMP3 upregulation showed a strong trend (p=0.0643) in NP cells. However, no effects on expression were seen after seven days. In addition, no significant difference between treatments in COL2, COL1 and ACAN expression was observed, and cell viability was not reduced at any time point, regardless of the treatment.

We demonstrate a dose-dependent upregulation of catabolic markers in NP and AF cells under TNF-α or IL-1β stimulation, with a significant upregulation of ADAMTS4, MMP3 and MMP13 genes in AF cells after one day of treatment. Notably, after seven days of treatment, the dose-dependent effects were no longer observed possibly due to an adaptation mechanism of IVD cells to counter the metabolic shift.


Full Access

Matrix metalloproteinase enzymes (MMPs) play a crucial role in the remodeling of articular cartilage, contributing also to osteoarthritis (OA) progression. The pericellular matrix (PCM) is a specialized space surrounding each chondrocyte, containing collagen type VI and perlecan. It acts as a transducer of biomechanical and biochemical signals for the chondrocyte. This study investigates the impact of MMP-2, -3, and -7 on the integrity and biomechanical characteristics of the PCM.

Human articular cartilage explants (n=10 patients, ethical-nr.:674/2016BO2) were incubated with activated MMP-2, -3, or -7 as well as combinations of these enzymes. The structural degradative effect on the PCM was assessed by immunolabelling of the PCM's main components: collagen type VI and perlecan. Biomechanical properties of the PCM in form of the elastic moduli (EM) were determined by means of atomic force microscopy (AFM), using a spherical cantilever tip (2.5µm).

MMPs disrupted the PCM-integrity, resulting in altered collagen type VI and perlecan structure and dispersed pericellular arrangement. A total of 3600 AFM-measurements revealed that incubation with single MMPs resulted in decreased PCM stiffness (p<0.001) when compared to the untreated group. The overall EM were reduced by ∼36% for all the 3 individual enzymes. The enzyme combinations altered the biomechanical properties at a comparable level (∼36%, p<0.001), except for MMP-2/-7 (p=0.202).

MMP-induced changes in the PCM composition have a significant impact on the biomechanical properties of the PCM, similar to those observed in early OA. Each individual MMP was shown to be highly capable of selectively degrading the PCM microenvironment. The combination of MMP-2 and -7 showed a lower potency in reducing the PCM stiffness, suggesting a possible interplay between the two enzymes. Our study showed that MMP-2, -3, and -7 play a direct role in the functional and structural remodeling of the PCM.

Acknowledgements: This work was supported by the Faculty of Medicine of the University of Tübingen (grant number.: 2650-0-0).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 27 - 27
2 Jan 2024
Dei A Hills M Chang W Wagey R Eaves A Louis S Zeugolis D Sampaio A
Full Access

Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized animal component-free (ACF) workflows for differentiating human MSCs and PSCs to tenocyte-like cells (TLCs) respectively. MSCs isolated from bone marrow (n = 3) or adipose tissue (n = 3) were expanded using MesenCult™-ACF Plus Culture Kit for at least 2 passages, and differentiated to TLCs in 21 days using a step-wise approach. Briefly, confluent cultures were treated with an ACF tenogenic induction medium for 3 days, followed by treatment with an ACF maturation medium for 18 days. Monolayer cultures were maintained at high density without passaging for the entire duration of the protocol, and the medium was changed every 2 – 3 days. In a similar fashion, embryonic (n = 3) or induced PSCs (n = 3) were first differentiated to acquire a mesenchymal progenitor cell (MPC) phenotype in 21 days using STEMdiff™ Mesenchymal Progenitor Kit, followed by the aforementioned tenogenic protocol for an additional 21 days. In all cases, the optimized workflows using ACF formulations consistently activated a tenogenic transcriptional program, leading to the generation of elongated, spindle-shaped tenomodulin-positive (TNMD+) cells and deposition of an extracellular matrix predominantly composed of collagen type I. In summary, here we describe novel workflows that can robustly generate TLCs from MSCs and hPSC-derived MPCs for potential translational applications.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 66 - 66
17 Apr 2023
Sharp V Scott C Hing C Masieri F
Full Access

Establishing disease biomarkers has been a long-sought after goal to improve Osteoarthritis (OA) diagnosis, prognosis, clinical and pharmaceutical interventions. Given the role of the synovium in contributing to OA, a meta-analysis was performed to determine significant synovial biomarkers in human OA tissue, compared to non-OA patients. Outcomes will direct future research on marker panels for OA disease modelling in vitro/in vivo, aiding clinical research into OA disease targets.

A PRISMA compliant search of databases was performed to identify potential biomarker studies analysing human, OA, synovial samples compared to non-OA/healthy participants. The Risk of Bias In Non-Randomised Studies of Interventions (ROBINS-I) tool assessed methodological quality, with outcome analysed by Grading of Recommendations Assessment, Development and Evaluation (GRADE). Meta-analyses were conducted for individual biomarkers using fixed or random effect models, as appropriate. Where three or more studies included a specific biomarker, Forest Plot comparisons were generated.

3230 studies were screened, resulting in 34 studies encompassing 25 potential biomarkers (1581 OA patients and 695 controls). Significant outcomes were identified for thirteen comparisons. Eleven favoured OA (IL-6, IL-10, IL-13, IP-10, IL-8, CCL4, CCL5, PIICP, TIMP1, Leptin and VEGF), two favoured non-OA controls (BMP-2 and HA). Notably, PIICP showed the largest effect (SMD 6.11 [3.50, 8.72], p <0.00001, I2 99%), and TIMP1 resulted critically important (0.95 [0.65, 1.25], p <0.00001, I2 82%). Leptin and CCL4 showed lower effects (SMD 0.81 [0.33, 1.28], p =0.0009; 0.59 [0.32, 0.86], p <0.0001, respectively).

Thirteen significant synovial biomarkers showed links with OA bioprocesses including collagen turnover, inflammatory mediators and ECM components. Limitations arose due to bias risk from incomplete or missing data, publication bias of inconclusive results, and confounding factors from patient criteria. These findings suggest markers of potential clinical viability for OA diagnosis and prognosis that could be correlated with specific disease stages.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 119 - 119
2 Jan 2024
Arthur L Min X Tu S Campi S Mellon S Murray D
Full Access

Tibial periprosthetic fracture is an important complication of the Oxford Unicompartmental Knee Replacement (OUKR). Primary fixation of cementless OUKR tibial components relies on the interference-fit of the ‘keel’ and a slot in the proximal tibia. Clinically used double blade keel saws (DKS) create slots with two grooves, generating stress concentrations where fractures may initiate. This study aimed to investigate slot factors that may influence incidence of tibial periprosthetic fractures.

Slots were made in PCF20 polyurethane foam using the DKS plus/minus adjuvant rasping, single blade keel saw (SKS), and rasp-only. Round and square slots were machined with milling cutters. Compact tensile tests were conducted per ASTM E399 to determine tensile load to fracture (TLTF) and results were validated using bovine tibia. Cementless OUKR components were implanted into slots in custom polyurethane blocks and compressed to failure to determine anatomical load to fracture (ALTF). A custom MATLAB program calculated slot roundness from cross-sectional images.

Round slots had higher TLTF (29.5N, SD=2.7) than square (25.2N, SD=1.7, p<0.05) and DKS slots (23.3N, SD=2.7, p<0.0001). Fractures occurred at the round slot apices, square slot corners, and deepest DKS slot grooves. ALTF was not significantly different between square and round slots. Adjuvant rasping made DKS slots significantly rounder, resulting in significantly higher TLTF, but rasping did not increase ALTF. ALTF was significantly higher for SKS (850N, SD=133, p<0.01) and rasp-only (912N, SD=100, p<0.001) slots compared to standard DKS slots (703N, SD=81).

Round keel slots minimise stress concentrations and increase TLTF but do not increase ALTF. The SKS and rasp-only slots retain material at slot ends and have significantly higher ALTF. Future studies should assess saw blades that retain material and round slot ends to evaluate if their use may significantly reduce the incidence of tibial periprosthetic fracture.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 18 - 18
2 Jan 2024
Ferreira S Tallia F Heyraud A Walker S Salzlechner C Jones J Rankin S
Full Access

For chondral damage in younger patients, surgical best practice is microfracture, which involves drilling into the bone to liberate the bone marrow. This leads to a mechanically inferior fibrocartilage formed over the defect as opposed to the desired hyaline cartilage that properly withstands joint loading. While some devices have been developed to aid microfracture and enable its use in larger defects, fibrocartilage is still produced and there is no clear clinical improvement over microfracture alone in the long term. Our goal is to develop 3D printed devices, which surgeons can implant with a minimally invasive technique. The scaffolds should match the functional properties of cartilage and expose endogenous marrow cells to suitable mechanobiological stimuli in-situ, in order to promote healing of articular cartilage lesions before they progress to osteoarthritis, and rapidly restore joint health and mobility. Importantly, scaffolds should direct a physiological host reaction, instead of a foreign body reaction, associated with chronic inflammation and fibrous capsule formation, negatively influencing the regenerative outcome.

Our novel silica/polytetrahydrofuran/polycaprolactone hybrids were prepared by sol-gel synthesis and scaffolds were 3D printed by direct ink writing. 3D printed hybrid scaffolds with pore channels of ~250 µm mimic the compressive behaviour of cartilage. Our results show that these scaffolds support human bone marrow stem/stromal cell (hMSC) differentiation towards chondrogenesis in vitro under hypoxic conditions to produce markers integral to articular cartilage-like matrix evaluated by immunostaining and gene expression analysis. Macroscopic and microscopic evaluation of subcutaneously implanted scaffolds in mice showed that scaffolds caused a minimal resolving inflammatory response. Our findings show that 3D printed hybrid scaffolds have the potential to support cartilage regeneration.

Acknowledgements: Authors acknowledge funding provided by EPSRC grant EP/N025059/1.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 68 - 68
4 Apr 2023
Kelly E Gibson-Watt T Elcock K Boyd M Paxton J
Full Access

The COVID-19 pandemic necessitated a pivot to online learning for many traditional, hands-on subjects such as anatomy. This, coupled with the increase in online education programmes, and the reduction of time students spend in anatomy dissection rooms, has highlighted a real need for innovative and accessible learning tools. This study describes the development of a novel 3-dimensional (3D), interactive anatomy teaching tool using structured light scanning (SLS) technology. This technique allows the 3D shape and texture of an object to be captured and displayed online, where it can be viewed and manipulated in real-time.

Human bones of the upper limb, vertebrae and whole skulls were digitised using SLS using Einscan Pro2X/H scanners. The resulting meshes were then post-processed to add the captured textures and to remove any extraneous information. The final models were uploaded into Sketchfab where they were orientated, lit and annotated. To gather opinion on these models as effective teaching tools, surveys were completed by anatomy students (n=35) and anatomy educators (n=8). Data was collected using a Likert scale response, as well as free text answers to gather qualitative information.

3D scans of the scapula, humerus, radius, ulna, vertebrae and skull were successfully produced by SLS. Interactive models were produced via scan data in Sketchfab and successfully annotated to provide labelled 3D models for examination. 94% of survey respondents agreed that the interactive models were easy to use (n=35, 31% agree and 63% strongly agree) and 97% agreed that the 3D interactive models were more useful than 2D images for learning bony anatomy (n=35; 26% agree and 71% strongly agree).

This initial study has demonstrated a suitable proof-of-concept for SLS technology as a useful technique for producing 3D interactive online tools for learning and teaching bony anatomy. Current studies are focussed on determining the SLS accuracy and the ability of SLS to capture soft tissue/joints. We believe that this tool will be a useful technique for generating online 3D interactive models to study orthopaedic anatomy.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 72 - 72
4 Apr 2023
Silva-Henao J Pahr DH Reisinger A
Full Access

Primary implant stability is critical for osseointegration and subsequent implant success. Small displacements on the screw/bone interface are necessary for implant success, however, larger displacements can propagate cracks and break anchorage points which causes the screw to fail. Limited information is available on the progressive degradation of stability of an implanted bone screw since most published research is based on monotonic, quasi-static loading [1]. This study aims to address this gap in knowledge.

A total of 100 implanted trabecular screws were tested using multi-axial loading test set-up. Screws were loaded in cycles with the applied force increasing 1N in each load cycle. In every load cycle, Peak forces, displacements, and stiffness degradation (calculated in the unloading half of the cycle) where recorded. 10 different loading configurations where tested.

The damage vs displacement shows a total displacement at the point of failure between 0.3 and 0.4 mm while an initial stiffness reduction close to 40%. It is also shown that at a displacement of ~0.1 mm, the initial stiffness of every sample had degraded by 20% (or more) meaning that half of the allowable degradation occurred in the first 25-30% of the total displacement.

Other studies on screw overloading [1] suggests similar results to our concerning initial stiffness degradation at the end of the loading cycle. Our results also show that the initial stiffness degrades faster with relatively small deformations suggesting that the failure point of an implanted screw might occur before the common failure definition (pull-out force, for example). These results are of great significance since primary implant stability is better explained by the stiffness of the construct than by its failure point.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 73 - 73
4 Apr 2023
Tolgyesi A Huang C Akens M Hardisty M Whyne C
Full Access

Bone turnover and microdamage are impacted by skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This study aimed to establish an understanding of microdamage accumulation and load to failure in healthy and osteolytic vertebrae following cancer treatment (stereotactic body radiotherapy (SBRT), zoledronic acid (ZA), or docetaxel (DTX)).

Forty-two 6-week old athymic female rats (Hsd:RH-Foxn1rnu, Envigo) were studied; 22 were inoculated with HeLa cervical cancer cells through intracardiac injection (day 0). Animals were randomly assigned to four groups: untreated (healthy=5, osteolytic=6), SBRT on day 14 (healthy=6, osteolytic=6), ZA on day 7 (healthy=4, osteolytic=5), and DTX on day 14 (healthy=5, osteolytic=5). Animals were euthanized on day 21. L1-L3 motion segments were compression loaded to failure and force-displacement data recorded. T13 vertebrae were stained with BaSO4 and µCT imaged (90kVp, 44uA, 4.9µm) to visualize microdamage location and volume. Damage volume fraction (DV/BV) was calculated as the ratio of BaSO4 to bone volume. Differences in mean load-to-failure were compared using three-way ANOVA (disease status, treatment, cells injected). Differences in mean DV/BV between treatment groups were compared using one-way ANOVA.

Treatment had a significant effect on load-to-failure (p=0.004) with ZA strengthening the healthy and osteolytic vertebrae. Reduced strength post SBRT seen in the metastatic (but not the healthy) group may be explained by greater tumor involvement secondary to higher cell injection concentrations. Untreated metastatic samples had higher DV/BV (16.25±2.54%) compared to all treatment groups (p<0.05) suggesting a benefit of treatment to bone quality.

Focal and systemic cancer treatments were shown to effect load-to-failure and microdamage accumulation in healthy and osteolytic vertebrae. Developing a better understanding of how treatments effect bone quality and mechanical stability is critical for effective management of patients with spinal metastases.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 42 - 42
17 Nov 2023
Prabhakaran V Sobrattee A Melchels FP Paxton JZ
Full Access

Abstract

Objectives

The enthesis is a specialised structure at the interface between bone and tendon with gradual integration to maintain functionality and integrity. In the process of fabricating an in-vitro model of this complex structure, this study aims to investigate growth and maturation of bone, tendon and BMSC spheroids followed by 3D mini-tissue production.

Methods

Cell spheroids Spheroids of differentiated rat osteoblasts (dRObs), rat tendon fibroblasts (RTFs) and bone marrow stem cells (BMSC) were generated by culturing in 96 well U bottom cell repellent plates. With dROb spheroids previously analysed [1], RTF spheroids were examined over a duration of up to 28 days at different seeding densities 1×104, 5×104, 1×105, 2×105 in different media conditions with and without FBS (N=3). Spheroid diameter was analysed by imageJ/Fiji; Cell proliferation and viability was assessed by trypan blue staining after dissociating with accutase + type II collagenase mix; necrotic core by H&E staining; and extracellular matrix by picro-sirius red (RTFs) staining to visualise collagen fibres under bright-field and polarised light microscope.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 48 - 48
17 Nov 2023
Williams D Swain L Brockett C
Full Access

Abstract

Objectives

The syndesmosis joint, located between the tibia and fibula, is critical to maintaining the stability and function of the ankle joint. Damage to the ligaments that support this joint can lead to ankle instability, chronic pain, and a range of other debilitating conditions. Understanding the kinematics of a healthy joint is critical to better quantify the effects of instability and pathology. However, measuring this movement is challenging due to the anatomical structure of the syndesmosis joint. Biplane Video Xray (BVX) combined with Magnetic Resonance Imaging (MRI) allows direct measurement of the bones but the accuracy of this technique is unknown. The primary objective is to quantify this accuracy for measuring tibia and fibula bone poses by comparing with a gold standard implanted bead method.

Methods

Written informed consent was given by one participant who had five tantalum beads implanted into their distal tibia and three into their distal fibula from a previous study. Three-dimensional (3D) models of the tibia and fibula were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (125 FPS, 1.25ms pulse width) was recorded whilst the participant performed level gait across a raised platform. The beads were tracked, and the bone position of the tibia and fibula were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 51 - 51
17 Nov 2023
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract

Objectives

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age and gender is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age and gender on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties.

Methods and Results

We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age and gender on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory-based experiments to assess these properties. Compare the extent of the effect of age on MSC cell marker expression, proliferation and pathways. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the synovium, fat pad and bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for antibody cocktail (eg included CD34, CD45). The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. At P2 after extracting RNA, we investigate the gene analysis using Bulk seq. Clear differences between the younger and older patients and gender were indicated.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 30 - 30
17 Nov 2023
Swain L Holt C Williams D
Full Access

Abstract

Objectives

Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method.

Methods

Written informed consent was given by one participant who had four tantalum beads implanted into their distal femur and proximal tibia from a previous study. Three-dimensional (3D) models of the femur and tibia were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). Anatomical Coordinate Systems (ACS) were applied to the bone models using automated algorithms1. The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (60 FPS, 1.25 ms pulse width) was recorded whilst the participant performed a lunge. The beads were tracked, and the ACS position of the femur and tibia were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones. Using the principles defined by Grood and Suntay2, 6 DOF kinematics of the tibiofemoral joint were calculated (MATLAB, MathWorks). The mean difference and STD between these two sets of kinematics were calculated.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 7 - 7
1 Dec 2022
Bruschi A Donati DM Choong P Lucarelli E Wallace G
Full Access

The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. We defined it as neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. In this study, materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 12 - 12
1 Dec 2022
Maggini E Bertoni G Guizzi A Vittone G Manni F Saccomanno M Milano G
Full Access

Glenoid and humeral head bone defects have long been recognized as major determinants in recurrent shoulder instability as well as main predictors of outcomes after surgical stabilization. However, a universally accepted method to quantify them is not available yet. The purpose of the present study is to describe a new CT method to quantify bipolar bone defects volume on a virtually generated 3D model and to evaluate its reproducibility.

A cross-sectional observational study has been conducted. Forty CT scans of both shoulders were randomly selected from a series of exams previously acquired on patients affected by anterior shoulder instability. Inclusion criterion was unilateral anterior shoulder instability with at least one episode of dislocation. Exclusion criteria were: bilateral shoulder instability; posterior or multidirectional instability, previous fractures and/or surgery to both shoulders; congenital or acquired inflammatory, neurological, or degenerative diseases. For all patients, CT exams of both shoulders were acquired at the same time following a standardized imaging protocol. The CT data sets were analysed on a standard desktop PC using the software 3D Slicer. Computer-based reconstruction of the Hill-Sachs and glenoid bone defect were performed through Boolean subtraction of the affected side from the contralateral one, resulting in a virtually generated bone fragment accurately fitting the defect. The volume of the bone fragments was then calculated. All measurements were conducted by two fellowship-trained orthopaedic shoulder surgeons. Each measurement was performed twice by one observer to assess intra-observer reliability. Inter and intra-observer reliability were calculated. Intraclass Correlation Coefficients (ICC) were calculated using a two-way random effect model and evaluation of absolute agreement. Confidence intervals (CI) were calculated at 95% confidence level for reliability coefficients. Reliability values range from 0 (no agreement) to 1 (maximum agreement).

The study included 34 males and 6 females. Mean age (+ SD) of patients was 36.7 + 10.10 years (range: 25 – 73 years). A bipolar bone defect was observed in all cases. Reliability of humeral head bone fragment measurements showed excellent intra-observer agreement (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good interobserver agreement (ICC: 0.89, CI 95%: 0.80 – 0.94). Similarly, glenoid bone loss measurement resulted in excellent intra-observer reliability (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good inter-observer agreement (ICC: 0.84, CI 95%:0.72 – 0.91).

In conclusion, matching affected and intact contralateral humeral head and glenoid by reconstruction on a computer-based virtual model allows identification of bipolar bone defects and enables quantitative determination of bone loss.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 13 - 13
1 Dec 2022
Barone A Cofano E Zappia A Natale M Gasparini G Mercurio M Familiari F
Full Access

The risk of falls in patients undergoing orthopedic procedures is particularly significant in terms of health and socioeconomic effects. The literature analyzed closely this risk following procedures performed on the lower limb, but the implications following procedures on the upper limb remain to be investigated. Interestingly, it is not clear whether the increased risk of falling in patients undergoing shoulder surgery is due to preexisting risk factors at surgery or postoperative risk factors, such as anesthesiologic effects, opioid medications used for pain control, or brace use. Only one prospective study examined gait and fall risk in patients using a shoulder abduction brace (SAB) after shoulder surgery, revealing that the brace adversely affected gait kinematics with an increase in the risk of falls. The main purpose of the study was to investigate the influence of SAB on gait parameters in patients undergoing shoulder surgery.

Patients undergoing elective shoulder surgery (arthroscopic rotator cuff repair, reverse total shoulder arthroplasty, and Latarjet procedure), who used a 15° SAB in the postoperative period, were included. Conversely, patients age > 65 years old, with impaired lower extremity function (e.g., fracture sequelae, dysmorphism, severe osteo-articular pathology), central and peripheral nervous system pathologies, and cardiac/respiratory/vascular insufficiency were excluded. Participants underwent kinematic analysis at four different assessment times: preoperative (T0), 24 hours after surgery (T1), 1 week after surgery (T2), and 1 week after SAB removal (T3). The tests used for kinematic assessment were the Timed Up and Go (TUG) and the 10-meter test (10MWT), both of which examine functional mobility. Agility and balance were assessed by a TUG test (transitions from sitting to standing and vice versa, walking phase, turn-around), while gait (test time, cadence, speed, and pelvic symmetry) was evaluated by the 10MWT. Gait and functional mobility parameters during 10MWT and TUG tests were assessed using the BTS G-Walk sensor (G-Sensor 2). One-way ANOVA for repeated measures was conducted to detect the effects of SAB on gait parameters and functional mobility over time. Statistical analysis was performed with IBM®SPSS statistics software version 23.0 (SPSS Inc., Chicago, IL, USA), with the significant level set at p<0.05.

83% of the participants had surgery on the right upper limb. A main effect of time for the time of execution (duration) (p=0.01, η2=0.148), speed (p<0.01, η2=0.136), cadence (p<0.01, η2=0.129) and propulsion-right (R) (p<0.05, η2=0.105) and left (L) (p<0.01, η2=0.155) in the 10MWT was found. In the 10MWT, the running time at T1 (9.6±1.6s) was found to be significantly longer than at T2 (9.1±1.3s, p<0.05) and at T3 (9.0±1.3s, p=0.02). Cadence at T1 (109.7±10.9steps/min) was significantly lower than at T2 (114.3 ±9.3steps/min, p<0.01) and T3 (114.3±9.3steps/min, p=0.02). Velocity at T1 (1.1±0.31m/s) was significantly lower than at T2 (1.2± 0.21m/s, p<0.05). No difference was found in the pelvis symmetry index. No significant differences were found during the TUG test except for the final rotation phase with T2 value significantly greater than T3 (1.6±0.4s vs 1.4±0.3s, p<0.05). No statistically significant differences were found between T0 and T2 and between T0 and T3 in any of the parameters analyzed. Propulsion-R was significantly higher at T3 than T1 (p<0.01), whereas propulsion-L was significantly lower at T1 than T0 (p<0.05) and significantly higher at T2 and T3 than T1 (p<0.01). Specifically, the final turning phase was significantly higher at T2 than T3 (p<0.01); no significant differences were found for the duration, sit to stand, mid-turning and stand to sit phases.

The results demonstrated that the use of the abduction brace affects functional mobility 24 hours after shoulder surgery but no effects were reported at longer term observations.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 90 - 90
4 Apr 2023
Sharma M Khanal P Patel N Patel A
Full Access

To investigate the utility of virtual reality (VR) simulators in improving surgical proficiency in Orthopaedic trainees for complex procedures and techniques.

Fifteen specialty surgeons attending a London Orthopaedic training course were randomised to either the VR (n = 7) or control group (n = 8). All participants were provided a study pack comprising an application manual and instructional video for the Trochanteric Femoral Nail Advanced (TFNA) procedure. The VR group underwent additional training for TFNA using the DePuy Synthes (Johnson and Johnson) VR simulator. All surgeons were then observed applying the TFNA in a Sawbones model and assessed by a blinded senior consultant using three metrics: time to completion, 22-item procedure checklist and 5-point global assessment scale.

Participant demographics for the VR and control groups were similar in context of age (mean [SD]: VR group, 31.0 [2.38] years; control group, 30.6 [2.39] years), gender (VR group, 5 [71%] men; control group, 8 [100%] men) and prior experience with TFNA (had applied TFNA as primary surgeon: VR group, 6 [86%]; control group, 7 [88%]). Although statistical significance was not reached, the VR group, on average, outperformed the control group on all three metrics. They completed the TFNA procedure faster (mean [SD]: 18.2 [2.16] minutes versus 19.78 [1.32] minutes; p<0.189), performed a greater percentage of steps correctly (79% versus 66%; p<0.189) and scored a higher percentage on the global assessment scale (75% versus 65%; p<0.232).

VR simulators offer a safe and accessible means for Orthopaedic trainees to prepare for and supplement their theatre-based experience. It is vital, therefore, to review and validate novel simulation-based systems and in turn facilitate their improvement. We intend to increase our sample size and expand this preliminary study through a second upcoming surgical course for Orthopaedic trainees in London.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 2 - 2
4 Apr 2023
Zhou A Jou E Bhatti F Modi N Lu V Zhang J Krkovic M
Full Access

Open talus fracture are notoriously difficult to manage and they are commonly associated with a high level of complications including non-union, avascular necrosis and infection. Currently, the management of such injuries is based upon BOAST 4 guidelines although there is no suggested definitive management, thus definitive management is based upon surgeon preference. The key principles of open talus fracture management which do not vary between surgeons, however, there is much debate over whether the talus should be preserved or removed after open talus fracture/dislocation and proceeded to tibiocalcaneal fusion.

A review of electronic hospital records for open talus fractures from 2014-2021 returned foureen patients with fifteen open talus fractures. Seven cases were initially managed with ORIF, five cases were definitively managed with FUSION, while the others were managed with alternative methods. We collected patient's age, gender, surgical complications, surgical risk factors and post-treatment functional ability and pain and compliance with BOAST guidelines. The average follow-up of the cohort was four years and one month. EQ-5D-5L and FAAM-ADL/Sports score was used as a patient reported outcome measure. Data was analysed using the software PRISM.

Comparison between FUSION and ORIF groups showed no statistically significant difference in EQ-5D-5L score (P = 0.13), FAAM-ADL (P = 0.20), FAAM-Sport (P = 0.34), infection rate (P = 0.55), surgical times (P = 0.91) and time to weight bearing (P = 0.39), despite a higher proportion of polytrauma and Hawkins III and IV fractures in the FUSION group.

FUSION is typically used as second line to ORIF or failed ORIF. However, there are a lack of studies that directly compared outcome in open talus fracture patients definitively managed with FUSION or ORIF. Our results demonstrate for the first time, that FUSION may not be inferior to ORIF in terms of patient functional outcome, infection rate, and quality-of-life, in the management of patients with open talus fracture patients. Of note, as open talus fractures have increased risks of complications such as osteonecrosis and non-union, FUSION should be considered as a viable option to mitigate these potential complications in these patients.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 2 - 2
17 Nov 2023
Mehta S Williams L Mahajan U Bhaskar D Rathore S Barlow V Leggetter P
Full Access

Abstract

Introduction

Several studies have shown that patients over 65 years have a higher mortality with covid. Combine with inherently increased morbidity and mortality in neck of femur (NoFF) fractures, it is logical to think that this subset would be most at risk.

Aims

Investigate whether there is actual increase in direct mortality from Covid infection in NoFF patients, also investigate other contributing factors to mortality with covid positivity and compare the findings with current available literature.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 6 - 6
17 Nov 2023
Luo J Lee R
Full Access

Abstract

Objectives

The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults.

Methods

This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 95 - 95
4 Apr 2023
Troiano E Giacomo P Di Meglio M Nuvoli N Mondanelli N Giannotti S Orlandi N
Full Access

Infections represent a devastating complication in orthopedic and traumatological surgery, with high rates of morbidity and mortality. An early intervention is essential, and it includes a radical surgical approach supported by targeted intravenous antimicrobial therapy. The availability of parenteral antibiotics at the site of infection is usually poor, so it is crucial to maximize local antibiotic concentration using local carriers. Our work aims to describe the uses of one of these systems, Stimulan®, for the management and prevention of infections at our Institution.

Analysing the reported uses of Stimulan®, we identified two major groups: bone substitute and carrier material for local antibiotic therapy. The first group includes its application as a filler of dead spaces within bone or soft tissues resulting from traumatic events or previous surgery. The second group comprehends the use of Stimulan® for the treatment of osteomyelitis, post-traumatic septic events, periprosthetic joint infections, arthroplasty revision surgery, prevention in open fractures, surgery of the diabetic foot, oncological surgery and for all those patients susceptible to a high risk of infection.

We used Stimulan® in several complex clinical situations: in PJIs, in DAPRI procedure and both during the first and the second stage of a 2-stage revision surgery; furthermore, we started to exploit this antibiotic carrier also in prophylaxis of surgical site infections, as it happens in open fractures, and when a surgical site remediation is required, like in osteomyelitis following ORIF. Stimulan® is an extremely versatile and polyhedric material, available in the form of beads or paste, and can be mixed to a very broad range of antibiotics to better adapt to different bacteria and their antibiograms, and to surgeon's needs. These properties make it a very useful adjuvant for the management of complex cases of infection, and for their prevention, as well.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 96 - 96
4 Apr 2023
Pastor T Kastner P Souleiman F Gehweiler D Link B Beeres F Babst R Gueorguiev B Knobe M
Full Access

Helical plates are preferably used for proximal humeral shaft fracture fixation and potentially avoid radial nerve irritation as compared to straight plates. Aims:(1) to investigate the safety of applying different long plate designs (straight, 45°-, 90°-helical and ALPS) in MIPO-technique to the humerus. (2) to assess and compare their distances to adjacent anatomical structures at risk.

MIPO was performed in 16 human cadaveric humeri using either a straight plate (group1), a 45°-helical (group2), a 90°-helical (group3) or an ALPS (group4). Using CT-angiography, distances between brachial arteries and plates were evaluated. Following, all specimens were dissected, and distances to the axillary, radial and musculocutaneous nerve were evaluated.

None of the specimens demonstrated injuries of the anatomical structures at risk after MIPO with all investigated plate designs. Closest overall distance (mm(range)) between each plate and the radial nerve was 1(1-3) in group1, 7(2-11) in group2, 14(7-25) in group3 and 6(3-8) in group4. It was significantly longer in group3 and significantly shorter in group1 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the musculocutaneous nerve was 16(8-28) in group1, 11(7-18) in group2, 3(2-4) in group3 and 6(3-8) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the brachial artery was 21(18-23) in group1, 7(6-7) in group2, 4(3-5) in group3 and 7(6-7) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.021.

MIPO with 45°- and 90°-helical plates as well as ALPS is safely feasible and showed a significant greater distance to the radial nerve compared to straight plates. However, distances remain low, and attention must be paid to the musculocutaneous nerve and the brachial artery when MIPO is used with ALPS, 45°- and 90°-helical implants. Anterior parts of the deltoid insertion will be detached using 90°-helical and ALPS implants in MIPO-technique.