Abstract
Previous research has shown catabolic cell signalling induced by TNF-α and IL-1β within intervertebral (IVD) cells. However, these studies have investigated this in 2D monolayer cultures, and under hyper-physiological doses. Thus, we aim to revisit the catabolic responses of bovine IVD cells in vitro in 3D culture under increasing doses of TNF-α or IL-1β stimulation at three different timepoints.
Primary bovine nucleus pulposus (NP) and annulus fibrosus (AF) cells were isolated and expanded for two weeks. Subsequently, NP and AF cells were encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks for phenotype recovery. Re-differentiated cells were stimulated with 0.1, 1 and 10 ng/ml TNF-α or with 0.01, 0.1 and 10 ng/ml IL-1β for one week. Beads were collected on the stimulation day (Day 0) and on Day 1 and 7 after stimulation.
A dose-dependent upregulation of catabolic markers was observed in both cell types after one day of TNF-α or IL-1β stimulation. 10 ng/ml TNF-α stimulation induced a significant upregulation (p<0.05) of ADAMTS4, MMP3 and MMP13 in AF cells after one day of stimulation. Similarly, MMP3 upregulation showed a strong trend (p=0.0643) in NP cells. However, no effects on expression were seen after seven days. In addition, no significant difference between treatments in COL2, COL1 and ACAN expression was observed, and cell viability was not reduced at any time point, regardless of the treatment.
We demonstrate a dose-dependent upregulation of catabolic markers in NP and AF cells under TNF-α or IL-1β stimulation, with a significant upregulation of ADAMTS4, MMP3 and MMP13 genes in AF cells after one day of treatment. Notably, after seven days of treatment, the dose-dependent effects were no longer observed possibly due to an adaptation mechanism of IVD cells to counter the metabolic shift.